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Abstract Materials like fluids are long since important research objects of contin-
uum mechanics as well as of computer graphics. Smoothed particle hydrodynam-
ics(SPH) is one of the representation methods employed for continuous materials. Its
simplicity in implementation and its realistic representation are drastically improved
during the last decades. More recently, highly viscous fluids like honey, jam, and
bread dough based on the SPH formulation have gained attention with impressive
results. In this chapter, a novel implicit viscosity method is proposed. The internal
viscosity forces are recursively calculated from the difference of the nearby velocities
of the particles until they are small enough to be neglected. The proposed approach
has longer time-steps compared with existing explicit viscosity methods, resulting
in shorter computation time. Besides, the proposed method uses a physical viscosity
coefficient, not an artificial one like in existing implicit viscosity methods, which
helps predict the viscous behavior of continuous materials more accurately. The
obtained results show that the computational time for the proposed approach is pre-
dictable, while the accuracy in modelling the viscosity behaviour is similar or higher
than existing methods.
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1 Brief Introduction

Continuous materials (e.g., solid objects, fluids) were widely and deeply investigated
a long time after Augustin-Louis Cauchy firstly formulated them in the 19th century.
Various methods for modelling continuous materials are categorized as Lagrangian
versus Eulerian approach, mesh-based versus mesh-free approach, or a hybrid com-
bination. Below, a list of well-established methods is revised (Table1).

The finite difference method(FDM) is an Eulerian grid method constructing regu-
lar grids [1], while the finite volume method(FVM) generates sub-domains referred
to as cells [2]. The finite element method(FEM) is instead a grid method requir-
ing mesh generation for their particle elements [3, 4]. Within the GSMs, gradient
smoothing operations based on relevant gradient smoothing domains are employed
to approximate derivatives [5]. The SPH consists of Lagrangian particles carrying
the convection properties like mass, pressure, and velocity [6, 7]. Among the hybrid
methods, it is worth mentioning the FLIP approach [8, 9], which is represented with
Lagrangian particles while the projection step is performed on an Eulerian grid, and
the MPM [10, 11], which handles collision and fracture of Lagrangian particles with
the use of an Eulerian grid. The PBFM [12] applies geometric constraints of the
PBDM [13] to enforcing constant density in the SPH framework. The integration of
the PIC approach [14] and the FLIP one was proposed in [15] for animating granular
materials such as the sand. The combination of the SPH’s incompressibility solver
with the position-based velocity correction for volume preservation of viscoelastic
fluids was presented in [16].

Each of themethods listed above has its benefits and issues compared to the others.
Recently, thanks to the drastically increasing computation power of computers and

Table 1 Main symbols used in this chapter

Definition Symbol

Material or substantial derivative
D

Dt
Fluid density ρ > 0

Space dimension r = {2, 3}
Flow vector velocity field v ∈ R

r

Hydrostatic pressure p > 0

Viscous stress T ∈ R
r×r

Body force due to gravity, surface tension, or
friction

fbody ∈ R
r

i th fluid sample point xi ∈ R
r

Dynamic viscosity coefficient μ > 0

Neighbourhood of the i-the particle Ni

Mass of the i th particle mi > 0

Reynold number Re > 0
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the development of novel algorithms, the mesh-free Lagrangian modelling methods,
like the SPH, are becoming more practical [6]. The intuitive and straightforward for-
mulation of the SPH approach is suitable to describe highly deformable objects with
complex surfaces. For this reason, such a method fits well the continuous material
handled by this chapter.

The SPH method was firstly designed in [17–19] for analyzing astrophysical
problems. Naturally, it emphasizes convection properties like mass rather than geo-
metric volume conservation, precisely the benefits and drawbacks of a Lagrangian
approach compared to an Eulerian approach. While SPH methods were applied to
highly dense continuous materials like water, addressing the incompressibility of
the materials would be a significant improvement. The first SPH method to simu-
late less compressible continuous materials, the so-called XSPH variant for matter
diffusion, was proposed in [7, 20, 21] by including an artificial viscosity approach,
the equation of state, and boundary conditions. Another contribution in applying the
SPH method to incompressible materials can be found in [22]. An SPH technique
based on a projectionmethod to model incompressible flows was proposed in [23] by
projecting a velocity onto a divergence-free subspace using pressure correction. An
ISPH approach, in which the incompressibility of the material is satisfied through a
pressure Poisson’s equation, was proposed in [24]. AWCSPHmethod was proposed
in [25] by using Tait’s equation, resulting in fast computation and less density fluctu-
ation. The success of the PCISPH method proposed in [26, 27] raised the popularity
of implicit methods over explicit ones. The IISPH method in [28] computes density
deviation not based on the position but based on the velocity, resulting in a robust
time-integration scheme. The DFSPH approach computes impulse force to maintain
the initial constant density and the divergence-free velocity field [29].

This chapter deals with highly viscous continuous materials like honey, jam,
and bread dough. Based on the SPH formulation, several viscosity methods exist
modelling incompressible behaviour of continuous materials. A conventional SPH
method tomodel the incompressible flowswith a lowReynolds numberwas proposed
in [30]. A double density relaxation procedure to enforce incompressibility and
particle anti-clustering was used in [31]. The work in [32] integrated the pressure
force and the viscosity force in [33] with an additional elastic force derived from a
modification of Hooke’s law.

The Cross’s model [34] for variable viscosity under shear stress in non-Newtonian
fluids was employed in [24]. Later, a similar approach was used in [35, 36], result-
ing in accurate modelling of viscous jet buckling. An implicit viscosity integration
method was presented in [37]: it was good at generating rotational viscous fluid
behaviours like coiling or buckling with long time-steps. At the same time, a dif-
ferent implicit viscosity formulation was proposed in [38]. An impulse force-based
implicit viscosity method, which is a similar approach to a previous incompress-
ibility solver [29], was introduced in [39]. The DC-PBD solver proposed in [40]
handles both position-based and velocity-based constraints efficiently so that large-
scaled and highly viscous fluids are animated with high speed. A further implicit
viscosity solver, which is controllable by physical viscosity coefficients, was pro-
posed in [41]. Besides these SPH-basedmethods, other approachesmodel continuous
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viscous materials as well. Namely, a variant of the MAC algorithm was proposed
in [42] to simulatewax,while an implicit Eulerianmethod for simulating free-surface
viscous fluids was proposed in [43].

Recently, the vorticity diffusion of continuous material related to the turbulence
or the eddy near solid boundaries in high Reynolds number flows has gained atten-
tion within the research community. For instance, the implicit viscosity formulation
in [38] was improved in [44] to include vorticity diffusion. The DVH was pro-
posed in [45] to generate a highly accurate vorticity field in the 2D space. However,
this chapter deals with high viscous fluids with a related flow characterized by a
low Reynolds number and a slow velocity. Therefore, the vorticity diffusion is not
addressed here.

Themethod introduced in this chapter takes inspiration from the implicit viscosity
method addressed in [37–39]. Hence, the proposed method has long time-steps as
the other implicit viscosity methods do, resulting in a shorter computation time to
simulate the continuous material. In addition, the following novelties are introduced
by this chapter: (i) the proposed method uses a physical viscosity coefficient, instead
of an artificial one as commonly done in the literature, and thus it is possible to
predict the viscous behaviour of the continuous materials accurately; (i i)while most
of the existing implicit viscosity methods use optimization methods (e.g., conjugate
gradient or precomputed Jacobian to find the proper velocities of the particles), the
proposed approach can control the viscosity accuracy and predict the computation
time, as it will be verified in the proposed experiments.

The outline of the chapter is as follows. Themathematical background for Navier-
Stokes equations used to represent the continuousmaterials and the SPH formulation,
which is a mesh-free Lagrangian method implementing the Navier-Stokes equations,
are briefly revised in the next section. The proposed approach is presented in Sect. 3
along with a brief description of existing viscosity approaches. At the same time,
Sect. 4 gives additional ways to improve the introduced SPH implementation to
be more accurate and fast in simulating the continuous materials. Experiments are
described in Sect. 5 where the performance of the proposed algorithm is competitive
with the conventional methods. Conclusions are provided within Sect. 6.

2 Theoretical Background about Navier-Stokes’s Theorem
and SPH

The basic concept of Navier-Stokes equations is briefly introduced in this section.
The SPH method is revised in a nutshell as well.
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2.1 Navier-Stokes’ Theorem for Continuous Materials

The two equations regarding the conservation ofmass andmomentum for continuous
materials are considered [46–48]. The former is also known as the mass continuity
equation

Dρ

Dt
= −ρ∇ · v. (1)

The latter equation is about the momentum conservation

ρ
Dv
Dt

= −∇ · pIr + ∇ · T + ρ fbody . (2)

For any material property Ai of the fluid sample point xi with proper dimension,
in the Eulerian approach, the material derivative is defined as DA

Dt = ∂A
∂t + (v · ∇)A,

in which ∂
∂t is the time derivative at a fixed Eulerian sample point xi and (v · ∇)A

is the so-called advection term. In the Lagrangian approach , he material derivative
is defined as DA

Dt = dA
dt , in which

d
dt is the time derivative at an advected Lagrangian

sample point xi [49, 50].

2.2 SPH Formulation

As briefly mentioned in Sect. 1, the SPH formulation is a mesh-free Lagrangian
approach initially developed for astrophysical problems in [17, 18]. They treated
the stars distributed sparsely in the universe as particles with mass and other proper-
ties, and they researched about interval physical properties among neighbour stars.
Lately, the SPH formulation was applied to compressible fluid problems in contin-
uum mechanics, in which each particle represents a collection of nearby atoms or
molecules.

According to the general SPH formulation [7, 20, 50], a physical quantity A of
any point x ∈ R

r of the continuous material can be calculated by

A(x) =
∫ ∞

−∞
A(x′)W (x − x′, h) dx′, (3)

where W : Rr → R
≥0 is an interpolating kernel, and h is the radius of the kernel

domain. The value for the outer of the kernel domain is zero. Such a kernel satisfies
the following two properties

∫ ∞

−∞
W (x − x′, h) dx′ = 1, lim

h→0
W (x − x′, h) = δ(x − x′), (4)
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where δ : Rn → R
≥0 is the Dirac delta function, whose output is equal to zero every-

where except for x = x′, and whose integral over the domain is equal to one. More-
over, decreasing monotonically with distance may be an additional useful property
for a kernel function W .

The discrete approximation of (3) is given by

Ai =
∑
j

m j

ρ j
A j W (xi − x j , h), (5)

where m j > 0 and ρ j > 0 are the mass and the density of the j-neighbour particle,
respectively. The gradient∇A for Eq. (5) can be defined using the second golden rule
of SPH, which is to rewrite formulae with the density placed inside operators [20,
38, 51], as

∇Ai = 1

ρi

∑
j

m j (A j − Ai )∇W (xi − x j , h). (6)

Similarly, the Laplacian ∇2A for equation (5) can be defined as

∇2Ai =
∑
j

m j

ρ j
(A j − Ai )∇2 W (xi − x j , h), (7)

as proposed in [33, 52] by applying the second golden rule of SPH twice for incom-
pressible continuous materials.

From now in this chapter, Wi j will be used as short notation for W (xi − x j , h).

3 Viscosity Property and Various Viscosity Methods for
SPH

TheNavier-Stokes equation (2) for incompressible fluidswith aLagrangian approach
can be written as follows for the i th element

D vi
D t

= − 1

ρi
∇ · pi Ir + 1

ρi
∇ · Ti + f bodyi , (8)

where it is possible to recognize the net motion force, f motion
i = D v

D t , equal to the sum
of the pressure force, f pressure

i = − 1
ρi

∇ · p Ir , occurred by pressure difference, the

viscosity force, f vis = 1
ρi

∇ · Ti , occurred by shear stress, and the body force, fbodyi ,
acting on a continuous fluid and given by gravity, inertial accelerations, elastostatic
accelerations, and so on. Incompressibility of continuous materials is guaranteed by
solvers like IISPH [28] or DFSPH [29], which generates the proper pressure force
f pressure
i to keep constant the density, that is, ρi = ρ0, or at least

D ρi

D t = 0. The SPH
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is purely based on Lagrangian approach, hence the material derivative for a velocity
vi is calculated as Dvi

Dt = dvi
d t [49].

Concerning incompressible fluids, the viscosity force f vis is defined as

f vis
i = 1

ρi
∇ · Ti = 1

ρi
∇ ·

(
2μ

∇vi + ∇vTi
2

)

= 1

ρi

(
μ∇ · ∇vi︸ ︷︷ ︸

∇2vi

+μ∇ · (∇vi )T︸ ︷︷ ︸
∇(∇·vi )=0

)
= 1

ρi
μ∇2vi ,

(9)

where ∇2vi is the Laplacian of the velocity.
Regarding the SPH formulation, a double discretization of the velocity generates

error accumulation, and it is prone to be too much sensitive with respect to the
velocity of the particles and the kernel function. Hence, the conventional explicit
viscosity methods [21, 24, 30] use alternative formulations by employing the first
derivative kernel function only, while the existing implicit viscositymethods [37–39]
try not to calculate the viscosity force explicitly. The formulation proposed in [33]
is employed in this chapter to define the viscosity force f vis

i as

f vis
i = 1

ρi
μ∇2vi = 1

ρi
μ

∑
j

m j

ρ j
(v j − vi )∇2 Wi j . (10)

The goal of most of the viscosity methods is to find out the velocity vi satisfying
the Navier-Stokes equation (8). However, it is not easy to find out such a velocity
because the viscosity force f vis

i is relative to both the velocity of a particle and the
velocities of its neighbours, as evident from (10).

To easy explain the presented methodology, all the particles in the continuous
material are assumed to be initially stable, i.e., vi = v0 ∀i where v0 ∈ R

r is a constant
velocity, for instance zero. Let f exti = ai ∈ R

r be any other force applied to the
i th particle, assimilated to an acceleration a, except its viscosity force f vis

i . Then,
consider that only a particle i of the continuousmaterial is subject to an external force
f exti , while the other particles are not f extj 	=i = 0r . When the i th particle is accelerated
by the external force f exti , its closest particles drag it to be less accelerated. Such a
dragging force is equal to the viscosity force f vis

i for the i th particle as

f vis
i =

∑
j

f vis
i← j , (11)

where i ← j means the effect of a particle j toward a particle i . Therefore, folding
equation (10) into equation (8), with the assumption vi = v0 ∀k, yields

�vi
�t

� 1

ρi
μ

∑
j

m j

ρ j
(v j − (vi + �vi ))∇2 Wi j + ai = − 1

ρi
μ�vi

∑
j

m j

ρ j
∇2 Wi j + ai ,

(12)
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where the equality holds if the change of velocity, �v, is constant during a given
time-step �t > 0. Then, the increase of velocity for the particle i , �vi , caused by
the external force f exti can be obtained from

�vi � (�t · ai )/(1 + �t · μ

ρi

∑
j

m j

ρ j
∇2 Wi j ). (13)

Moreover, the viscosity force occurred by a neighbourhood particle j can be retrieved

from f vis
i← j = − 1

ρi
μ�vi

m j

ρ j
∇2Wi j . According to the third Newton’s law, mi f vis

i← j +
m j f vis

j←i = 0r , the dragging force from a particle j to the particle i also affects the
particle j itself such that

f vis
j←i = 1

ρ j
μ
mi

ρi
((vi + �vi ) − v j )∇2 Wi j . (14)

Then, the force f vis
j←i can be regarded as a new external force f ext

′
j ∈ R

r for the particle

j , that is, f ext
′

j = f vis
j←i .

The described procedure is resumed within the schematic diagram in Fig. 1.
Assume that five particles exist, each of which is denoted with subscript j1, j2,
j3, j4, and i , serially and stably placed in a row. The particle i is affected by four
neighbourhood particles j1, j2, j3, and j4 in the SPH formulation. The particle i
is subject to a given external force f exti vertically applied in the upward direction.
Since the surrounding particles are still stable, the initial viscosity force is given by
f vis
i = ∑

j f
vis
i← j , where j = { j1, j2, j3, j4}. Then, the summation of the provided

external force f exti and the viscosity force f vis
i is the net motion force f motion

i of the
i th particle. Subsequently, the change of velocity �vi caused by the motion force
f motion
i creates the viscosity forces, f vis

j1←i , f
vis
j2←i , f

vis
j3←i , and f vis

j4←i . Each of these

viscosity forces can be regarded as new external forces, f ext
′

j1 , f ext
′

j2 , f ext
′

j3 , and f ext
′

j4 ,
for the neighbourhood particles.

Now, consider the case where multiple particles in a continuous material are
subject to external forces f extj 	=i , simultaneously. Following the previous Eqs. (13)–
(14), a particle i might be subject to multiple viscosity forces

∑
j f

vis
i← j from its

neighbourhoods, so that the new external force f ext
′

i can be extended to

f ext
′

i =
∑
j

f vis
i← j = 1

ρi
μ

∑
j

m j

ρ j

(
(v j + �v j ) − (vi )

)
∇2 Wi j

= 1

ρi
μ

∑
j

m j

ρ j
(�v j )∇2 Wi j .

(15)

Furthermore, removing the assumption that vi = v0 ∀i yields
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Fig. 1 When an external force f exti is applied on the i th particle of a series of particles arranged in
a row, not only the i th one gets the viscosity force f vis

i but also the particles j1 ∼ j4 are subject to

new external forces f ext
′

j1 ∼ f ext
′

j4 according to Newton’s third law. Red, yellow, and black arrows
indicate external, viscosity, and net motion forces, respectively

�vi
�t

� 1

ρi
μ

∑
j

m j

ρ j
(v j − (vi + �vi ))∇2 Wi j + ai , (16)

which is equivalent to

�vi
�t

� − 1

ρi
μ�vi

∑
j

m j

ρ j
∇2 Wi j +

( 1

ρi
μ

∑
j

m j

ρ j
(v j − vi )∇2 Wi j + ai

)

︸ ︷︷ ︸
f ext

′
i =a′

i

. (17)
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Note that, considering the combination of the last two terms in the right side of
the above equation as a new external force f ext

′
i = a′

i , then equation (17) becomes
equivalent to (12).

In view of the law of conservation of energy and the condition that the kernel
Laplacian is ∇2W ≥ 0, the following expressions hold

f motion
i = f vis

i + f exti =
∑
j

f vis
i← j + f exti

⇒ f exti = f motion
i +

∑
j

f vis
j←i

⇒ ∥∥f exti

∥∥ ≥
∑
j

∥∥f vis
j←i

∥∥ =
∑
j

∥∥∥f ext ′j

∥∥∥ .

(18)

Therefore, the magnitude of the sum of the external forces,
∥∥∑

f ext
∥∥, always

decreases and converges to zero as the procedure is iterated.
So far, a viscosity equation has been retrieved from the knowledge of an applied

external force, and such a viscosity term has been used as a further external force as
well. There is not so much difference with conventional explicit viscosity methods.
However, imagine the sequential procedure with a very short time-step δt � �t in
an explicit approach. The external force f exti affects the particle i : after δt , the particle
i changes its velocity accordingly to δvi and, subsequently, any particle j ∈ Ni in
the neighbours of i gets an external force f extj from i . During the next δt , the particle
j subject to the external force f extj changes its velocity accordingly to δv j and,
subsequently, any particle k ∈ N j in its neighbour, including the particle i ∈ N j ,
gets an additional external force f extk from the particle j again. This procedure is
iterated for �t/δt times, and thus the number of interactions tends to infinite as
δt → 0.

For a Newtonian fluid, since the dynamic viscosity coefficient μ is constant, it
is possible to separate the computation of the new external forces, f ext

′
, from the

sequential processing without increasing the time-step. In this way, it is possible
to take a longer time-step �t for viscosity calculation like other implicit viscosity
methods.

A schematic diagram is shown in Fig. 2. On the one hand, Fig. 2a shows that
the velocity changes δv are accumulated linearly during a short time δt as in the
existing explicit viscosity methods. To use these approaches, the short time-step δt
should be selected efficiently. Furthermore, suppose there is an SPH routine including
neighbour searching and incompressible solving for each iteration as the conventional
explicit viscositymethods do. In that case, the computation time of the SPHalgorithm
also drastically increases. On the other hand, Fig. 2b illustrates the approach proposed
in this paper,which calculates the velocity changes�v during a given time-step�t �
δt , and then the induced external force f ext

′
i = ∑

j f
vis
i← j is applied to the surrounding

particles subsequently without adding a time-step. Moreover, the magnitude of the
change of velocity ‖�v‖ decreases as the routine is repeated: hence, the viscosity
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Fig. 2 While the conventional explicit approaches require a short time-step δt for sequential calcu-
lations, on the top, the proposed method uses a given time-step�t � δt for calculating the velocity
changes and the additional external forces, on the bottom
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error can be controlled, as well as the number of iterations, with a trade-off between
them.

The schematic pseudo-codes of both the SPH algorithm and the one related to
the proposed viscosity method are shown in Algorithms 1 and 2, respectively. In
Algorithm 1, the properties related to the particles are initialized, like the space
dimension, the fluid density, the mass of a particle, the position x and velocity v of
each particle, as well as the kernel function with the radius of its domain h, the time-
step, the total simulation time, and so on (line 2). Then, the main routine (lines 4–9)
is repeated until the end of the given simulation time. The neighbour search for each
particle is carried out (line 4), then the kernel value W , its gradient, its Laplacian,
and its density are calculated using the distances to the neighbours (line 5). The
neighbour search and the computation of the kernel function are the most time-
consuming parts. The related calculations can be improved with various methods
like implementing a look-up table for the kernel function. The body force f body , like
gravity, is applied to each particle (line 6). There are two main sub-routines: one
for the incompressibility of the continuous material and the other one to calculate
the viscosity force. In this chapter, the conventional incompressibility methods, like
the IISPH approach in [38] and the DFSPH method in [29], are employed. They
guarantee incompressibility of the continuous materials through ρ = ρ0, or at least
through D ρ

D t = 0 (line 7). Under the assumption that a given continuous material is
incompressible, the proposed viscosity method is run (Algorithm 2). It calculates the
velocity of a particle v satisfying viscosity (line 8). Finally, the position of a particle
x is updated based on the velocity v (line 9).

ALGORITHM 1: OUTLINE OF THE SPH ALGORITHM
1 begin
2 initialize particles of a continuous material in SPH formulation
3 repeat
4 search neighbourhood for each particle
5 compute W , ∇W , ∇2W , and ρ for each particle
6 apply the body force f body e.g. gravity
7 correct the density error s.t. ρ = ρ0 or at least

D ρ
D t = 0

8 apply the viscosity effect on the continuous material (Algorithm 2)
9 update the position x of each particle

10 until
11 end

In detail, Algorithm 2 consists of an initial part (line 2–6) and a loop (line 8–
16). Firstly, the external force ρ a′ is re-calculated, including not only the original
external body force, like gravity, but also the viscosity force f vis occurred by the
relative velocity between a particle i and its neighbours Ni using the equation (17).
Within the loop part, two termination conditions are checked: the former to verify
when the number of iterations is less than the maximum number max_iter; the latter
to prove that the maximum magnitude of the accelerations of the particles ‖a‖ is
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greater than the minimum threshold keeping a reasonable computation time and
preventing the computation of negligible small external forces (line 7). For these
two termination conditions, max_acc and cur_iter are calculated (line 5–6 and line
15–16). Within the loop, two main parts can be recognized: the former is the update
of the velocity of each particle (line 8–11) using (13); the latter is the calculation of
the new external force f ext

′ = a′ using (15). When each external force is negligible
or the max iterations number is overcome, the viscosity method terminates.

ALGORITHM2: PROPOSEDVISCOSITYMETHODFOR INCOMPRESS-
IBLE NEWTONIAN FLUIDS
1 begin
2 for each particle i of a continuous material in SPH formulation do
3 a′

i = ai + μ
ρi

∑
j
m j
ρ j

(v j − vi )∇2Wi j - - - Eq. (17)

4 end
5 max_acc = max{ ∥∥a′

1

∥∥ , · · · ,
∥∥a′

N

∥∥}
6 cur_iter = 0
7 while (max_acc > threshold) ∧ (cur_iter < max_iter) do
8 for each particle i do
9 �vi = (�t · a′

i )/(1 + �t · μ
ρi

∑
j
m j
ρ j

∇2Wi j ) - - - Eq. (13)

10 vi = vi + �vi
11 end
12 for each particle i do
13 a′

i = μ
ρi

∑
j
m j
ρ j

(�v j ) ∇2Wi j - - - Eq. (15)

14 end
15 max_acc = max{ ∥∥a′

1

∥∥ , · · · ,
∥∥a′

N

∥∥}
16 cur_iter = cur_iter + 1
17 end
18 end

4 Other Components for the SPH-based Modelling

4.1 Kernel Functions

The smoothing kernel function W is crucial for the accuracy of the SPH-based
continuum mechanic simulation. As mentioned, there is no necessary condition for
the kernel except that ∫ ∞

−∞
W (x − x′, h) dx′ = 1, (19)

or the discretized approximated version
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∑
j

m j

ρ j
W (xi − x j , h) � 1, (20)

for the center position xi of the kernel. Its gradient function is given by

∇iW (xi − x j , h) = ∂W

∂q
∇i q, (21)

while its Laplace function is

∇2
i W (xi − x j , h) = ∂2 W

∂q2
‖∇i q‖2 + ∂W

∂q
∇2
i q, (22)

where q=
∥∥xi − x j

∥∥
h

,∇i q = xi − x j∥∥xi − x j

∥∥ h , and∇2
i q = 1∥∥xi − x j

∥∥ h −
√∥∥xi − x j

∥∥
h

.

Usually, the radius of the kernel domain h is set to twice the default particle
spacing, that is, four times longer than the particle radius for maintaining sufficient
but not too much neighbour particles. The following Gaussian kernel is commonly
used

W (xi − x j , h) = 1

(2πh2)

r

2

exp

(
−

∥∥xi − x j

∥∥2

2h2

)
. (23)

Even though a Gaussian kernel is highly recommended statistically, the computa-
tional cost for evaluating the exponential function is expensive, and it does not have
compact support, that is, the range spans −∞ to ∞. Therefore, an approximated
cubic spline kernel function is employed in this work

W (xi − x j , h) = 1

σ

⎧⎪⎨
⎪⎩

4
3 − 2q2 + q3 if 0 ≤ q < 1
1
3 (2 − q)3 if 1 ≤ q < 2

0 otherwise,

(24)

where q =
∥∥xi − x j

∥∥
h/2

, σ is a normalization constant equal to {2h, πh2, 4
3πh

3} for
r = {1, 2, 3}, respectively [7, 20]. A particular kernel to handle viscosity effect,
whose Laplacian is always non-negative, ∇2W ≥ 0, so that the viscosity force does
not increase the relative velocity and avoid to create unstable status, was introduced
in [50].

An additional method to limit the computational burden concerning the kernel
function is to use a look-up table [39]. The kernel values are pre-computed for
sample distances, called keys, between two particles with a specific span. The keys
and the computed values are saved into the look-up table. Using the closest key to
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the requested one or calculating the linear interpolation using two narrowest points,
finding out the desired approximated value of the kernel function is possible.

A cubic spline kernel function has been employed within the performed simula-
tions, while its Laplacian value is set to zero if it is negative. Furthermore, when con-
venient, the look-up tables storing the kernel value, its gradient value, and its Lapla-
cian value of the kernel domain, h = 0.005 m and h = 0.010 m with a span 10−7 m,
have been exploited in some simulations using the particle spacing 1.25 · 10−3 m or
02.5 · 10−3 m, respectively.

4.2 Incompressible Fluid

Particle-based continuum mechanic methods like SPH have incompressibility prob-
lem, that is, they need some special treatments for modelling incompressible contin-
uous materials. To address the incompressibility problem, various methods, like the
PSPH [23], the ISPH [24], the WCSPH [25], the PCISPH [26], and the PBFM [12]
were proposed. Recently, methods like the IISPH [28] and the DFSPH [29] have
shown outstanding performance in addressing incompressible fluid. The IISPH
approach tries to find out a proper pressure p so that it satisfies the derivative of the
density Dρ

Dt = 0 using the continuity equation Dρ

Dt = −ρ∇ · v and the velocity update
equation v(t + �t) = v(t) + �t f

adv+f p

m , where fadv ∈ R
r is an advection force and

f p ∈ R
r is a pressure force computed as

f pi = −mi

∑
j

m j

(
pi
ρ2
i

+ p j

ρ2
j

)
∇Wi j . (25)

The DFSPHmethod, instead, does not find out the pressure directly but it retrieves
an impulse pressure force defined as

f pi = κv
i

∑
j

m j∇Wi j , (26)

where κv is the stiffness parameter, so that it satisfies Dρi

Dt + �
Dρi

Dt = 0,where�
Dρi

Dt =
�t

∑
j m j

(
f pi
ρi

− f pj←i

ρi

)
∇Wi j .

In the proposed simulations dealing with viscosity, the IISPH method has been
employed: nevertheless, other incompressibility approaches are doable. As a contri-
bution, instead of the pressure force Eq. (25) in the original IISPH method, the one
from [33] has been employed

f pi = −mi

ρi

∑
j

m j

ρ j

(
pi + p j

2

)
∇Wi j , (27)

since more stable performance are obtained within the carried out simuatlions.
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5 Simulations

The set-up employed to test the proposed method is composed of an IntelCore i7-
6500U CPU@2.50GHz, 8.0 Gb of memory with Windows 10 × 64 OS, equipped
with MFC of Microsoft, Eigen,1 and OpenCV2 for 2D graphic or Open Scene
Graph3 for 3D graphics libraries based on C++ programming language. Houdini
software from SideFX4 has been employed to reconstruct the mesh from particles,
and Blender5 for the graphical rendering. A CUDA version has been implemented to
compare both the proposed algorithm and the existing conventional viscosity meth-
ods. They have been tested on an NVIDIAGeForce 940MX graphic card. It has been
possible to verify that CUDA implementation has sped up the execution from the
20% to the 50% compared to OpenMP-based6 implementation.

5.1 Accuracy and Time Analysis

The accuracy of the proposed algorithm is firstly addressed. A free-fall experiment is
considered, where the velocity of the particles of the continuous material is measured
after applying a uniform external force like gravity. Because there is no degradation
for the gravity during the free-fall, the movement of the particles is the same as the
product of the acceleration with the delay time, �ta. The error introduced by the
proposed viscositymethod is due to the thresholdη, the viscosityμ, anda. Twovalues
are considered for the external force, namely a = 10 m/s2 and a = 100 m/s2. The
velocity of the continuous materials is measured after 0.001 s. The particle spacing
and the density ρ of the SPH particles are set as 0.0025 m and ρ = 100 kg/m3,
respectively. The results are summarized in Table2 and Table3.

Based on these data, the graph in Fig. 3 is depicted with a threshold rate, T R =
η

‖a‖ . From the data, it is possible to appreciate that, as long as the viscosity coefficient

increases, the error rate, ERR = ‖a‖ − ∥∥a′∥∥
‖a‖ , where a is the input acceleration and

a′ is the measured one, converges to the threshold rate given by the external force,
that is,

ERR ≤ η

‖a‖ . (28)

1 https://eigen.tuxfamily.org/.
2 https://opencv.org.
3 http://www.openscenegraph.org.
4 https://www.sidefx.com.
5 https://www.blender.org.
6 https://www.openmp.org.

https://eigen.tuxfamily.org/
https://opencv.org
http://www.openscenegraph.org
https://www.sidefx.com
https://www.blender.org
https://www.openmp.org
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Table 2 Error rates (%) of free-fall experiment with a = 10 m/s2 and various viscosity μ and
threshold η at time 0.001 s in 3D space

η = 0.01 0.1 0.2 0.4 0.6 0.8 1.0

μ = 0.1 0.01 0.05 0.05 0.50 0.50 0.50 0.50

1 0.02 0.20 0.34 0.98 1.69 1.69 2.95

10 0.05 0.56 1.16 2.40 3.69 5.02 6.05

100 0.09 0.92 1.83 3.66 5.49 7.30 9.14

200 0.10 0.96 1.91 3.82 5.73 7.65 9.54

300 0.10 0.97 1.94 3.88 5.82 7.76 9.71

400 0.10 0.98 1.96 3.91 5.86 7.82 9.78

500 0.10 0.98 1.96 3.93 5.89 7.85 9.82

Table 3 Error rates (%) of free-fall experiment with a = 100 m/s2 and various viscosity μ and
threshold η at time 0.001 s in 3D space

η = 0.1 1.0 2.0 4.0 6.0 8.0 10.0

μ = 0.1 0.01 0.05 0.05 0.50 0.50 0.50 0.50

1 0.02 0.20 0.34 0.98 1.69 1.69 2.95

10 0.05 0.56 1.16 2.40 3.69 5.02 6.05

100 0.09 0.92 1.83 3.66 5.49 7.30 9.14

200 0.10 0.96 1.91 3.82 5.73 7.65 9.54

300 0.10 0.97 1.94 3.88 5.82 7.76 9.71

400 0.10 0.98 1.96 3.91 5.86 7.82 9.78

500 0.10 0.98 1.96 3.93 5.89 7.85 9.82

Besides, it is possible to estimate the execution time of the proposed viscosity
method, which is relative to the number of iterations, I T E R, because the time of
each iteration can be considered as a constant. The number of iterations are measured
from the previous simulations: the results are summarized in Tables4 and 5.

We used the threshold rate, T R = η

‖a‖ , to display the graphical relation in Fig. 4.
Furthermore, we display the gradient of each relation equation at each threshold rate,

T R = η

‖a‖ , in Fig. 5.

Here, we derived the following equation between them

I T E R � −A ln

(
η

‖a‖
)

· μ, (29)

with the coefficients A = 1.646 in this experiment.
Based on these results, it is possible to conclude that the proposed viscositymethod

has a predictable accuracy and computation time.
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Fig. 3 The relation between μ and error rate with various threshold rates, T R = η

‖a‖

Table 4 The number of iterations of the free-fall simulation with a = 10m/s2 and various viscosity
μ and threshold η at time 0.001 s in 3D space

η = 0.01 0.1 0.2 0.4 0.6 0.8 1.0

μ = 0.1 4 3 3 2 2 2 2

1 15 10 9 7 6 6 5

10 118 79 67 55 48 43 40

100 1142 761 647 532 465 418 381

200 2278 1519 1290 1062 928 833 760

300 3415 2277 1934 1591 1391 1249 1138

400 4551 3034 2577 2121 1854 1664 1517

500 5688 3792 3221 2650 2317 2080 1896

5.2 Couette Flow Experiment

The Couette flow appears within a viscous fluid between two parallel plates. The
upper plate is moving with a constant velocity while the lower is stationary: because
of the difference of the velocities between the two plates, the speed of each layer of
the flow is different. As time goes to infinity, the gradient of the velocity to the vertical

coordinate,
∂vx
∂y

, is constant, where y is the axis orthogonal to the fluid movement

that is along the x direction. The viscosity of the fluid affects how fast the gradient
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Table 5 Thenumber of iterations of the free-fall simulationwitha = 100m/s2 andvarious viscosity
μ and threshold η at time 0.001 s in 3D space

η = 0.1 1.0 2.0 4.0 6.0 8.0 10.0

μ = 0.1 4 3 3 2 2 2 2

1 15 10 9 7 6 6 5

10 118 79 67 55 48 43 40

100 1142 761 647 532 465 418 381

200 2278 1519 1290 1062 928 833 760

300 3415 2277 1934 1591 1391 1249 1138

400 4551 3034 2577 2121 1854 1664 1517

500 5688 3792 3221 2650 2317 2080 1896

Fig. 4 The relation betweenμ and the number of iterationswith various threshold rates, T R = η

‖a‖

becomes constant. The following equation is an analytic solution for the Couette
flow [30]:

vx (y, t) = v0
y

y0
+

∞∑
n=1

2 v0
nπ

(−1)n sin

(
nπ

y0
y

)
exp

(
− ν

(nπ

y0

)2
t

)
, (30)

where ν = μ

ρ
is the kinematic viscosity, v0 ∈ R

r is the velocity of the top flow, and

y0 ∈ R is the height of the top flow. By comparing the analytic solution with the
experimental results, it is possible to verify the accuracy of the viscosity algorithm.
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Fig. 5 The relation between threshold rates, T R = η

‖a‖ , and the gradients of the relation equations
in Fig. 4

(a) (b)

Fig. 6 Couette flow simulation with the gap between two plates y0 = 0.1 m, the velocity of the
upper plate v0 = 1.0 m/s, the total simulation time of 0.01 s, the density of the fluid ρ = 100, the
particle spacing 1.25 · 10−3 m, time-step �t = 0.1 · 10−3 s, and dynamic viscosity coefficients: a
μ = 0.1, Re = 25, b μ = 1.0, Re = 2.5. The right side bar indicates the magnitude of the velocity
of each layer

The carried out simulation about the Couette flow has height y0 = 0.1 m, velocity
of the upper plate v0 = 1 m/s, and time t0.01 s, The parameters relative to the
SPH formulation are: ρ = 100 for the fluid density, the particle spacing is equal to
1.25 · 10−3 m, and the time-step is �t = 0.1 · 10−3 s.

The results of two flows with μ = 0.1 and μ = 1.0 after t = 0.01 s are depicted
in Fig. 6, in which the gray colour shows the velocity magnitudes of each layer in the
fluid and lines in the right side. Reynolds number for Couette flow is defined [53] as
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(a) (b)

Fig. 7 Couette flow experiment. a The results from time 0.001 s to 0.01 s with viscosity coeffi-
cient μ = 10. b The results from time 0.01 s with various viscosity coefficients, namely: μ = 0.1,
μ = 1.0, and μ = 10.0. Lines and dots indicate the analytic solution and SPH simulation results,
respectively

Re := ρ v0 1
2 y0

μ
. (31)

Hence, Reynolds numbers for μ = 0.1 and μ = 1.0 are Re = 25 and Re = 2.5,
respectively.

The results are more easily collected in Fig. 7. It is possible to verify that the top
and bottom fluid layers’ speeds are almost identical to the velocity of the upper and
lower plates, respectively. The curves in Fig. 7a indicate the velocities of each fluid
layerwith time t : as time goes, the gradient of the velocity equation becomes constant.
The velocity results of the proposed algorithm has been compared with the analytic
solution of Eq. (30) in Fig. 7b for three different viscosity fluids, namely μ = 0.1,
μ = 1.0, and μ = 10.0. The velocity decreases smoothly as the height decreases
in the higher viscosity fluid than the lower one. Hence, the proposed algorithm has
almost the same results as the analytic solutions.

5.3 Poiseuille Plane Flow Experiment

Next simulation test deals with the Poiseuille plate flow [30, 54]. Like the Couette
flow, there are two parallel plates with distance y0, but both of them are stationary.
A constant force is applied into the fluid between the two plates. Depending on
how strong the viscosity of the fluid is, the velocities of each layer of the fluid are
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(a) (b)

Fig. 8 Poiseuille plane flow experiment with the distance between two plates of y0 = 0.1m, a fluid
acceleration of a = 10.0 m/s2, the total simulation time of t = 0.1 s, ρ = 100, the particle spacing
equal to 1.25 · 10−3 m, the time-step �t = 0.1 · 10−3 s, and dynamic viscosity coefficients equal
to, namely, a μ = 0.1, Re = 33.3 b μ = 1.0, Re = 3.3. The right side bar indicates the magnitude
of the velocity of each layer

determined at a certain time. The following equation is the analytic solution for the
Poiseuille plate flow [30]

vx (y, t) = − a
2ν

y(y − y0)

−
∞∑
n=0

4 a y20
ν π3(2n + 1)3

sin

(
(2n + 1)π

y0
y

)
exp

(
− ν

( (2n + 1)π

y0

)2
t

)
.

The simulation test is carried out with height y0 = 0.1 m, acceleration a =
10.0 m/s2, time t = 0.1 s, and the SPH relative parameters equal to ρ = 100, the
particle spacing equal to 1.25 · 10−3 m, and a time-step �t = 0.0001 s.

The experimental results of the two flows with μ = 0.1 and μ = 1.0 are shown
in Fig. 8. Reynolds number for Poiseuille plane flow is defined as [53]

Re := ρ v y0
μ

, (32)

where v is the average velocity. Another definition of Reynolds number is also used,

Re :=
ρ v0

1

2
y0

μ
, where v0 is the velocity at the mid-plane of the channel [55]. The

average velocity for Poiseuille plane flow is v = 2
3v0. Hence, the Reynolds numbers

for μ = 0.1 and μ = 1.0 are Re = 33.3 and Re = 3.3, respectively.
Because the upper and lower plates are stationary, the speeds of the top and bottom

fluid layer are zero, while the speed of the center fluid is maximum. The average
velocity of the fluid is faster if μ = 0.1, rather than in case of μ = 1.0.

The results with three different viscosity fluids μ = 0.1, μ = 1.0, and μ = 10.0
are represented in Fig. 9. Since the acceleration is a = 10.0 m/s2, and the time t =
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Fig. 9 Poiseuille flow experiment. a The results from time 0.01 to 0.10 s with viscosity coefficient
μ = 0.1.bThe results from time 0.1 swith various viscosity coefficients, namely,μ = 0.1,μ = 1.0,
andμ = 10.0. Lines and dots indicates the analytic solution andSPH simulation results, respectively

0.1 s, the maximum speed is 1 m/s. It is possible to appreciate that the higher the
viscosity of the fluid, the lower the maximum reached speed. Simulation results are
verified to be similar to the analytic solutions.

5.4 Comparison with Conventional Viscosity Methods

A comparison with the existing viscosity approaches mentioned in Sect. 1 is carried
out to prove the efficiency of the proposed method. The Couette flow experimen-
tation presented in Sect. 5.2 is chosen as a test-bed for such a comparison. It is
worth remarking that the comparison results of the viscosity methods might differ
depending on what kind of test-bed is used.

The simulations are configured with the height and the velocity of the top plate as
y0 = 0.1 m and v0 = 1 m/s, respectively. The SPH particles for the incompressible
Newtonian fluid have particle spacing equal to 1.25 · 10−3 m and rest density ρ0 =
100. Then, the velocity of each particle along the vertical direction is measured at
time 0.01 s and compared with the analytic solution for a fluid of viscosity 1 using an
RMSE method. Because each viscosity method has its parameters, it is impossible
to use the same numbers for them. Hence, the best parameters matching the analytic
solution have been selected: such a best matching induces longer time-step and less
RMSE.

It is worth saying that, within the conventional methods, adjusting the parameters
has frequently caused explosion phenomena of the fluid. This can be explained by the
fact that too close particles have a strong repulsive force. Therefore, they move very
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Table 6 Comparison of the proposed viscosity method with explicit / implicit methods. Couette
flowexperiments [30] for simulating a physical fluid of dynamic viscosity 1 at simulation time 0.01 s,
particle spacing 0.00125 m, and flow rest density ρ0 = 100. No optimization like parallelization or
precompiled kernel. PM stands for proposed method

Method max �t (s) iterations real
time/simul
time

RMSE parameters

[20] 0.00001 1000 6209.3 0.026075 α = 0.01,
β = 0,
c = 1484

[30] 0.0001 100 635.9 0.006468 μ = 0.4452

[24] 0.0001 100 706.2 0.006747 μ = 0.4452

[36] 0.0001 100 710.8 0.082348 ν0 =
0.000005,
k = 0

[37] 0.001 44 223.4 0.009944 μ = 1.2, PCG
tol. = 1%

[38] 0.001 434 81.2 0.072388 ξ = 0.9, PCG
tol. = 1%

[39] 0.0001 265686 37863.9 0.155345 γ = 0.89,
ηvisco = 0.1

PM 0.001 259 90.6 0.007486 μ = 0.88,
η = 0.1

PM 0.001 278 92.4 0.012060 μ = 1.00,
η = 0.1

fast in opposite directions. Usually, a fast movement triggers subsequent explosions
of nearby particles. Within the comparison experiments, the parameters for which an
explosion occurs are neglected. The best settings corresponding to stable behaviour
are thus selected.

The obtained results are summarized inTable6 and their velocity curves are shown
in Fig. 10 and Fig. 11. In these figures, the gray solid lines with dynamic viscosity
coefficients μ indicate the reference viscosity curve calculated by the analytic solu-
tion in (30).

In the following, conventional explicit and implicit viscosity methods are com-
pared separately.

The first four methods shown in Table6 are explicit viscosity methods. The vis-
cosity force is calculated according to the related viscosity equations at each time
step �t . Therefore the total iteration number is equal to t/�t . The classic viscosity
equation proposed in [20] requires the shortest time step, �t = 0.1 · 10−4 s. Both of
the viscosity equations proposed in [30] and in [24] produce very accurate results.
The viscosity equation proposed in [36] generates a zigzag velocity curve. Such a
zigzag velocity curve occurs because the calculation of the shear stress and the cal-
culation of its derivative are separated so that the particle updated by the shear stress
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Fig. 10 Couette flow experiments with various conventional viscosity methods and the proposed
one for simulating a physical fluid of viscosity 1 at simulation time 0.01 s, particle spacing of
1.25 · 10−3 m, and flow rest density ρ0 = 100. The relative data are shown in Table6

is different from the particle updated by the viscosity force. However, the overall
pattern of the velocity curve is similar to the one of the analytic solution.

The following three viscosity methods shown in Table6 are categorized into
implicit viscosity methods. They update their velocities iteratively so that the rela-
tion equation about viscosity for all the fluid particles is solved. Therefore, viscosity
diffusion can occur within a time step, and these implicit viscosity methods usually
workwell with relatively long time steps. In the comparison experiment, the viscosity
algorithm proposed in [37] has recorded the fewest iterations among the conventional
methods. The viscosity algorithm proposed in [38] has finished the simulation with
the shortest running time, while the velocity curve is somewhat different from the
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Fig. 11 Couette flow experiments with various conventional viscosity methods and the proposed
one for simulating a physical fluid of viscosity 1.0 at simulation time t = 0.01 s, particle spacing
r = 0.00125m, and flow rest density ρ0 = 100. Relative data are shown in Table 6

one of the analytic solution. The viscosity algorithm in [39] has also shown a zigzag
curve, with reasons similar to the ones mentioned above.

The method proposed in this paper can work with a long time-step �t = 10−3 s.
The time ratio between the real-time to simulation time of the proposed approach
ranked second among the compared viscosity methods. Even though the best time
performance is recorded by the viscosity method proposed in [38], the proposed
method has higher accuracy. Moreover, it has been appreciated that the proposed
method is more stable when there is a change in the viscosity parameter. Based on
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these results, it is possible to affirm that the proposed viscosity is comparable to the
existing viscosity methods regarding accuracy, speed, and stability.

5.5 Additional Simulations

Two further simulations are presented. The former is about free-falls of several vis-
cous fluids (water, honey, ketchup, and shortening) over a bunny sculpture. The
dynamic viscosity coefficients of these fluids are μ = 8.94 × 10−4, 2−10, 50−100,
and ≈ 250, respectively. The following parameters have been considered to simu-
late these fluids, having in mind the above range μ = 0.0, 5.0, 70.0, and 250.0.
The simulation scenes for each case study are shown in Fig. 12. Because the time
gap between the viscous fluids is big, i.e., the movement of shortening is languid
compared to other fluids, the best scene for each liquid is illustrated. With the help
of additional graphical treatment, it is possible to verify how the simulated case is
close to the real one.

The latter simulation is about the stretching of a bread dough. Doughs are a non-
Newtonian fluid, and they have complex properties including viscosity, elasticity,
and plasticity [56–58]. Hence, the proposed viscosity method for Newtonian fluids
does not perfectly match the simulation of a dough, but it can approximately simulate
its behaviour. Taking data from physical experiments, the shear stress of general a
dough has a relation equation τ = 298.76 + 5177 γ̇ 0.417 [57], where γ̇ is the strain
rate. The dynamic viscosity coefficientμ = 2500.0 has been selected for a simulation
with 6000 particles with spacing 1.25 · 10−3 m. Some results are shown in Fig. 13 at
time 0 s, 1.5 s, and 3 s, respectively. The dough is pushed, stretched, and torn: the
simulated behaviours are similar to a real dough.

Fig. 12 Simulations of viscous fluids: water μ = 8.94 × 10−4 (0.0), honey μ = 2 − 10 (5.0),
ketchup μ = 50 − 100 (70.0), and shortening μ ≈ 250 (250.0). The numbers indicate physical
dynamic viscosity coefficients and the numbers in parenthesis are the coefficients for these simula-
tions
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Fig. 13 Simulation of stretching of a bread dough with the dynamic viscosity coefficient μ =
2500.0 at simulation time (left) 0 s, (middle) 1.5 s, and (right) 3 s

6 Discussion and Conclusion

A novel implicit viscosity method based on the SPH formulation for incompressible
Newtonian fluids has been proposed. Such formulation can simulate wide-ranged
viscosity behaviours in continuous materials.

Concerning the contributions, the proposedmethod exhibits a shorter computation
time; it employs a physical viscosity coefficient, which helps predict the viscous
behaviour of the continuous material more accurately. The carried out simulations
show that the computational time is predictable. Finally, the accuracy is similar or
higher than conventional viscosity methods in modelling continuous and viscous
materials. Additionally, some graphical simulations show that the approach might
be suitable for graphics animations.
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