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Abstract In this chapter, the real-time non-rigid tracking system to continuously
estimate the deformations of the manipulated objects is described, using visual and
range data provided by an RGB-D sensor. Based on the models described in the
previous chapter, the method enables to deal with various deformations (elastic and
plastic), fractures, and contacts, while ensuring physical consistency, handling rigid
motions, occlusions, and addressing these tasks in real-time. It relies on a prior
visual segmentation of the object in the RGB image. The mesh is registered first
in a rigid manner with a classical ICP algorithm between the visible surface of the
mesh and the segmented point cloud. A non-rigid fitting phase is then performed
by determining geometrical point-to-point correspondences with the point cloud,
used to compute external forces exerted on the mesh. Deformations are computed
by solving mechanical equations balancing these external forces with internal forces
provided by the FEM models. A technique to estimate the elastic parameters of the
object is proposed by minimizing a fitting error between the simulated deformations,
actuated by the input operator force provided by a force sensor, and the deformations
captured by the RGB-D camera. Conversely, estimating a contact force exerted on the
object can be carried out using point cloud data by minimizing the deviation between
the registered and the simulated deformations. The system has been evaluated on
synthetic and real data, with various objects, deformation, and interaction scenarios,
and by integrating it into manipulation experiments on the RoDyMan humanoid
robotic platform. This chapter is based on the works presented in [1–3].

A. Petit (B)
Therenva, 74F rue de Paris, 35000 Rennes, France
e-mail: antoine.a.petit@inria.fr

V. Lippiello · B. Siciliano
Department of Electrical Engineering and Information Technology, CREATE Consortium &
University of Naples Federico II, PRISMA Lab, Via Claudio 21, 80125 Naples, Italy
e-mail: vincenzo.lippiello@unina.it

B. Siciliano
e-mail: bruno.siciliano@unina.it

© Springer Nature Switzerland AG 2022
B. Siciliano and F. Ruggiero (eds.), Robot Dynamic Manipulation,
Springer Tracts in Advanced Robotics 144,
https://doi.org/10.1007/978-3-030-93290-9_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93290-9_2&domain=pdf
mailto:antoine.a.petit@inria.fr
mailto:vincenzo.lippiello@unina.it
mailto:bruno.siciliano@unina.it
https://doi.org/10.1007/978-3-030-93290-9_2


20 A. Petit et al.

1 Brief Introduction

The problem of capturing the deformations of non-rigid objects is an active research
field in computer vision that finds prospective applications in robotic manipulation,
human/machine, tangible interactions, and motion capture.

For the perception system of the RoDyMan platform, this objective of sensing
deformations led to handle several challenges such as modelling the considered
manipulated objects and their material and aligning the designed models with the
vision and range data provided by an RGB-D sensor.

As introduced in the previous chapter, a mechanical model based on the FEMwas
employed. The recent suitability of these models for real-time registration and track-
ing problems, as demonstrated by promising approaches [4–7], has corroborated our
choice. Thus, we assume the prior knowledge of consistent meshes of the considered
objects (which could be automatically reconstructed offline) and their material prop-
erties (through the Young’s modulus and the Poisson’s ratio). As a vision sensor, we
rely on an off-the-shelf RGB-D camera.

The deformable registration and tracking method that we propose consists of
fitting in real-time, frame-by-frame, the known mesh of the considered object with
the point cloud data provided by an RGB-D sensor. The basic idea is to derive

Table 1 Main symbols used in this chapter

Definition Symbol

Input image I
Number of pixels N > 0

Binary pixel label αi

Set of the binary pixel pixel labels α = {αi , i = 1, . . . , N }
Pixel of the image pi ∈ R

2

Input depth map D
Segmented image Is

Segmented depth map Ds

Number of points in the cloud NY > 0

3D point in the sensor frame y j ∈ R
3

Segmented point cloud Y = {y j , j = 1, . . . , NY }
Number of vertices of the mesh NX > 0

Coordinates of a mesh’s vertex x j ∈ R
3

Set of the vertices of the mesh X = {x j : j = 1, . . . , NX }
Set of the vertices of the visible surface XV

Size of XV NXV > 0

Vector collecting all the vertices of the mesh x ∈ R
3NX

Young’s modulus E ∈ R

Poisson’s ratio ν ∈ R
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external forces exerted by the point cloud on the mesh and balance these forces with
the internal forces computed from the FEM physical model by solving mechanical
equations for the deformations. The FEM model thus acts as a regularizer over the
computed deformations.

The external forces are computed from geometrical point-to-point correspon-
dences between the point cloud and the mesh, relaxing the assumption of having a
textured object or an object with a rough surface, for which 2D or 3D key points can
be extracted and matched. We assume the mesh to be manually initialised correctly.

Based on this framework, other physical behaviours have been addressed besides
pure elastic deformations, such as capturing fractures undergone by objects and
interactions, which constitute an open research area in the field of 3D computer
vision. For fractures, our approach involves the FEM physical model for fractures
described in the previous chapter.

Several challenges must be overcome when considering multiple interacting
objects to estimate the non-rigid objects’ deformations jointly. The main challenge
regards inter-occlusions between objects and deformations due to contacts. Tracking
the different objects independently would result in inter-penetrations and physically
unrealistic behaviours between objects due to inaccuracies and ambiguities in the
visual or point cloud information. Instead, a simultaneous registration method rely-
ing on modelling the contacts between the objects would inherently handle these
issues and reach a reliable behaviour.

Asdirect applications of this perception system for theRoDyManproject,we show
its relevance when performing a simple planning task on the RoDyMan robotic plat-
form (see Sect. 10). A method to estimate a point-wise force exerted on a deformable
object is also described in Sect. 11.3 by using the external RGB-D sensor to confront
the deformationsmeasured by the registration techniquewith simulated deformations
generated with respect to the force to be estimated. This method requires an accurate
preliminary estimation of elasticity parameters of the material (Sect. 11), also based
on the deviation between simulated deformations, generated from a measured force,
and observed deformations, using RGB-D point clouds.

2 Related Work and Motivations

In this section, various works related to registration and tracking of non-rigid objects
using vision sensors are reported, considering 3D/2D and 3D/3D modalities and the
various estimation strategies to register isometric, elastic deformations, topological
changes, and interactions, with regards to the motivations of the system designed for
the RoDyMan project.

In the literature, the various approaches proposed to register deformable objects
using vision and/or range data could be classified according to the underlying model
of the considered object and its physical realism. Let us first clarify our scope and dis-
tinguish it from non-rigid reconstruction methods, for which at each frame provided
by the vision/range sensor a single mesh is reconstructed as in [8, 9]. Instead, here
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the goal is to continuously estimate the rigid transformations and the deformations
undergone by the object, modelled by a known mesh.

2.1 Registration Using Implicit Physical Modeling

Based on implicit physical models, approaches in [10–12] use a 1D parametric curve
or 2D splinesmodels (B-splines, radial basis functions) to track deformable objects in
monocular images. This method relies on minimizing an energy function, involving
an external energy term related to some image features, and an internal energy term
regularizing curvature, bending, or twisting, compelling the model to vary smoothly.
Adapting these techniques to registerwith 3D shapes or surfaces inmonocular images
is much more complex since 3D deformations can imply ambiguous 2D transfor-
mations, resulting in an underconstrained problem. A first attempt in [13], relying
on 3D splines and inspired by the work in [11], densely processes gradient features
to compute the data energy term. Less ambiguous feature-based approaches [14]
have been preferred, and additional constraints are often added to solve ambiguities.
With point cloud data, methods in [15, 16] employ an RGB-D sensor to register the
acquired point cloud to a surface mesh by minimizing an error function accounting
for geometric or direct depth and color errors and a stretching penalty function for
the mesh. By means of a NURBS parametrization [15] or an optimized GPU imple-
mentation [16], real-time performance can be achieved. Although these two systems
have shown promising and impressive results, they are still bounded to isometric
or slightly elastic deformations, employing regularization functions proportional to
squared distances between nodes of themesh. In contrast, we wish tomodel elastic in
a more physically realistic manner to handle volumetric effects and more significant
strains. Another limitation of these methods is that they process mesh-to-input point
cloud correspondences in their data error functions and are thus sensitive to missing
data or unobserved areas of the considered object due to occlusions. We consider in
this chapter also correspondences from the input point cloud to the mesh, through
the use of a segmentation method, to restrict the input point cloud to the observed
areas of the object, and based on these correspondences, the occluded or unobserved
areas would not affect registration.

We can also mention template-free non-rigid reconstruction methods for which at
each frame provided by the vision/range sensor, a single mesh of the sensed scene is
reconstructed and tracked, as in [8, 9, 17, 18]. However, these dense and exhaustive
methods, besides often failing fulfilling real-time constraints, are limited to isometric
slightly elastic deformations.
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2.2 Registration Using Explicit Physical Modeling

Instead, another formulation of the problem relies on explicit physics-based
deformable models to perform registration. Concerning implicit methods, other sorts
(such as non-linear elasticity) and magnitudes of deformations can be treated, infer-
ring more consistently shape and/or volumetric regularization. Statistically, the solu-
tion can then be determined by setting internal and external forces equal or, equiva-
lently, minimizing energy functions. Physics-based methods include discrete mass-
spring-damper systems [4, 7, 19], or more straightforward approaches relying on the
FEM, based on continuum mechanics. In [7], based on a mass-spring-damper sys-
tem, 3D-3D correspondences, determined through a probabilistic inference, enable
the computation of the external forces applied to the mesh. However, mass-spring
systems are limited in elastic deformations’ magnitude and do not guarantee specific
mechanical properties, such as volume preservation, failing to handle volumetric
effects. First attempts for registration employing the FEM for 3D surfaces in [20,
21] used linear elasticity FEM models. More recently, registration in monocular
images is addressed in [22]by designing a stretching/shrinking energy using con-
tinuous mechanical constraints on 2D elements assuming linear elasticity and some
3D boundary conditions. A linear tetrahedral co-rotational FEMmodel, coping with
more significant elastic deformations, is used in [6] through external forces being
related to correspondences between tracked 3D feature pointsmapped to the 3Dmesh
employing a stereo camera system. This system has been then extended in [5] by
involving a non-linear St-Venant Kirchoff FEMmodel to address hyperelastic behav-
ior efficiently. At the same time, the registration was addressed through monocular
keypoint-based external forces. This latter method proposes the most realistic phys-
ical elastic model within a real-time vision-based tracking system to the best of our
knowledge. However, both approaches in [5] and [6] do not address issues such as
capturing rigid motions and require textured materials.

2.3 Handling Topological Changes, Fractures and Cuts

Regarding the methods dealing with topological changes of a 3D deformable object,
we canmention the 3D reconstructionmethods in [23, 24] based on theTransforMesh
system to addressmesh evolution and topological changes.However, these aremodel-
freemethods, and they reconstruct a singlemesh at each time step [24], or they are not
suited for real-time applications [23]. More recently, some works [25, 26] addressed
the issue of tracking cuts of deformable objects. They rely on the detection of changes
in the configurations or structures of neighbouring visual features to predict a cut
over a registered surface [26] or volumetric physics-based model [25], which is
propagated on the considered meshes.
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2.4 Multiple Objects Registration

Simultaneously estimating the 3D transformations undergone by multiple objects
with vision data is already a well-studied problem for rigid or articulating objects.
This consists of retrieving the 6D pose of all rigid objects or the various joint angles
in articulated objects. Common approaches address the task by independently pro-
cessing the different objects [27, 28]. Other works propose to register objects and
capture interactions and cope with inter occlusions. In the case of articulated hand-
hand, hand-object, and object-object interactions, methods are numerous [29–36].
In these works, the interactions are modelled through physics-based constraints,
enabling to properly deal with collisions and occlusions, using single or multiple
RGB or RGB-D cameras. However, to our knowledge, handling multiple deformable
objects in interaction is quite a leftover problem.We canmention the systemdesigned
in [37], which introduces a collision detection process in its non-rigid reconstruction
pipeline to deal with auto-collisions. However, this technique falls in the class of non-
rigid surface reconstruction of the whole observed scene. Our method, instead, as a
template tracking technique, would explicitly consider different known deformable
interacting entities and in a volumetric manner.

2.5 Motivations and Contributions

Among the methods based on RGB-D or point cloud data having the closest goals,
motivations, and constraints to ours, we can mention [6, 7, 15, 16]. Several contri-
butions are proposed against them, such as handling various large deformations like
elastic ones while ensuring physical consistency, handling rigid motions, occlusions,
fractures, interactions, and addressing all these tasks with real-time or near real-
time performance. For interactions, introducing the collision detection and response
model into the registration framework has enabled to cope with contacts and with
inter occlusions in the point cloud matching processes of the different considered
objects. For this latter contribution, another improvement lies in the estimation of
rigid transformations into the FEM resolution by integrating rigid ICP-based elastic
forces. Another novelty has consisted of using the designed point cloud matching
techniques and registration method for elasticity parameter and single contact force
estimation and standard planning for manipulation on the RoDyMan platform.

2.6 Overview of the System

Our base tracking system for a single elastic object is represented in Fig. 1. As input
data, we have the known 3D volumetric mesh of the object, a given RGB-D data.
The procedure is sketched out as follows.
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Fig. 1 Overview of our approach for deformable object tracking for a single object

1. Visual segmentation of the considered object, with a graph cut-based approach
ensuring temporal coherence.

2. Using the resulted segmented point cloud, perform a rigid ICP to estimate a rigid
transformation using closest point correspondences, from the point cloud to the
mesh.

3. Using the resulting segmented point cloud, compute external linear elastic forces
exerted on the vertices of themesh from the point cloud to themesh and conversely,
based on closest point correspondences.

4. Numerical resolution ofmechanical equations to compute the deformations, based
on a tetrahedral linear co-rotational FEM model.

The different steps of this pipeline will be described in the following sections. The
visual segmentation will be presented in Sect. 3, point cloud processing in Sect. 4, the
rigid registration technique in Sect. 5, the non-rigid one in Sect. 6 and the resolution
strategy will be introduced in Sect. 7.
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Being the base for our different registration/tracking algorithms, these described
methodswill then be extended to the cases of fractures and interactingmultiple object,
as described respectively in Sects. 8 and 9. Finally, they will be applied for planning
for robotic manipulation (Sect. 10), and for elasticity parameters and contact force
estimation (Sect. 11).

3 Visual Segmentation

In this work, we advocate the use of a prior visual segmentation step in order to
restrict each successively acquired point cloud to the object of interest (see Sect. 4
for a more detailed justification).

3.1 Grabcut Segmentation

We rely here on the efficient and widespread GrabCut method [38], based on graph
cuts. In its original formulation, the Grabcut algorithm addresses the visual bilayer
segmentation task as an energy minimization problem, based on statistical models
of the foreground (the object) and the background.

For an input image I, we denote within α, the set of the binary pixel pixel labels,
αi = 0 for the background pixels and αi = 1 for the foreground. The labels’ estima-
tion, α̂, can be formulated as the minimization of an energy-based Markov random
field objective function, E(α), defined as

α̂ = argmin
α

E(α) (1)

with E(α) = Edata(α) + γEsmooth(α), (2)

and Edata(α) =
∑

i

Ui (αi ), (3)

where Edata is the data energy term,Ui (αi ) a unitary term accounting for the obser-
vation probability p(pi | αi ) for a pixel pi to belong to the foreground or to the back-
ground, based on some image data (intensity, color, location, and so on) observed on
the pixel, using the statistical models built for the background and the foreground.
More formally, we haveUi (αi ) = − log(p(pi | αi )). Finally, Esmooth is the smooth-
ness energy term whose goal is to favour smoothness or spatial coherence within the
pixels.

In order to compute the optimal solution of the previous minimization problem
and determine α̂, a graph cuts minimization algorithm [39] is employed, providing
the segmented frame Is .

Statistical models for the data energy function are GMMs based on color distri-
butions, learned for both the foreground and background layers, which are initially
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determined by the user through a bounding box, manually defined around the fore-
ground on the initial image. Besides, pixels outside this bounding box are definitely
assigned to the background layer (Ui (αi = 0) = inf), whereas inside their label is
unknown, so that energy minimization only has effects inside the bounding box.

3.2 Temporal Coherence and Real-Time Issues

Once the initial image is segmented through user interaction, the following frames
are treated similarly, except that, instead of segmenting the whole frame, the area to
segment effectively is updated frame-by-frame around the silhouette contour of the
segmented area, providing temporal coherence in the segmentation process. More
precisely, as shown in Fig. 2, the silhouette contour of the previous segmented fore-
ground is extracted and the distance transform is computed over it, providing a signed
distance map d to these contours (negative outside, positive inside). According to
a fixed threshold, dt > 0, on this distance map, we define a narrow strip around
the contour. Such a narrow strip (grey area) has the property that di < dt , with
di > 0 is an element of d, and in which the label of a pixel pi is unknown, with
Ui (αi ) = − log(p(pi | αi )). On the other hand, the inner side of the strip is assigned
to the foreground (white area), if di < −dt and by setting Ui (αi = 1) = in f , other-
wise it is assigned to the background (black area) if di > dt and by setting, in this
case, Ui (αi = 0) = in f .

In this manner, temporal consistency is ensured since energy minimization is only
effective within this strip, in the vicinity of the previous segmentation boundary,
avoiding some outliers outside or inside, and reducing significant computations. Let
us note that the GMMs are determined initially, making this segmentation process
valid for sequences for which color distributions of both the foreground and the
background are assumed relatively constant, which is a fair assumption for the robotic
manipulation applications considered in this chapter.

(a) Original frame (b) Segmentation (c) Distance map (d) Trimap

Fig. 2 Temporal consistency for segmentation. Segmentation will be effective on the strip (grey
area on d) around the contour of the previous segmented frame (b), through the distance map to the
contour (c)
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4 Segmented and Sampled Point Cloud

We use the acquired RGB image sequence to visually segment the object of interest
from its background and occlusions. Since we do not rely on some distinctive visual
features, the point cloud provided by the depth sensor is indeed restricted to the
considered object to avoid ambiguities in the matching process with the background
or with occluding shapes, and be able to process correspondences from the input
point cloud to the mesh. At frame k, using Is , a segmented depth mapDs is obtained
by aligning and intersecting the original input depth mapD with the segmented area
in Is . Then, by back-projectingDs in the sensor frame, the desired segmented point
cloud Y is determined. For computational purposes, we limit the size of Y by firstly
sampling Ds on a regular grid in the image plane.

5 Rigid Registration

The first step in our method is to register Y in terms of rigid translation and rotation
transformations, initially considering the mesh of the object as rigid. Let us consider
the set of vertices of the mesh X , initially in their previous computed states, for
the frame k − 1. We suggest a classical rigid ICP algorithm [40] between Y and the
vertices of the visible surfaceXV of themesh, transformedwith respect to the previous
RGB-D data. XV is determined by performing a visibility test on the rendered depth
map of the projected 3D mesh of the object, for the frame k − 1. Through this
procedure, which converges rapidly, fast rigid motions can be tracked and a fair
initialisation for the non-rigid process can be obtained.

6 Point Cloud Matching for Non-rigid Registration

In order to register the segmented point cloud with the mesh in a non-rigid manner,
we suggest an ICP-like procedure, given the sets X and XV updated by the rigid
transformation estimated as described above.

6.1 Nearest Neighbor Correspondences

By means of a k-dimensional tree search, nearest neighbour correspondences are
determined both from the segmented point cloud to the visible surface of the mesh
and from the visible surface of the mesh to the segmented point cloud. This step
provides us with the sets of nearest neighbours NXV = {NNY(x j ) : x j ∈ XV } and
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Fig. 3 Point cloud tomesh andmesh to point cloud correspondences.With shrinking deformations,
mostly mesh to point cloud correspondences can attract the mesh towards the compressed point
cloud, and conversely for expansion deformations

NY = {NNX (y j ) : j = 1, . . . , NY } in Y for XV , with the 1-NN function NNY , and
in XV for Y , with the 1-NN function NNXV , respectively.

Both sets of correspondences are employed since relying on the sole geometri-
cal proximity may lead to inconsistent matches using single point-to-point matches.
Indeed, as illustrated in Fig. 3, from the segmented point cloud to the mesh, the cor-
respondences enable to track expansion deformations under stretching forces, for
which the observed segmented point cloud Y would spread over the visible surface
of the meshXV . The extended areas ofY with respect toXV can be matched with the
outer areas ofXV (red arrows on the right side of Fig. 3). These correspondences also
enable to deal with occlusions and segmentation errors since the corresponding unob-
served areas of the object would not affect the underlying areas of XV . Conversely,
from XV to Y , the correspondences are instead more suited to track shrinking defor-
mations under compression actions. The outer areas of XV are coherently matched
with the outer areas of the observed point cloud Y of the compressed object (green
arrows on the left side of Fig. 3). As a drawback, unobserved areas (occlusions and
segmentation errors) would affect the underlying areas XV which would match with
the closest areas of Y .

As described hereafter, a trade-off must be found between these two sets of cor-
respondences, whether the application deals with stretching or compression actions
on the object and whether occlusions or segmentation errors are to be dealt with.

6.2 Computation of External Forces

Based on the two sets of mesh-to-point cloud and point cloud-to-mesh correspon-
dences, given by NXV and NY , an external elastic force fext (x j ) ∈ R

3 can be com-
puted for each x j ∈ XV as follows
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fext (x j ) = kext (x j − y f
j ) (4)

with kext > 0 the stiffness of these external spring elastic forces and

y f
j =

⎧

⎨

⎩

λNNY(x j ) + (1 − λ)
1

NK

∑

y j∈K j
y j if NK > 0,

λNNY(x j ) + (1 − λ)x j if NK = 0,
(5)

where λ ∈ R is a fixed scalar, K j = {yi ∈ Y : NNXV (yi ) = x j } is the set of points
in Y whose nearest neighbours are x j , y

f
j acts as a virtual point attracting x j , and

NK ≥ 0 is the size of K j . The component of y f
j resulting from the multiple point

cloud to mesh correspondences is scaled by the reciprocal of NK to be homogeneous
with the component resulting from the singlemesh to point correspondence. Thefixed
scalar λ tunes the balance between the mesh-to-point cloud and point cloud-to-mesh
correspondences, as a trade-off between the stretching or compression actions to be
tracked, as suggested in Sect. 6.1. If K j is empty, the missing point cloud-to-mesh
correspondences are replaced by a self-contribution for the vertices x j , compelling
it to remain at its current position. The stiffness kext can be set accordingly to the
Young’s modulus, using the equivalence between a mass spring model and a linear
FEM model, as described in Sect. 7.2. However, modelling this way the external
forces, using equivalent springs, can be coarse since vision dat affects the visible
vertices only. Some outliers in the point cloudmay result in aberrant correspondences
and thus in aberrant forces exerted on some vertices. A simple solution has been to
discard points in the cloudwhosepoint-to-point distanceswith their nearest neighbors
in the mesh are above a certain threshold with respect to the mean value and the
standard deviation of the whole set of point-to-point distances. In this case, for the
considered vertices x j , we have fext (x j ) = 0.

Finally, regarding points x j in X which are not visible, we also set fext (x j ) = 0.
The whole set of forces is finally concatenated in a vector fext of size NX .

6.3 Weighting Forces Using Contours

A limitation of thismethod lies in tracking large elastic deformations due to stretching
efforts, for instance. In this case, since correspondences are established based on 3D
geometry, only vertices lying on the occluding contour of themesh are attracted to the
extended area in the point cloud. As a consequence, the forces attracting the contours
are weak. We propose to emphasize them by weighting the vertices of the visible
surface of the mesh given their distance to the occluding contour of the projected
mesh. Based on the depth map DM of the projected mesh, we compute the distance
map of the occluding contour of the mesh. Then, the weight w j ∈ R for the vertex
x j is set proportional to
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w j ∝ e
−
dM
j

σ , (6)

where dM
j > 0 is the distance from x j to the nearest contour of the projected mesh,

σ > 0 is a parameter which is empirically set. Then,w j is normalized so that we get
an observation probability. Finally, the forces are computed as

fext (x j ) = w j kext (x j − y f
j ). (7)

7 Solver

Estimating the deformations of the mesh consists in solving a dynamic system of
ordinary differential equations, involving the internal and external forces, based on
Lagrangian dynamics

Mẍ + Cẋ + f = fext (8)

withf = Kx + f0, (9)

whereM ∈ R
3NX×3NX andC ∈ R

3NX×3NX are themass and dampingmatrices, respec-
tively, K ∈ R

3NX×3NX is the global stiffness matrix which sums the element-wise
rotated stiffnessmatricesKe = ReKeR−1

e ∈ R
3NX×3NX , writtenwith respect towhole

set of vertices, and f0 = ReKex0 the corresponding global offset summing the
element-wise ones, with x0 ∈ R

3NX the position of the vertices before the defor-
mation. An Euler implicit integration scheme is used to solve the system, along with
a conjugate gradient method. Finally, X can then be updated using the resulting
estimated positions x of the vertices of the mesh.

Algorithm 1 summarizes the whole process presented above.

7.1 Experimental Results

In order to evaluate the performance of our method and contributions, some experi-
mental results are shown in this section, on some computer-generated data, and some
real data. Various objects, deformations, and conditions are tested.

For the non-rigid registration phase, we have employed the SOFA simulator [41],
which enables us to deal with various physical models and to evolve simulations in
real-time.
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Algorithm 1: Registration process
Data: Tetrahedral mesh of the object, RGB-D data
Result: Fitting the mesh with the RGB-D data

1 Initialization of the vertices X in the mesh;
2 Initialization of segmentation;
3 for each new I and D do
4 Segmentation in I, providing Ds ;
5 Sampling and back-projection, giving Y;
6 Determine XV ;
7 Rigid ICP between XV and Y;
8 Rigidly transform X ;
9 Non-rigid process:

10 3D correspondences from Y to XV ;
11 3D correspondences from XV to Y;
12 Computation of external forces fext ;
13 In SOFA simulator:
14 Computation internal forces f ;
15 Computation of the new positions x:
16 by solving Mẍ + Cẋ + f = fext (Euler implicit + conjugate gradient);
17 end

7.2 Results for Tracking on Synthetic Data

Relying on the SOFA simulator, we have first generated a sequence involving
the deformations of a cylindrical elastic object, modeled by the FEM corotational
approach. The sequence involves the elastic deformations of a cylindrical elastic
object modelled by the FEM corotational approach. It has a Young’s modulus of
E = 800 Pa and Poisson’s ratio of ν = 0.3. Based on a manually designed cylin-
drical surface triangular mesh with radius/height dimensions of 0.11 × 0.02 m, the
volumetric tetrahedral mesh was generated using the 3D Delaunay triangulation
through the CGAL library.1 A disordered placement of the nodes has been adopted
here on this simple cylindrical geometric topology, not to lose generality to an arbi-
trary object topology. A 3D Delaunay triangulation would be preferred as a mesh
generation routine. The resulting mesh is made of 1369 elements and 497 vertices
and featured in Fig. 4a.

In order to simulate deformations and generate the considered sequence, an elastic
stretching force is applied in the −z direction ofW (see Fig. 5), on one point on the
border of the object (point 1) and few other points being fixed on the opposite border
(points 4,5,6). Two compression forces are applied along y and −Y (points 2,3)
directions in W . The applied forces result in a fast elongation deformation of the
object, with amaximum elongation above 50%, and in a critical bending deformation
along y-axis, as it can be seen in Fig. 7. For the tracking phase, segmentation aspects
are not considered in these experiments. We only process the visible vertices of the
rendered object in the sequence, and as ground truth, the positions of the whole set of

1 http://www.cgal.org.

http://www.cgal.org
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Fig. 4 Processed mesh

points are stored for evaluation. Results can be visually observed in Fig. 5, featuring
the original target (red) and the tracking 3D mesh (blue), and in Fig. 6 the 3D errors
between the vertices of the registered mesh and the corresponding points in the point
cloud are plotted.

The following models and methods have been compared:

• volumetric mass-spring model;
• standard FEM model;
• corotational FEM model;
• corotational FEM model along with contour weighting.

On these results, we set the Young’s modulus and the Poisson’s raio for the FEM
approaches equal to the values assigned for the simulated object (E = 800 Pa, ν =
0.3). We set λ = 0.5, balancing point cloud to mesh and mesh to point cloud forces.
Also, we set kext = 10 Nm−1 for the stiffness of the external forces, which appeared
to provide satisfying results. We consider a volumetric mass-spring model on the
tetrahedrons of the generated mesh by attaching springs to connected vertices.

Determining the spring parameters of a mass-spring model equivalent to the FEM
model in terms of elasticity behavior is not trivial, especially when dealing with
unordered and irregular tetrahedrons, as pointed out in [42, 43]. Using the analytical
expression proposed in [43] to derive the stiffness km(i, j) of an equivalent spring
between connected vertices xi and x j s of the tetrahedral mesh

km(i, j) =
∑

e

2
√
2

25

(

Ve
12√
2

)

1

3 E, (10)

with the sum over the elements e adjacent to the edge (i, j). The resulting stiff-
nesses are too large to register the investigated deformations. The performance of a
mass-spring model with spring stiffnesses scaled by 0.05 (defined as ktuned ), which
appeared to fit best on this sequence, is thus also shown.



34 A. Petit et al.

frame 15 frame 50 frame 55 frame 150

Fig. 5 Results of the deformable tracking process. In the first row, it is featured the ground truth.
In the second row, the tracking with the equivalent mass spring system is displayed. In the third
row, the linear FEM is depicted. In the fourth row, the corotational FEM is shown. Finally, in the
fifth row, the contour weighting is added

We observe that the equivalent mass-spring model outperformed by the FEM
approaches and the mass-spring model with manually tuned stiffnesses. This lat-
ter performs worse than the FEM models on the first frames when triggering the
deformations (frame 50) due to the stretching deformations, which are severe over
this phase. However, the standard linear FEM tends then to fail to track the large
bending deformations which occur until steady-state, enhancing the sensitivity of
this approach regarding rotation transformations within elements, as it can also be
observed in Fig. 7. On the whole sequence, the benefit of using a co-rotated approach
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Fig. 6 Errors of the deformable tracking process with the different tested approaches, the mass-
spring system with the equivalent stiffness, the mass-spring system with tuned stiffness (ktuned ),
the standard FEM, the corotational FEM, and the corotational FEM with contour weighting (with
σ = 8 pixels)

Fig. 7 Deformations on the generated sequence (a), on the tracked mesh with the standard FEM
(b), and with the corotational FEM (c)

and the advantage of using the contourweighting function (withσ = 8pixels) to track
significant bending and stretching deformations can thus be particularly stressed out.

In order to evaluate the sensitivity with respect to tuning parameters, in Fig. 8
the errors for different external stiffnesses kext and for different values of λ are
represented. For the external stiffness, the value of kext acts as a gain. It tunes the
balance between tracking large stretching deformations, especially on the silhouette
borders, and regularization effects. Its influence is especially observable on the large
initial deformations. With λ a good compromise is found with λ = 0.7, showing the
relevance of point cloud to mesh correspondences in this case for which stretching
actions prevail.
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Fig. 8 Errors with respect to kext (a) and λ (b), tuning the balance between mesh to point cloud
and point cloud to mesh forces

7.3 Results on Real Data

In order to carry out experiments on real data, the point cloud of the investigated
scene is acquired from a calibrated RGB-D camera Asus Xtion, 320 × 240 RGB.
Depth images were processed using a standard laptop with an NVIDIA GeForce
720M graphic card, along with a 2.4GHz Intel Core i7 CPU. Here, the segmentation
process is involved in the loop and, since fast real-time performance is required, it
relies on a CUDA implementation. The results presented here deal with a textureless
and smooth elastic object made with silicon.

Concerning the “pizza-like” object, the idea was to test motions and deformations
similar to those involved in the pizza-making process. The involvedmesh is generated
in a similar manner to Sect. 7.2, with radius/height dimensions of 0.12 × 0.01m, and
consisting in 574 vertices and 1675 elements. Note that the point cloud’s resolution is
chosen through sampling to coincide approximately with the resolution of the visible
mesh.

On thefirst featured sequence, the object undergoes large rigidmotions andvarious
isometric and elastic deformations. The Young’s modulus and the Poisson’s ratio of
the material are unknown and good compromises have been found with E = 300 Pa
and ν = 0.3, by setting kext = 1 Nm−1.

Qualitative results are presented in Fig. 9, comparing our method using the coro-
tational FEM approach with other models. In the first row, input RGB images are
shown. The second row features the corresponding segmented frame, while the third
row shows the 3D mesh tracking the object with the mass-spring model. The fourth
shows the standard FEM model, while the fifth shows the proposed approach (with
σ = 30 pixels).

We can visually notice the ability of the proposed method to segment the visi-
ble part of the object correctly. Besides, it tracks rigid motions, in contrast to the
mass-spring, to accurately register stretching deformations. Finally, in contrast to
the standard linear FEM, it is robust to folding/bending deformations thanks to the
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Fig. 9 Results of the tracking process for the pizza-like object, with the input images (first row),
the segmented frames (second row), and the registered mesh reprojected in the input image, for: the
mass-spring model (third row), the standard FEM model (fourth row), and the corotational model
with the contour weighting technique (fifth row)

corotational approach. Robustness to occlusions due to the hands manipulating the
object (third column in Fig. 9) or segmentation errors can also be observed.

The second sequence has been worked out to stress the robustness of the proposed
method under large elastic deformations due to stretching actions. The results for the
proposed method are shown in Fig. 10, while they are compared to different models
during stretching in Fig. 11. Since the object is essentially stretched along the image
plane, involving few bending deformations along the optical axis, we propose an
evaluation criterion to compute the mean 3D distance between the contour of the
projected mesh in the image and the contour of the segmented silhouette of the
object. This is achieved by searching from the 3D vertices, corresponding to the
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(e) frame 1 (f) frame 20 (g) frame 50 (h) frame 150

Fig. 10 Results of the tracking process for the silicon pizza, with the input images (first row), and
the tracking results in the second row

Fig. 11 Results of the tracking process for the silicon pizza during stretching for the mass spring
model (a), the standardFEMmodel,with (b) andwithout (c) contourweighting,with the corotational
model, with (d) and without the contour weighting technique (e), on frame 150

Fig. 12 Contour fitting error
for the different tested
approaches (mass spring,
standard and corotational
FEM)
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extracted 2D contour of the mesh, for the nearest 3D points, corresponding to the 2D
contour of the segmented silhouette. This way, the benefit of using the corotational
approach along with the contour weighting function can also be stressed out (see
Fig. 12).
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Fig. 13 Contour fitting error, for different stiffnesses (a) and resolutions (b)

Fig. 14 Results of the tracking process with the proposed approach, for E = 100 Pa (a) and
E = 500 Pa (b) with the standard resolution, and for resolutions of 2990 (c) and 5528 (d) elements,
with E = 100 Pa

Concerning sensitivity to material and tuning parameters, different stiffnesses
of the material have been tested, E = 300 Pa appearing, as stated before, to be a
good compromise between the ability to register large deformations, while provid-
ing sufficient regularization and robustness to noise, which can result in spurious
registrations, and self-collisions, especially around the borders of the mesh, as seen
in Fig. 14a, b with the contour fitting errors. Different resolutions of the mesh have
been tried adjusting the resolution of the point cloud accordingly through the man-
ually set sample step. It can be observed in Fig. 13b that higher resolutions manage
to fit better with the contour, and also, as observed in Fig. 14c, d to capture higher
frequency details, up to a certain point for which the benefit becomes minor.

7.3.1 Computational Costs

Regarding computational aspects, the computation times of the various phases of
the algorithm, for the different methods compared in this chapter, are shown in
Table2. Visibility corresponds to the process of determining the visible vertices of
the rendered mesh and, in the case of using the contour weighting mode, extracting
the vertices lying on the contour. Ext. forces is the step involving the determination of
the closest points between the mesh and the point cloud and the computation of the
subsequent external forces exerted on the mesh. Resolution consists instead of the
resolution of the Lagrangianmechanical equations to compute the deformations. The
presented figures are the averages of the execution times per frame (in milliseconds)
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Table 2 Execution times, in milliseconds, for the different phases of the approach, and the various
models and methods employed in this paper

Mass Spring Stand. FEM Corot. Corot. - CW

Segmentation 10.7 10.5 10.7 10.7

Rigid ICP 3.0 2.5 2.7 2.6

Visibility 8.1 8.2 7.6 7.4

Ext. forces 3.4 3.5 3.5 4.0

Resolution 2.8 3.3 4.0 4.1

Total 28.0 27.9 28.6 28.8

for the sequence presented in Fig. 9. As noticed, the suggested method (corotational
model with the contour weighting mode) runs on the sequence at around 35 frame
per second.We can also observe that the computational costs for the resolution phase
being relatively small within the whole process, overall execution times are relatively
independent of the selected model.

8 Fractures

8.1 A Pure Physics-Based Approach

For fractures, once deformations are computed, topological changes due to fractures,
as modelled in the previous chapter, are handled. For each vertex x j ∈ X , we detect
if it is a fracture node, based on Sect. 1.4.1. Fracturable nodes undergo the remesh-
ing procedure presented in Sect. 1.4.2. Let us note that, for remeshing, an element
attached to different fracturable nodes is treated only once by the first investigated
node. At the end of the procedure, a new mesh X is obtained and it will be directly
employed for the next frame.

8.2 Experimental Results

In order to evaluate the performance of our method and contributions, some experi-
mental results are shown in this section, in a qualitative manner on some real data.

8.2.1 Implementation and Experimental Set-Up

For the non-rigid registration phase, we have employed the SOFA simulator [41],
which enables us to deal with various physical models and to evolve simulations

http://dx.doi.org/10.1007/978-3-030-93290-9_1
http://dx.doi.org/10.1007/978-3-030-93290-9_1
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Fig. 15 Meshes of both the cylindrical bar (left) and plate (right) objects

in real-time. In order to carry out experiments on real data, the point cloud of the
investigated scene is acquired from a calibrated RGB-D camera Asus Xtion, 320 ×
240 RGB and depth images being processed. A standard laptop with an NVIDIA
GeForce 720M graphic card has been used, along with a 2.4 GHz Intel Core i7 CPU.
The segmentation process relies on a CUDA implementation. The results presented
here deal with elastic bar and plate objects made of modeling clay. For the cylindrical
bar object, the involvedmesh, depicted in Fig. 15a, has a circumferential/radial/height
resolution of 10 × 20 × 2, resulting in 220 vertices and 570 tetrahedral elements.
The material is here poorly elastic, the Young’s modulus being empirically set to
E = 2.0 and the Poisson’s ratio to ν = 0.01. The plate object (see Fig. 15b) instead
has a length/width/height resolution of 18 × 9times2, resulting in 324 vertices and
816 elements. For material properties, we set E = 2.5 and ν = 0.01, in this case.
Three fracture cases are demonstrated here: fracture due to opening by excessive
bending for the bar object and fractures due to shearing and opening by stretching
for the plate object, tearing the object. Let us note that in the first case the parameter
0 ≤ λ ≤ 1, which tunes the balance betweenmesh-to-point cloud and point cloud-to-
mesh forces (see [44]), is set to λ = 0.5. In the second case, λ = 0.1, so that mesh’s
vertices lying on the fracture crack of the object will be driven towards the nearest
observed point on the border of the crack. Let us note that in [44], the registration
process is iteratively repeated (three iterations were performed in the experiments).
Here, only one iteration is executed to maintain real-time performance since fracture
detection remains costly.

8.2.2 Results

As seen in Fig. 16, opening though bending deformations can be tracked quite cor-
rectly for the bar object. In this way, internal tensile forces computed on the nodes
remain physically consistent, making the fracture model valid, as shown in the third
column. For the plate object, tearing it through out-of-plane shearing (see Fig. 17)
can also be tracked, despite some artifacts that can be noticed on some unfractured
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Fig. 16 Results of the tracking process for the cylindrical bar object, with the input images (first
row), the segmented frames (second row), and the registered mesh reprojected in the input image
(third row)

regions. However, when opening the plate object by stretching it, as shown in Fig. 18,
only vertices lying on the occluding contour of themesh are attracted to the expanded
areas in the point cloud since correspondences are established based on 3D geometry,
without any discriminative descriptors. As a consequence, forces attracting the con-
tours and stretching the mesh are weak. Therefore, in this case, fracture appears with
an unavoidable delay when both fractured parts split away. However, the fracture
crack is relatively coherent, and both parts are finally consistently recovered.

Regarding computational aspects, in Table3 are shown the mean computation
times of the various phases of the algorithm for the sequence presented in Fig. 17.Ext.
forces is the step involving the determination of the closest points between the mesh
and the point cloud and the computation of the subsequent external forces exerted
on the mesh. Resolution corresponds to the computation of the internal forces and in
the resolution of the Lagrangian mechanical equations to compute the deformations
based on the computed external and internal forces. Fracture detection consists of
computing the separation tensors to detect fractures on the nodes of themesh. Finally,
Remeshing shows the time dedicated to remesh the mesh around the fracturable
nodes. As noticed, the suggested method runs on this sequence at around 27 frame
per second.



Non-rigid Tracking Using RGB-D Data 43

Fig. 17 Results of the tracking process for the plate object, torn through out-of-plane shearing,
with the input images (first row), the segmented frames (second row), and the registered mesh
reprojected in the input image (third row)

Fig. 18 Results of the tracking process for the plate object, torn through opening, with the input
images (first row), the segmented frames (second row), and the registered mesh reprojected in the
input image (third row)
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Table 3 Mean execution times, in milliseconds, for the different phases of the approach

Phases Mean execution times (ms)

Segmentation 10.1

Ext. forces 3.1

Resolution 2.3

Int. forces and fracture detection 2.3

Remeshing 0.6

Total 37.5

8.3 Comments on the Results

The proposed approach is a first simple attempt to deal with fractures of deformable
objects. Although the results presented above are promising and show the relevance
of employing a physically rigorous method to detect fracture, several issues shall be
discussed.

Stiffness of thematerials. Experiments are shown on two different simple objects
with particular material properties (high stiffness). With more elastic materials, the
mesh’s estimated deformations and internal forces would be rougher, resulting in a
more variable separation tensor and so potentially spurious detections of fractures.

Tuning material parameters. A cumbersome process can lie in determining the
object’s coherent material properties, which consist in the Young’s modulus, the
Poisson’s ratio, and the fracture threshold. There are set empirically in this chapter,
and having a fair physical realism may require some effort.

Tracking stretching deformations. As observed, our method faces some prob-
lemswhen tracking opening tearing fractures due to the expansion of the area covered
by the object since only the vertices lying on the contour of the mesh are attracted.
The method proposed in [44] suggests to weight the visible surface’s vertices of the
mesh, given their distance to the occluding contour of the mesh. However, this tech-
nique tends to alter the material’s physical homogeneity, making fractures to likely
occur around the contour of the mesh.

Sensitivity to occlusions. Since in the segmentation no distinction is made
between a fracture crack and unobserved areas of the object due to occlusions or
segmentation errors, our method remains sensitive to these latter events.

Remeshing. Handling the propagation of a fracture by removing the elements
attached to a fracturable node and intersected by the fracture plane leads to progres-
sive degeneration of the mesh if several fracture events occur.
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9 Multiple Objects

The frame-by-frame registration problem, described in Sect. 2.6 can be extended to
multiple objects that can interact and collide.

As illustrated in Fig. 19, the solution consists in integrating the suggested collision
detection and response models (Sects. 1.5 and 1.5.2) into the rigid and non-rigid
registration framework based on successive RGB-D data.

Thus, point cloud segmentation, matching, rigid and non-rigid registration tech-
niques are adapted as described below.

Fig. 19 Overview of our approach for deformable object tracking for multiple interacting objects

http://dx.doi.org/10.1007/978-3-030-93290-9_1
http://dx.doi.org/10.1007/978-3-030-93290-9_1
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9.1 Preliminary Parallel Visual Segmentation

The visual segmentation step presented section3.1, based on a graph cutminimisation
over foreground/background colour models, is carried out in a parallel manner on
each considered object Oi . This step provides us with a 3D target point cloud Yi for
each Oi . We limit the size of each Yi by sampling it on a regular grid in the image
plane.

9.2 Parallel Rigid Pose Estimation

Each mesh Xi , initially in its state computed for the previous frame, is then rigidly
registered to each observed segmented point cloud Yi . In contrast to the approach
proposed for a single object, for which the rigidly transformed meshes are used to
initialise the non-rigid phase, we derive elastic forces from the rigidly transformed
meshes. The idea is to integrate these rigid transformations in a smooth and simul-
taneous manner into the FEM simulation framework and thus to properly cope with
collisions.

We actually do not directly consider Xi but its vertices which appears visible
from the previous estimated state in the camera frame. The set XV,i , associated to
the object Oi , is thus determined through a visibility test on the rendered mesh with
respect to its previous state. This visibility test is performed on the whole rendered
scene so that occlusions between the interacting object are considered.

As introduced in Sect. 5, a classical rigid ICP algorithm [40] is then carried out
for each object, between Yi and XV,i . For each object, we can compute the rigidly
transformed mesh X t

i = {xti, j : j = 1, . . . , NXi,t }, with NXi,t > 0 the dimension of
X t

i , as follows
xti, j = Tixi, j , (11)

with Ti ∈ SE(3) the rigid transformation estimated with the ICP.
We then derive elastic forces frext,i between both sets X t

i and Xi as

frext,i (xi, j ) = kri,ext (x
t
i, j − xi, j ), (12)

with krext,i > 0 a stiffness parameter.

9.3 Parallel Point Cloud Matching for Non-rigid Registration

Following the single object approaches, we derive the external forces exerted by the
observed segmented point clouds Yi on the different corresponding setsXV,i . We use
sets of external forces fdext,i ∈ R

3 related to geometrical information as introduced
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in Sect. 6.2. For each object Oi , based on the two sets of mesh-to-point cloud and
point cloud-to-mesh correspondences, we can compute an external elastic force fdext,i
exerted on each xi, j in XV,i as follows

fdext,i (xi, j ) = kdext,i (xi, j − y f
i, j ), (13)

where, as described in [44], y f
i, j ∈ R

3 is a linear combination of points in the point
clouds which are matched to xi, j , either from mesh-to-point cloud and from point
cloud-to-mesh correspondence sets, while kdext,i > 0 is the stiffness of these external
elastic forces, which is here common to each object.

9.4 Resolution

The objective of the resolution process is to balance the sets of external forces cap-
turing rigid and non-rigid transformations of the objects and the interactions between
themselves, with the internal forces based on the different deformation FEM mod-
els presented above. The estimation consists in solving for each object the dynamic
system of linear ODEs involving the internal and the different external forces, based
on Lagrangian dynamics

Mi ẍi + Ci ẋi + fi = fdext,i + frext,i + fci , (14)

with fi = Kixi + f0,i ,

where xi ∈ R
3NXi is the vector containing the positions of the vertices of the object

Oi , Mi ∈ R
3NX,i×3NX,i and Ci ∈ R

3NX,i×3NX,i are the mass and damping matrices,
respectively,Ki ∈ R

3NX,i×3NX,i is the global stiffness matrix which sums the element-
wise rotated stiffnessmatricesKr

e = ReKeR−1
e ∈ R

3NX,i×3NX,i ,writtenwith respect to
whole set of vertices, and f0,i the corresponding global offset summing the element-
wise ones ReKexe,0. The terms fdext,i ∈ R

3NX,i , frext,i ∈ R
3NX,i and fci ∈ R

3NX,i are
vectors containing the external forces, the ones resulting from the interaction model,
and the collision responses between object Oi and the other objects, respectively.
The Euler implicit integration scheme is used to solve the system with respect to
each xi , along with a conjugate gradient method.

9.5 Experimental Results

Based on the multiple interacting objects tracking algorithm (see Sect. 9), the results
presented here report different scenarios involving objects of different shapes, poten-
tially textureless, and with different interactions.
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Fig. 20 Tetrahedral meshes for the brain, squirrel and crocodile, plus the visual and collision
models for the crocodile toy

The first sequence shows a stuffed toy and an elastic rubber toy brain colliding.
The second is a silicon elastic disk wrapping a silicon crocodile puppet filled with
plastic balls. In the third sequence, the disk, a silicon object, and a foam cube are
stacked and squeezed together.

The point clouds of the investigated scene are acquired using different struc-
tured light commodity RGB-D cameras. An Asus Xtion, 320 × 240 RGB and depth
images, is employed for the first sequence. An Intel RealSense SR300 (960 × 540
images) is employed for the second and third test sequences.

In order to create the geometric and deformation models of some of the consid-
ered objects (the squirrel, the crocodile, the toy brain, the light red silicon object),
surface meshes of the undeformed objects were first reconstructed offline. We have
used the RGB-D based dense 3D reconstruction techniques KinectFusion [45] and
InfiniTAM [46] which is implemented for the RealSense SR300. The large resolution
and short range of the RealSense SR300, with respect to the Asus Xtion, enables cap-
turing and modeling finer grain geometries, such as the one of the crocodile. Finally,
some re-meshing and smoothing tasks have been carried out with a modelling engine
to get fair, closed, and clean surface meshes of the objects. The corresponding volu-
metric tetrahedral meshes have been generated by achieving 3D Delaunay triangula-
tions within the surface meshes, thanks to the CGAL library. As an approximation,
we assume the isotropy of the materials in order to apply the deformation model
described before. Some of the considered tetrahedral meshes are featured in Fig. 20,
as well as the visual and collision surfacemodels for the crocodile. For computational
efficiency, the collision mesh is made coarser than the visual mesh.

The software implementation relies on the SOFA simulator [41], which provides
the FEM elastic and the collision models. Qualitative results are shown in Figs. 21
and 22 for the different scenarios, as in the provided video. Note that initialization
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Fig. 21 Results of the proposed registration method for two interacting objects. For each block,
the sequence of rows is: input images, the segmented images, and the registered mesh re-projected
in the input image
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Fig. 22 Results of the proposed registration method for three interacting objects. For each block,
the sequence of rows is: input images, the segmented images, and the registered mesh re-projected
in the input image

is performed manually, rigidly, and close to the actual initial poses. We assume that
the objects are not in contact initially.

The case of the silicon disk wrapping the crocodile toy is examined. The collision
between both objects enables to constraint sufficiently the silicon disk so that it
gets registered coherently, even with severe bending deformations, occlusions by the
crocodile, and errors in the segmentation.

In Fig. 23, we can visualize the vertices of the visible surface of the meshes
(green squares), which are processed for registrationwith the segmented point clouds
(brown squares). Different samplings for the point clouds are used according to the
resolutions of the meshes. The detected collisions between the interacting objects
can be seen on the third row with segments between the found contact points.

The focus on the collision regions in Fig. 24 with wireframe views illustrates that
contacts and occlusions between the objects can be properly handled when objects
are squeezed, wrapped, or stacked together. Independently tracking them leads to
inter-penetrations. In Fig. 25 are shown some failure situations when forces resulting
from the rigid ICP registration are not integrated with the resolution.

As for computational issues, segmentation being addressed in a parallel manner,
and collision requiring extra computations when objects are getting into proximity,
the method does not achieve fast performance: 5−10 frame per second are reached,
depending on the number of objects and on the resolutions of the collision surface
meshes.
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Fig. 23 Visualization of the registered point clouds (brown squares) for the meshes (greens squares
as vertices on the visible surfaces) of examples with two and three interacting objects. The displayed
segments on the third row show the detected collisions

9.6 Comments on the Results

The experiments presented above show some promising results for the method.
However, a few limitations of the method shall be discussed. The system requires
some tuning for both the FEM models of the objects and the collision detection
and response models to obtain stability and proper behaviour. Some instabilities or
ripples can indeed appear when the involved object undergoes fast rigid motions or
when too many interactions are involved i.e., when two many objects of complex
shapes and collision models are involved). In these cases, the addition of numerous
and potentially significant and opposite external forces coming from the point cloud
correspondences, the rigid motion estimation, and the collision responses can make
the Lagrangian dynamics equations hardly to be solved using the classical imple-
mented conjugate gradient solver. Hence, some tuning can be required to achieve a
successful resolution of the whole system. Besides, contact detection distances need
to be set relatively high in some cases (see Fig. 23, third row).
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Fig. 24 For the different examples, comparison between registration based on a collision detection
model (left column), and without such a model, resulting in large inter-penetrations (right column)

Fig. 25 For the different examples, failure cases when the proposed rigid registration approach is
not included in the resolution
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The collision detection and response models are also very classical, and a more
elegant approach could be undertaken guaranteeing a more physical response by
resorting to Signorini’s model and by solving the contacts as a linear complementary
constraint problem [47]. Including friction throughCoulomb’s law could also provide
some improvements.

Although the system has proven to be fast when considering a single object, mul-
tiple object computations linearly increase with the number of objects and even more
when contacts occur. One crucial burden in the computations lies in the segmentation
process, which is handled independently for each considered object. A simultaneous
segmentation method, in a pyramidal manner, could be designed to obtain better
efficiency.

10 Application to Robotic Manipulation

In the scope of the RoDyMan project, we present in this section some experiments
integrating the tracking method described and validated above into a robotic manip-
ulation task involving a deformable object, that is, the silicon pizza dough. Based on
the proposed registration method, the scenario consists of a kinematic control in the
operational space to follow a trajectory aiming at manipulating the pizza from one
hand to the other on the RoDyMan robotic platform.

10.1 Trajectory Planning and Control

For each hand, the idea is to follow a path that can be decomposed into three paths.
The first one is a circular path with constant orientation to make the hand supporting
the pizza dough approaching the other one. The second path is also circular, while
this time performing a rotation of 180◦ around the x-axis ofW and a rotation of 50◦
around the z-axis of W until the pizza gets overturned. The third is again a circular
path that wants tomove back the hand to its initial position. In a feed-forwardmanner,
the final position of the second path is computed based on the data provided by the
registration algorithm initially, which enables to retrieve the position of the vertex
in the mesh corresponding to the object’s CoM in its rest shape (see the point CP in
Fig. 26). In detail, it is given by the hand’s CoM,CR , on which the pizza shall be laid,
plus a translation along the z-axis ofW , and an offset, as seen in Fig. 26. This offset
is approximated as the length of the path between CR and CP and passing through
PC . The CLIK-based controller controls the joints of the robot’s torso and head so
that the optical axis of the RGB-D sensor intersects throughout the manipulation
task.
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Fig. 26 Trajectory planning for the second circular path

10.2 Experimental Set-Up

The images and the point clouds of the investigated scene are provided by the
Asus Xtion RGB-D sensor mounted on the head (320 t imes240 RGB and depth
images). The computer hardware and software have the same characteristics as given
in Sect. 7.3.

10.3 Comments on the Results

Two passes, way and back, are performed to bring the silicon pizza dough from the
right hand to the left and conversely. The resulting trajectories in the y − z-plane
of the CoM of both hands can be observed in Fig. 28a. Starting from the label dot
1, three phases are addressed. At first, a circular path brings the right hand close to
the left (label dot 2). Then, the corrected circular path flips the pizza (label dot 3).
Finally, a third circular path brings the hand back to its initial position. The reverse
trajectory is then achieved by the left hand.

For the registration phase of the pizza dough during the manipulation phase, the
results are presented in Fig. 27. The input RGB images are shown in the first row.
The corresponding segmented frames are placed in the second row. Te 3D mesh
tracking the object is finally depicted in the third row. The trajectory of CP is shown
in Fig. 28b.Note that the position ofCP is smoothed using a constant velocityKalman
filter.

When the pizza gets flipped, the occlusions caused by the hands prevail too much:
the deformation registration process is thus stopped to avoid spurious deformations
on the mesh that may not be recovered afterwards when the pizza gets reasonably
visible again. Hence, only the rigid ICP process is maintained during these phases,
from step 3 to step 4 and step 7 to 8.
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Fig. 27 Results of the tracking process for the silicon pizza, with the input images (first and fourth
rows), the segmented frames (second row), and the registered mesh re-projected in the input image
with the proposed method

Fig. 28 Trajectories in y − z-plane of both hands’ COMs (a), and trajectory of the vertices corre-
sponding to the object’s CoM at rest (b)

11 Application to Elasticity Parameter Estimation and
Contact Force Estimation

The measure of the contact forces can be a crucial requirement in various applica-
tions such as capturing and synthesising human manipulation tasks or controlling
robotic hands. Classical techniques use mechatronics sensors, such as force trans-
ducers mounted on the manipulator, the manipulated object, or human hands through
gloves. This may represent a severe problem in applications like minimally invasive
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surgical robots, where sensors cannot be easily installed on surgical instruments due
to sterilisation or electrification.

Capturing interactions in manipulation based on computer vision has aroused
much interest recently andmay represent a convenient,minimally invasive, and cheap
sensing set-up. Some efforts have been focused on sensing interactions between rigid
objects, but the field remains open when considering deformations.

The purpose of this section is to propose a methodology enabling the measure-
ments of contact forces between the operator and a deformable object through an
RGB-D camera. The task is very challenging since a multiplicity of interactions can
generate a given deformation.

Here we demonstrate that, by comparing a physical deformation model based on
continuum mechanics and known material properties of the object with deforma-
tions measured through vision, it is possible to retrieve a single point-wise contact
force exerted by an operator (a human hand, a robot end-effector, and so on) on the
considered object.

Material properties, represented by elasticity parameters, are estimated in a pre-
liminary step using a force sensor and an optimisation technique. Then, assuming
that the object lies on a flat surface and that the tool/object interaction consists of a
known single contact point, a similar optimisation technique is used to infer the value
of the 3D force exerted on that point by fitting the simulated deformations with those
estimated by the vision system. This approach is based on the techniques suggested
in [3].

11.1 Related Work

Force sensing for robotics or virtual reality applications is typically based on trans-
ducers [48]. These devices can be placed either on the object to be manipulated or
on the operator, embedded on skins or gloves [49–51]. Otherwise, force is estimated
through transduction mechanisms mounted on the robot joints.

Whilemost of these technologies rely on pressure sensing, other recent approaches
use visual information as a cue to measure force. For instance, the changes in the
appearance of the fingertip are measured through photodetectors or an external cam-
era, and they are processed to estimate contact forces using statistical models, as
in [52–57]. These technologies are limited to measure the normal force and can-
not simultaneously consider shear or slip. A promising approach [58], also based
on visual observations, relies on the GelSight sensor [59]. In this case, the defor-
mations, measured by marker-based visual tracking techniques on an embedded
elastomer medium, are interpreted as known responses to the external load exerted
on the sensor.

All the above force-sensing methods require precise calibration and providing the
interacting tool/hand and/or the manipulated object with cumbersome and expensive
equipment, limiting the range of motion. Often they are tailored to particular objects,
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making difficult the generalisation, whereas we wish to design a generic data-driven
system.

Force sensing based on external sensing devices represents an appealing alterna-
tive. Vision sensors appear as the most simple, cheap, convenient technology to pro-
pose. In the literature, several works have suggested using an external vision system
to capture the interactions and sense contact forces in the case of object manipulation
by a human or any manipulation tool. In the motion capture field, this approach has
been demonstrated by using marker-based or markerless vision tracking to capture
and synthesise hand/object interaction [32, 60, 61], providing a kinematic analysis
of the interactions through discriminative or generative processes and introducing
some physics-based constraints to deal with occlusions or collision detection. Some
other approaches [62, 63] propose to bridge the gap between the kinematics provided
by the motion capture systems and the contact forces by linking physical constraints
to visual observations.

The techniques proposed in [34, 64] go further by employing rigid body and
contact dynamics to fullymodel interactions and to link thesemodelswith kinematics
provided by external vision systems. In this way, the contact forces between a human
and the ground [64] or between a hand and amanipulated object [34] can be estimated
in a physically realistic manner. To the best of our knowledge, these works are the
only cases proposed in the literature where external visual tracking is used as a cue
for contact force estimation in rigid and articulated body interactions.

What we propose in this chapter is to use an external vision system to infer the
contact forces deriving from themanipulation of deformable objects. This is achieved
by confronting the object’s physical properties and its deformation model with the
output of the vision system. Our approach is close to the idea in [58] of relating
measured deformations to forces. However, the method presented in [58], however,
relies on an embedded sensing device and addresses force estimation through empir-
ical relationships between deformations and forces. In our approach, as a significant
contribution, we propose to use realistic physical modelling of a deformable object
to infer interaction forces exerted on it by processing external vision data. We focus
here on a static case, for which the general idea is to estimate a point-wise contact
force for which the resulting deformations best fit the deformations measured by the
vision system. We assume the contact point to be known and the deformable object
to be isotropic. Relying on a physical model implies knowing the mechanical prop-
erties of the object. Here, we employ the FEM to model the object and its elasticity
described by the Young’s modulus and the Poisson’s ratio. As a second contribution
of this work, we suggest estimating these two parameters. This is handled during a
preliminary step by exploiting the vision data and a force sensor, which is also used
to validate our vision-based force estimation framework.
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11.2 Elasticity Parameter Estimation

Our system consists of estimating the elasticity parameters of the object using the
point cloud data (provided by an RGB-D sensor and observing the deformations)
and a force sensor. For the estimation of these parameters, we follow the data-driven
approaches described in [65, 66]. These approaches minimise a fitting error between
the simulated deformations, based on the designed deformation and interaction mod-
els presented above and generated by the input operator force acquired from the
sensor, and the deformation captured by the RGB-D sensor. These two methods also
employ finite elements for the deformation model. The work [66] goes further by
proposing a framework that sequentially tracks the shape and estimates both mate-
rial and dynamic parameters (i.e., the damping) through the dynamic deformation
model and solely based on a complete vision capture set-up with various RGB-D
sensors around the scene. Here, we reason statically for modeling, and we limit this
preliminary process as an estimation process of the Young’s modulus and the Pois-
son’s ratio of the material, employing a single RGB-D sensor and the force sensor
on a robotic operator, with a set-up similar to the one proposed in [65]. The defor-
mations are indeed generated by applying an effort (a compression, in our case)
on the deformable object, and we observe the deformations with the vision sensor
once static equilibrium is reached. These deformations can be simulated, starting
from the same initial rest shape, provided the deformation and interaction model
presented above, the elasticity parameters, and the input measured contact force. As
a data-driven approach, our problem is thus addressed by minimising the deviation
between these simulated deformations and the observed ones with respect to the
elasticity parameters. This deviation is defined by a fitting function accounting for
the sum of squared distances between the measured real displacements, observed on
the acquired object point cloud, and the simulated deformations. Such a function is
defined as

e(E, ν) = dist(sim(E, ν, fop, xic),Y ), (15)

where fop = [

f opx f opy f opz .
]T ∈ R

3 is the measured force exerted by the operator on
the object, xic ∈ R

3 is the i-th contact point, Y is the acquired point cloud, dist(·) is
the distance function, and sim(·) is the function simulating deformations. The point
cloud Y is segmented on the considered object by running the segmentation phase
described in Sect. 3 to obtain Y .

For a relevant significant error function, we design it by employing the matching
technique presented in Sect. 6 between the segmented point cloud and the visible part
of mesh of the virtual object and conversely. Based on the two sets of mesh-to-point
cloud and point cloud-to-mesh correspondences, the error function is calculated as:
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e(E, ν) = 1

NXV

nXV
∑

i=0

(xi − NNY(xi ))2 + (16)

1

nY

NY
∑

j=0

(y j − NNXV (y j ))
2. (17)

The optimization problem for (E, ν) is nonlinear, and the evaluation of the objec-
tive function is expensive. At the same time, its gradients are non-trivial to com-
pute, making gradient-based optimization methods prohibitive. We thus employ the
gradient-free Nelder-Mead method, which is an extension of the downhill simplex
method to the nonlinear case.We point out that, during theNelder-Mead processs, for
each evaluation of the objective function, the mesh is initially reset to its rest shape
before applying the virtual contact force fo p on the known vertex of the mesh, given
the elasticity parameters (E, ν). For each evaluated value of (E, ν), a simulation is
then started until a static equilibrium is reached. From this static equilibrium, the
matching process to derive equation (16) is handled.

11.3 Contact Force Estimation

By inverting themethod for parameter estimation, the problem of recovering the con-
tact force exerted on the manipulated object relies on the interaction model between
the object, the deforming operator, and the ground, presented in Sect. 1.5. Simi-
larly, we then employ a fitting process, this time with respect to the force, between
simulated deformations given the interaction model and the deformations observed
using the vision. Since the material parameters are now determined, we can use
the deformation model and the registration technique described before as the visual
observation, providing a regularized and complete observation of the deformations.

Here, we consider the static case to estimate the interaction force, for which the
static equilibrium state of the deformed material due to the exerted contact force is
reached. Our system consists in determining the force for which the resulting sim-
ulated deformations best fit the mesh deformed by the vision data. Formally, we
minimize the least square error e between the deformations sensed through vision,
xvisioni ∈ R

3, and the deformations simulated based on the interaction model involv-
ing, xsimi (fop) ∈ R

3, with respect to fop

e(fop) =
∑

i

(xvisioni − xsimi (fop))2 (18)

Given the full interaction model presented above, the derivation of the error (18)
is non-trivial, and it requires the inversion of the model, making iterative methods
(i.e., Newton’s one) tricky to handle. Instead, as for the estimation of the material
parameters, since we aim at performing a quite global process without any strong

http://dx.doi.org/10.1007/978-3-030-93290-9_1
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guess on this force, we suggest a Nelder-Mead optimization framework to minimize
e with respect to fop. In practice, to compute e for a given force fop in the Nelder-
Mead process, we start from the state of the mesh deformed through the vision
registration. We then substitute all the external forces due to the point cloud data by
fop on the known vertex in contact with the operator. A simulation is evolved based
on this force and the interaction model presented in Sect. 1.5. After a few iterations
in the simulation process, e can be computed and thus measures the ability of fop to
reproduce the actions of the forces provided by vision on the object.

11.4 Experimental Results

The results presented here involve a deformable object, a stuffed toy undergoing
a compression deformation effort applied by a tool fixed on the end-effector of a
Kuka LWR arm, equipped with a force sensor at the wrist (see Fig. 29). The point
clouds of the investigated scenes are acquired using a calibrated RGB-D cameraAsus
Xtion, with 320 × 240 RGB and depth image resolution. To estimate the elasticity
parameters and the applied contact compression force, we process the data of a single
RGB-D camera taken at static equilibrium.

A surface mesh of the undeformed object was reconstructed offline to build the
deformation model of the stuffed toy by using an RGB-D based dense 3D recon-

Fig. 29 On the left, the experimental set-up with the tool mounted on the robotic arm, equipped
with a force sensor, to compress the object. On the right, the surface triangular (in red) and the
volumetric tetrahedral mesh (in blue) of the stuffed toy

http://dx.doi.org/10.1007/978-3-030-93290-9_1
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struction technique [45] and flying around the object with the Xtion sensor. Then,
we manually segment the part of the scene featuring the object. Finally, some re-
meshing and smoothing procedures are carried out with a modeling engine to get a
fair, closed, and clean surface mesh of the object. The volumetric tetrahedral mesh
was generated by carrying out a 3D Delaunay triangulation on the surface mesh
with the CGAL library. As a compromise between modeling accuracy and real-time
constraints, we generated a volumetric mesh with 951 vertices and 5015 tetrahedral
elements (see Fig. 29). As an approximation, we assume the isotropy of the material
of the stuffed toy to apply the suitable deformation model. We employed the SOFA
simulator for modeling purposes, which enables us to deal with various physical
models and evolve simulations in real-time. In terms of hardware, a standard laptop
with an NVIDIA GeForce 720M graphic card has been used, along with a 2.4GHz
Intel Core i7 CPU.

11.4.1 Elastic Parameters Estimation

For the estimation of the elastic parameters, we firstmeasure the contact force exerted
by the tool mounted on the robotic arm to compress the object, that is fopmech =
[

0.17 1.125 4.006
]T

N. Due to the particular shape of the considered object, the
application of this pointwise contact force in simulation may result in the loss of the
static equilibrium. For this reason, we constrain the system by fixing some vertices’
position on the lower part of the shape, close to the contact area with the flat surface.
In this way, the object may not get bent excessively or turned over, and its base
remains quite rigidly attached to the flat contact surface.

Following the basic implementation of the Nelder-Mead algorithm, since the
parameter space for (E, ν) is dimension two, three candidate samples are sorted
after each iteration of the optimization while performing the reflection, expansion,
contraction, and shrinking steps. This arrangement provides the best, a good, and the
worst candidate. We also integrate the specific boundaries for both E and ν in the
process, in the sense that inequalities E > 0 and 0 < ν < 0.5 should be preserved
during the different steps. If an inequality is violated, E or ν is reset slightly below
or above.

We tested our parameters estimation technique with two different initial con-
figurations. In Figs. 31 and 32 we can observe the trajectories of the three sorted
candidates for these two configurations, along E and ν, throughout the iterations of
the Nelder-Mead process. The figures also show the fitting errors for the three can-
didates after each iteration. In the first case, the initial values are pretty far from the
actual estimated one, stressing out the robustness of the estimation for rough initial
guesses. At the same time, in the second configuration, the process starts closer to
the solution. For both configurations convergence is achieved respectively towards
(E, ν) = (4268.65 Pa, 0.412031) and (E, ν) = (4328.12 Pa, 0.415625). As it can
be noticed on the plot of the fitting error in Fig. 30, the non-convexity can be espe-
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Fig. 30 The top figure shows the fitting error with respect to the elasticity parameters. The bottom
one depicts a closer view around the global minimum

cially observable for the ν parameter, along which the error is relatively flat, resulting
in some local minima.

11.4.2 Contact Force Estimation

Intending to test the operator contact force estimation based on the vision tracking
system,we first proceed by setting thematerial parameters of the deformationmodels
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Fig. 31 Nelder-Mead process for elasticity parameters estimation for the first initial configuration
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(a) (b) (c)

Fig. 33 Registration process, with: a Preliminary segmentation, b Fitting result between the mesh
and the segmented point cloud, c Registered mesh reprojected in the image

used in the vision system. Here, we use d(E, ν) = (4268.65 Pa, 0.412031)). The
result of the registration process can be observed in Fig. 33.

For each evaluation of the error function, the registered mesh is relaxed from the
forces exerted by the visionwhile applying the point-wise contact force to evaluate the
known vertex. Fixing vertices as boundary conditions to constraint the simulation
is not necessary since we measure here the ability of this force to keep the static
equilibrium already reached by the action of the vision forces. Since the parameter
space is three-dimensional, four samples are sorted after each iteration, namely the
best, the worst, and two intermediate samples. Two different initial configurations
are tested here. The former starts quite far, without any particular guess on the
intensity and direction of the force. The latter is close to the actual value of the
force given by the sensor fopmech = [

0.17 1.125 4.006
]T

N. Figures34 and 35 show
in both cases the trajectories of the four candidates for the estimate of the contact
force fop and the corresponding fitting errors. In both cases, the algorithm converges
respectively towards a force of fop = [

0.618 0.0687929 3.54801
]T

N and fop =
[−0.462414 0.247626 3.71292

]T
Nwhich are relatively close to the value sensed by

the force sensormounted on the robot, thus validating ourwholemodel. Convergence
is of course reached much faster in the second case.

11.5 Comments on the Results

The proposed framework consists of (i) estimating the material parameters based
on a known exerted force to develop a deformation model, and (i i) estimating the
force based on the known deformation model and on a registration technique that
allows measuring deformations. The results presented in this chapter are promising,
but several issues shall be discussed.



66 A. Petit et al.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30  35

Fo
rc

eX
 (N

)

Iteration

Trajectory along x

best point
good point 1
good point 2

worst point

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0  5  10  15  20  25  30  35

Fo
rc

eY
 (N

)

Iteration

Trajectory along y

best point
good point 1
good point 2

worst point

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30  35

Fo
rc

eZ
 (N

)

Iteration

Trajectory along z

best point
good point 1
good point 2

worst point

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  5  10  15  20  25  30  35

Er
ro

r (
m

)

Iteration

Fitting errors

best point
good point 1
good point 2

worst point

Fig. 34 Nelder-Mead process for force estimation, for the first initial configuration
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Fig. 35 Nelder-Mead process for force estimation, for the second initial configuration



Non-rigid Tracking Using RGB-D Data 67

Our imaging set-up is based on a single Asus Xtion RGB-D sensor, providing
relatively low resolution, partial and noisy point cloud data around the object. It
results in non-convex shapes for the fitting error function in the elasticity estimation
process, especially concerning ν, or in registration errors. A more sophisticated set-
up to capture deformations, such as the one proposed in [66], with a set of RGB-D
sensors at different viewpoints, would give more accurate results for the estimation
of both the mechanical parameters and the contact force.

Besides, we assumed the contact point between the object and the operator to be
known, as well as the contact between the object and the underlying flat surface.
Further development of our approach would be, following the method described in
Sect. 9, the design of a vision system able to capture the interaction between the
object and its interacting environment: the manipulation tool, the table, and so on,
enabling the detection of contact points, some proper priors for the segmentation and
registration of the different entities.

In the estimation of the force exerted by the operator, we use a gradient-free
Nelder-Mead optimization method. This has the advantage of being relatively easy
to implement and robust to a coarse initialization. It is, however, relatively slow to run.
Indeed, for force estimation, each evaluation of the error function requires at least five
successive simulations to obtain a reliable error for deformations of the registration
process. An iteration in the Nelder-Mead algorithm requires, in this case, seven
evaluations, around 350 ms, given that one simulation takes around 10 ms, making
the process quite far from being real-time if considering a stream a successive RGB-
D data. A possible improvement would be to investigate an efficient inversion of the
whole interaction model and some local optimization techniques such as quadratic
programming, as proposed in [67].

Finally, our system is designed for the static case, for which deformations have
reached a static equilibrium. The presented method might be adapted to a dynamic
case by benefiting from a measure, through vision, of the kinematics of the object or
interacting entities. Hence, based on Lagrangian dynamics, the system could track
online both the deformations and the force.

12 Discussion and Conclusion

Real-time perception is a crucial issue for robotic nonprehensile dynamic manipula-
tion tasks, especially when considering deformable objects such as tissues, organs,
clothes, or food, which has to be manipulated in a very challenging way, as in the
case of a pizza being stretched and tossed by a humanoid pizza chef robot.

In this chapter, we have described a series of contributions to register and
track deformable objects undergoing fast rigid motions, large deformations, and
behaviours such as fractures and interactions with other objects or with the environ-
ment, based on the deformations models introduced in the previous chapter.

The recent development of physics-basedmodellingmethods for deformable elas-
tic objects for registration purposes and the availability of real-time implementations
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led us to choose such an approach to track a textureless and smooth object subjected
to various large deformations with an RGB-D sensor. The main idea is to contin-
uously fit the volumetric deformation models onto the successive 3D point clouds
provided by the RGB-D camera. At the same time, the FEM modelling acts as a
regularizer for the registration.

For the primary case of a single object, the use of the corotational FEM model,
an efficient segmentation method, and a classical point cloud registration techniques
have made our system a promising real-time tracking method able to handle various
deformations and motions while being robust to segmentation errors or occlusions.

Regarding fractures, our approach, as thefirst attempt to dealwith such topological
changes in a computer vision and registration problem, consists of integrating into
the FEM deformationmodel a model for fracture events. Fracturable nodes are firstly
detected in the considered mesh by decomposing the internal forces into tensile and
compressive components. In a second step, we perform a simple local re-meshing
of the elements around the fracture nodes. The registration process with the RGB-D
data is the same as for a single object to compute the deformations. The investigation
of fracture events over themesh and the eventual re-meshing is purely physics-based.
Experimental results on two different objects and three sorts of fractures show the
relevance of this simple physical-based method. However, this can be improved
by handling more properly the re-meshing phase by dealing with more significant
elastic and plastic deformations and handling occlusions by distinguishing themwith
fracture cracks.

We have also designed a system able to register multiple interacting deformable
elastic objects simultaneously. This system also relies on the corotational FEM elas-
tic models to accurately and efficiently model elasticity and an interaction model
consisting of collision detection and response models to cope with contacts between
objects. Based onRGB-D input data, point cloudmatching and registration processes
are achieved on segmented data in a parallel manner, enabling to deal with occlu-
sions. Rigid motions, deformations, and contacts of all the considered objects are
then estimated in a common solver, providing a realistic behaviour and coherently
constraining the registration of the involved entities. The method has been tested on
simple scenarios with elastic objects but could be extended to other physical models
to articulate objects, such as for robotic manipulation applications.

A first step towards robotic manipulation of such objects has been achieved by
performing a simple manipulation task on the RoDyMan platform.

Finally, another application has focused on designing a system able to recover
a single contact force exerted on a deformable object by resorting to an external
vision and registration system and fitting simulated deformations with the observed
ones. This is achieved by taking advantage of the physical FEM modelling and
employing a basic interaction model with the manipulator and the environment,
proposing a simple manipulation scenario. The deformation model requires two
mechanical parameters, Young’s modulus and Poisson’s ratio, which we initially
estimate by fitting simulated deformations with the point cloud given by an RGB-
D sensor. The entirely determined elastic model then feeds the registration system
and the simulator, which are matched to the contact force. We address these two
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optimization problems using gradient-free Nelder-Mead methods. Some promising
results have been obtained on a simple case of a single applied compression force
on a known contact point at static equilibrium.
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