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Abstract Manipulation tasks require capturing the deformations undergone by the
manipulated object. In order to handle various sorts andmagnitudes of deformations,
physical deformationmodels have been employed based on FEM.By resorting to lin-
ear elasticitywith a volumetric formulation, thesemodels simulate large strainswhile
handling volumetric effects. For perception, suchmodelling provides physically con-
sistent regularization to registered deformations, especially over areas unobserved
by the sensing system. Besides elasticity modelling, fracture models are investigated
to cope with potential cracks or tears of the manipulated objects as well as collision
models to deal withmultiple interacting objects or interactions with the environment.
Also, these models have proven to be computationally efficient and are thus suitable
for dynamic manipulation. This chapter is based on the works presented in [1, 2].

1 Brief Introduction

Unlike vision-based tracking problems with rigid objects, for which a certain matu-
rity has been reached, perception for non-rigid objects is still a challenging problem.
It has arousedmuch interest in recent years in computer vision, computer graphics [3,
4], and robotics community [5]. Many potential applications would indeed be tar-
geted in augmented reality, medical imaging, and robotic manipulation by handling
a vast variety of objects: tissues, paper, rubber, viscous fluids, cables, food, organs,
and so on. For instance, in the RoDyMan project, a demonstration scenario is the
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Table 1 Main symbols used in this chapter

Definition Symbol

Position of a generic point of the element e in
the world frame W

x ∈ R
3

Deformation field ue(x) ∈ R
3

Initial coordinates of the four vertices of the
element e in the world frame W

xe,0 ∈ R
12

Coordinates of the four vertices of the element
e in the world frame W

xe ∈ R
12

Cauchy’s linear symmetric strain tensor using
Voigt notation

εe ∈ R
6

Infinitesimal stress tensor using Voigt notation σ e ∈ R
6

Internal elastic forces on the four vertices of
the element e

fe ∈ R
12

Stiffness matrix of the element e Ke ∈ R
12×12

Block-diagonal matrix containing four copies
of the rotation matrix in SO(3) corresponding
to the rotational component of the
deformations of the element e

Re ∈ R
12×12

humanoid dual-arm/hand manipulation of the pizza dough, which requires com-
plex dynamic manipulation tasks of a deformable object. Research has increasingly
focused on robots involved in food manipulation tasks in recent years [6–9]. The
perception system aims to provide the robot controller accurate, robust, and real-
time sensing of the manipulated deformable object. With respect to rigid objects,
dealing with deformations poses several additional challenges, such as modelling
the considered material properties and fitting this model with the vision and/or range
data. This registration problem also involves critical real-time concerns, which are
primarily required for robotic dynamic manipulation. Although numerous studies
have proposed efficient real-time techniques to handle 3D surfaces (paper, clothes)
which undergo isometric or slightly elastic deformations, a large open field remains
when considering more significant elastic deformations. Thus, the aim is to propose
a real-time tracking system able to handle elastic objects, potentially textureless, by
tracking large deformations and fast rigid motions, using visual and range data pro-
vided by an RGB-D sensor, as described in the next chapter. Our approach involves
physical modelling of the considered object to cope with deformations by relying
on a FEM. The considerable progresses recently made within the computer graphics
and medical simulation domains have enabled real-time performance for processing
such models.

In this chapter, we first introduce in Sect. 2 the various techniques to model defor-
mations, and also topological events such as tearing, fractures, splitting, or merging.
These numerical methods have been widely studied in the domains of computer
graphics [3, 10] and medical simulation [11].
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Based on this background, in Sects. 3, 4, and 5 we describe in more details the
elastic, fracture, and collision models we have employed for the RoDyMan project
to address, in a physics-based manner, the perception task when these behaviours
are encountered.

2 Background on Deformation Models

Modelling deformations can be handled through different approaches: mesh-based
heuristic or physically realistic approaches, and mesh-free methods such as particle
systems.

2.1 Mesh-Based Approaches

For mesh-based heuristic approaches, potentially relying on simple heuristical phys-
ical modeling, can be distinguished free-form geometrical mesh models, such as
Bezier curves, deformable splines, active contours [12, 13], or NURBS. These rep-
resentations implicitly take into account elastic or stretching constraints in an energy
function to minimize. Other models are explicitly based on approximate physical
properties. In this category, a famous and widespread model is the planar or vol-
umetric mass-spring model. The mesh for this model is made of discrete points
or nodes assigned with masses and which are linked by springs, using triangular
shapes [14], T-shapes [15] for planar models, or spread over cubic elements for volu-
metric models [10, 16]. In order to simulate the deformations of the modeled object,
because of external forces and internal forces between the nodes, the displacement
of each node is computed by applying Newton’s second law, solving the resulting
differential equations, usually using Euler of Runge-Kutta integration methods. The
simplicity and low computational complexity of surface spring-mass models have
proven their efficiency on planar deformable objects showing elastic properties.How-
ever, when dealingwith volumetric objects, the surfacemass-springmodel often fails
to maintain a constant volume. The deformations do not propagate very fast, limiting
the approach to small elastic deformations. With volumetric mass-spring models, a
slightly better volumetric behavior, although with still slow propagation of deforma-
tions, can be obtained at the cost of significantly higher computational costs. Linked
volume models, which are less employed, can also be mentioned. Instead, the FEM
provides a realistic physical model by relying on continuous mechanics. In order to
compute the deformation of the object, the basic idea is to solve Navier-Stokes or
Euler PDEs, which continuously describe the deformations of the object and con-
sist in balancing internal forces, resulting from viscosity and elastic properties of
the material, and external forces, such as gravity or collisions. Then, solving these
PDEs can be addressed by the FEM. It relies on finding numerical solutions of the
equations by first discretizing the deformable object into a mesh made of elements,
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usually tetrahedrons, and performing numerical explicit or implicit integration over
this mesh. A significant limitation of FEM approaches such as [17, 18] is their com-
putational complexity since they involve solving non-linear equations involving the
displacements and the forces at the nodes of the elements. Approximations of these
equations are thus inevitable for real-time computations and simulations. In the sim-
plest case, a static linear relation between forces and displacement can be derived
by means of the stiffness matrix, which last involves the elastic properties of the
considered element by depending on two parameters, namely, the Young’s modulus
and the Poisson’s ratio. The methods solving these equations can then be operated in
real-time [19]. However, they are still restricted to 100 relatively small elastic defor-
mations. This drawback has been circumvented with co-rotational approaches [20,
21], or by using more complex tensors to model the stiffness, such as the non-linear
St. Venant-Kirchhoff strain tensor [22], handling some hyper-elastic deformations,
butwith amore considerable computational burden. Other approaches [23] have been
able to cope with more general hyper-elastic materials, potentially in real-time.More
recently, [24] proposed the MJED, an algorithm relying on a total Lagrangian FEM
to handle, in real-time, materials showing hyper-elasticity, porosity, and viscosity
behaviours.

2.2 Mesh-Free Approaches

We can introduce a different line of approaches which does not consider a geo-
metrical mesh to model the object but instead a system of particles involving more
or less realistic physical properties. With particle-based methods, which have been
primarily developed in the computer graphics community [3], the object is repre-
sented by a set of 3D points storing attributes such as position, velocity, physical
properties, and so on. In an initial description [25], referred to as coupled spatial
particle system, the particles are dynamically evolving in a stochastic manner. Their
attributes are potentially related to the behavior of other particles, with static or
dynamic interactions, to model topological changes, for instance. This simple model
has enabled us to simulate fuzzy and inelastic objects such as clouds, water, and
so on. Another particle-based approach, referred to as SPH [26], employs a more
continuous method by interpolating particular quantities defined at discrete loca-
tions on the whole space, smoothing properties between particles. This approach has
been widely used to simulate fluid, based on Navier-Stokes equations, the various
internal forces resulting from pressure, viscosity, or surface tension being computed
with smoothing functions. With respect to mesh (or grid)-based techniques such as
FEM, SPH has several advantages by simplifying the fluid equations since mass con-
servation is guaranteed. The involved internal forces are computed from weighted
contributions from other particles instead of solving systems of equations for FEM.
Due to its higher simplicity and flexibility, SPH particle systems enable to model
highly viscous, viscoelastic, or even plastic materials, as well as topological changes
such as splitting or merging events [27–30]. However, compared to mesh-based
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approaches, SPH approaches have problems when maintaining the incompressibil-
ity of the material, and they require a large number of particles (with respect to the
number of vertices for the mesh) to perform simulations with equivalent resolution.
Nevertheless, real-time simulations can be performed in the approaches proposed
in [27–29]. A challenge for particle-based methods is to recover the surface of the
object. It can be done explicitly, through the surface reconstruction between the parti-
cles [27, 28], or implicitly, based on level sets [30], or using both explicit and implicit
representations [29]. The level sets implicitly define the surface by signed values for
points in the volume. These values generally correspond to a distance (positive when
inside the fluid, negative otherwise) to the explicit surface. Level sets are especially
suited to handle severe topological changes.

2.3 Hybrid Approaches

Coupling both mesh and particle-based methods combines the advantages of both
ones. An example is the particle level set method [31, 32] which introduces particles
in the vicinity of the mesh’s surface. Such a coupling enables the accurate simulation
of highly viscoelastic and plastic objects, as well as fluids with topological changes.

3 FEM Elastic Model

Among the different physical modelling methods mentioned above, we have adopted
a mesh-based FEM model for the perception system of the RoDyMan platform.
Besides modelling potentially large elastic volumetric deformations, FEM models
can act as reliable regularizers for registration on noisy vision data, which mesh-free
methods might not guarantee. They can also now achieve real-time performances,
and implementation is eased by the availability of open-source simulators embedding
such models. These models assume the prior knowledge of a consistent mesh (which
could be automatically reconstructed offline) and thematerial properties (through the
Young’s modulus and the Poisson’s ratio) of the observed and manipulated object.

3.1 Finite Element Modelling

As introduced above, the FEM provides a realistic physical model by relying on con-
tinuummechanics instead of finite differences for mass-spring systems, for instance.
For a detailed description, the reader can refer to [33]. It consists of tessellating the
deformable object into a mesh made of elements. Here, we rely on a volumetric
linear FEM approach with tetrahedral elements (see Fig. 1), which are preferred over
other topologies such as triangles or hexahedrons, due to their modeling accuracy



8 A. Petit et al.

Fig. 1 Examples of
tetrahedral meshes

(with respect to triangles, for instance), while being computationally efficient and
convenient for meshing volumes with topologies of any complexity (with respect to
hexahedrons).

The deformation field ue over an element e is then approximated as a continuous
interpolation of the displacement vectors ûe of its four vertices, through the matrix
Ne(x) ∈ R

3×12, which contains the polynomial basis functions of the element

ue(x) = Ne(x)ûe, (1)

where ûe = xe − xe,0.

3.2 Linear Elasticity

In order to model deformations and elasticity, we resort to the infinitesimal strain
theory [33] to compute the Cauchy’s linear strain tensor εe within the tetrahedron. It
can be linearly expressed with respect to ûe as

εe = Leûe, (2)

with Le ∈ R
6×12 a constant matrix. In order to relate the stress with the strain, we

then rely on Hooke’s law linear elasticity theory for a continuous isotropic material,
which leads us to write the infinitesimal stress tensor σ e in the element e as

σ e = Ceεe, (3)

whereCe ∈ R
6×6 symmetricmatrix depending on two elastic parameters of themate-

rial, namely, the Young’s modulus E ∈ R and the Poisson’s ratio ν ∈ R. Folding (2)
into (3) yields

σ e = CeLeûe. (4)
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Fig. 2 The corotational
approach

The strain energy in e can be computed as a function of σ e, εe, and the volume
Ve ∈ R of the element. It can then be derived to determine the internal elastic forces
fe exerted on the four vertices of e. Based on (2) and (4), fe can be linearly related to
the displacements ûe of the vertices as

fe = Keûe = VeLT
e σ e, (5)

with Ke = VeLT
e CeLe, and Ve ∈ R.

3.3 The Corotational Approach

Themodel using an infinitesimal approximation of the strain tensor, giving a constant
Ke linearising the elastic forces, is insensitive to linear transformations. However, it
is inaccurate when modeling large rotations of the elements causing, for instance,
unexpected growth of volume. A workaround consists of the corotational approach
proposed in [21, 34, 35], used for registration purposes in [36], which is a good com-
promise between the ability to model large elastic deformations and computational
efficiency. The displacement of an element can be decomposed into a rigid rotation
Re and a pure deformation. As suggested in [35], we use a polar decomposition
on the transformation matrix between the current and initial state of the vertices to
extract Re. Then, the stiffness matrix Ke can be warped with respect to this rotation
to accommodate rotation transformations, giving

fe = ReKeûr
e = ReKe(R−1

e xe − xe,0), (6)

where ûr
e = R−1

e xe − xe,0, with R−1
e xe the back rotated deformed coordinates of the

vertices of e to an unrotated frame. Notice that the forces Keûr
e are rotated to the

current deformed element through Re. Figure2 illustrates the principle of such a
corotational approach.
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In this way, the overall forces on the whole mesh can be summed to zero, while
computational efficiency is ensured sinceKe can be computed in advance, in contrast
to non-linear FEM approaches.

4 Fracture Model

During deformable object manipulation, excessive stress may result in fractures of
the object. Therefore, regardless of whether it might be a desirable effect, detecting
and capturing such a topological event becomes essential for proper manipulation.

In the computer graphics community, various systems modeling fractures were
proposed. The detection of fractures, or cracks, in 3D object simulation has been ini-
tially achieved using mass-spring systems [37] by removing springs whose lengths
exceed a certain threshold. Based on the FEM, a physically consistent method using
the linear elastic fracture theory [38] was proposed in [18] through the computation,
for some given strains, of tensile forces undergone by the nodes. A fracture is then
propagated from each detected fracturable node (or crack tip) by subdividing the
neighboring tetrahedra according to a fracture plane. Similarly, a more computation-
ally efficient solution was suggested in [21, 39] by resorting the fracture being prop-
agated along element boundaries to element-wise stresses. Although improvements
have been achieved from these widespread approaches, for both fracture detection
and propagation [40], we propose here an approach based on [18]. One reason is the
ability to cope appropriately with the provided noisy point cloud data continuously.
Another reason is to preserve real-time performance.

4.1 Fracture Detection

Detecting fractures in the mesh is performed similarly to [18], by decomposing the
internal forces exerted on the nodes into tensile and compressive forces, with the
difference that [18] relies on a standard linear FEM method. For this purpose, the
stress tensor undergone by a tetrahedron is separated into tensile and compressive
components. Here, using a corotational approach, we compute σ e as

σ e = CeLe(R−1
e xe − xe,0). (7)

Then, the three eigenvalues, νi (σ e) ∈ R, and eigenvectors, ni (σ e) ∈ R
3, associated

to σ e are computed. Positive eigenvalues correspond to tensile stresses, whereas
negative eigenvalues correspond to compressive stresses. As in [18], tensile and
compressive tensors can be then defined as
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σ+
e =

3∑

i=1

max(0, νi (σ e))M(ni (σ e)), (8)

σ−
e =

3∑

i=1

min(0, νi (σ e))M(ni (σ e)), (9)

with

M(a) =

⎧
⎪⎪⎨

⎪⎪⎩

aaT

‖a‖ if a �= 03,

O3 if a = 03,

(10)

for any vector a ∈ R
3.

Based on these tensile and compressive stresses and using (5), the internal forces
exerted on the vertices of e can be decomposed as

f+
e = VeLT

e σ+
e , (11)

f−
e = VeLT

e σ−
e . (12)

Considering a mesh with nX > 0 vertices, it is possible to define the set X of all
these vertices, x j ∈ R

3, with j = 1, . . . , nX . Then, as in [18], the separation tensor,

ζ j ∈ R
6 can be computed for each node x j in the mesh using the sets

{
f+
e, j | j ∈ e

}

e

and
{
f−
e, j | j ∈ e

}

e
of tensile and compressive forces, respectively, exerted by the

elements {e | j ∈ e} attached to the node

ζ−
j = 1

2
(
∑

e

M(f+
e, j ) − M(f+

j ) −
∑

e

(f−
e, j ) − M(f−

j )), (13)

with
f+

j =
∑

e

f+
e, j andf−

j =
∑

e

f−
e, j . (14)

The tensor ζ j enables to evaluate deformation imbalance between tensile and com-
pressive forces, while being invariant to imbalance resulting in rigid motions. A
fracture at node x j is then detected if the largest positive eigenvalue ν+

j ∈ R of ζ j is
above a certain threshold corresponding to the toughness of the material. The eigen-
vector n+

j ∈ R
3, corresponding to ν+

j , defines the normal to the fracture plane at node
x j .
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4.2 Fracture Propagation and Remeshing

The mesh around the considered node shall be modified to propagate the fracture
from the detected fracturable nodes in the direction of the fracture plane. The ele-
ments attached to the node and intersected by the fracture plane are subdivided
according to the plane’s orientation [18]. Other neighboring elements also need to
be modified to maintain the consistency of the mesh. However, such a re-meshing
process, which is proper and suitable for simulations purposes since it manages to
maintain the fracture orientation, is computationally costly and tends to generate a
continuously growing number of elements, which is not desirable to keep real-time
performance. Besides, for registration concerns, by changing locally and drastically
the resolution of the mesh, matching the re-meshed regions with the acquired point
cloud (which has a constant and homogeneous resolution while being noisy) may
lead to heterogeneous or unstable behaviors. Another approach, suggested in [21, 39,
41], consists of propagating the fracture along the boundaries of the neighbouring
elements. Although it enables to keep the resolution constant, this method tends to
produce jumbled fracture patterns and artefacts, which is also not desirable in our
case when coping with the noisy point cloud data.

We have instead opted here for a solution preserving the mesh homogeneity and
performing a neat fracture propagation (see Fig. 3). As in [18], the fracturable node
is first replicated with the same positions. Then, within the set of elements attached
to the original fracturable node, the nodes which are not intersected by the given
fracture plane are determined. They are thus re-assigned to the original fracturable
node or the replicated one, based on which side of the plane they are located. This
procedure appears coarse, affects the volume of the model, and tends to degenerate
the mesh. However, it remains acceptable if we consider objects undergoing simple
fracture events, so that element losses in the mesh can be neglected.

Fig. 3 Re-meshing procedure, here represented in the 2D case with triangles for simplicity. The
fracturable node x j is replicated, initially, with the same position providing a new vertex x f

j for the
mesh (it is here translated from x j for clarity). The intersected elements are removed. The elements
on the positive side of the fracture plane (determined by its normal n j ) assigned to x j and the others
remain attached to x j
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Fig. 4 Example of a fracture
occurring on a cylindrical
beam object

(a) (b)

4.3 Comments on the Results

An example of a beam-like object being bent and fractured according to our fracture
model is shown in Fig. 4. In Fig. 4a, we observe the fracture detection process with
the value for each vertex of the fracture measure, i.e., the largest eigenvalue of the
separation tensor, which is mapped to colours. In Fig. 4b, we can notice the fracture
propagation step once fractures are detected.

5 Interaction Model

When manipulating multiple objects, objects interacting with their environments, or
the manipulation tools, it becomes necessary to sense the potential contacts and the
resulting deformations reliably. Here, we propose to use interaction models to handle
these phenomenons.

Indeed, modelling the interactions between the considered objects constitutes a
central issue to allow a joint registration of the deformations.We propose here a state-
of-the-art model consisting of classical collision detection and collision response
strategies. Collision being performedon surfacemeshes,we rigidlymap each object’s
collision triangular surfacemesh on their corresponding volumetric tetrahedralmesh.

5.1 Collision Detection

Collisions can be handled by employing different approaches to determine the inter-
sections and the contacts between the interacting objects. Reviews of collision detec-
tion methods can be found in [42, 43]. Intersections are computed by performing
successive distance tests based on a hierarchical set of bounding volumes around the
polyhedral triangular collision meshes.

Here, we employ AABB hierarchies around the considered objects. First, as a
broad phase, intersections between the coarsest AABBs are found. Then, as a narrow
phase, we descend in the AABB hierarchies of the objects in a coarse-to-fine manner.
Within the finest AABBs, a search for intersections between pairs of geometric
primitives is performed. The primitives are triangles in our case. The computation of
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Fig. 5 Illustration of the collision detection algorithm with the hierarchies of bounding volumes
(left), and the computed pairs of collision points (middle, right), tested on the SOFA framework

intersections is based on a threshold on the distances between the primitives (triangle-
to-triangle), and it returns corresponding pairs of collision (or contact) points on the
colliding primitives, as illustrated in Fig. 5.

5.2 Collision Response

In order to model the contact forces between two colliding deformable objects i and
j , we use a simple penalty-based method. For two detected collision points on the
collision surfaces of the interacting objects, barycentric mappings on the tetrahedral
meshes are carried out to determine two corresponding points xi ∈ R

3 and x j ∈ R
3,

in both volumetric models. Then a penetration distance δ > 0 can be defined as
δ = d − D, with d = ‖xi − x j‖ and D > 0 a proximity threshold. As a collision

normal ni, j , we choose ni, j = xi − x j

d
.

A spring-like repulsive penalty force fc
j/ i (xi ), exerted by x j on xi , can then be

computed as

fc
j/ i (xi ) = −kδni, j , (15)

with k > 0 a stiffness factor.

6 Discussion and Conclusion

This chapter introduced some background on physical simulation with FEM to reg-
ularize observed deformations in a perception system. Despite more complex and
accurate models exist, relying on continuum mechanics and elasticity theory for
deformation modelling offers some physical realism and the ability to deal with var-
ious magnitudes of deformations, with volumetric effects, which is not guaranteed
by standard geometric and surface-based approaches. It requires only the knowledge
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of a couple of parameters (Young modulus and Poisson ratio) setting the mechanical
properties of the involved object. However, the physical realism of the approach shall
be mitigated since capturing the deformations in the considered perception system
would consist in balancing internal forces from the FEM computations and external
forces resulting from observations through the vision sensors. These latter forces
have no relation with the object’s real forces: the knowledge of the actual material
properties does not have much significance. Deformation modelling acts as a reg-
ularizer for the observed deformations and shall not be considered as an accurate
model for other purposes such as control or planning. The use of simple fracture
and collision models also provides tools to handle topological changes and multiple
interacting objects. The efficiency of the solvers and the implementation, through
the SOFA platform, make these models suitable for real-time perception.
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