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Abstract The sliding primitive is a ubiquitous nonprehensile manipulation task,
generally performed by mechanical systems represented by underactuated nonlin-
ear models. A literature review of the recent works dealing with this task is first
introduced. Then, a particular nonprehensile manipulation task that has arisen in the
framework of the RoDyMan project, i.e., a pizza and peel mechanical system, is
addressed. A more in-depth study is presented for this system, including modelling,
control, and stability analysis. Finally, a discussion on the current achievements and
some directions for future work is provided. This chapter is based on the work pre-
sented in [1].

1 Brief Introduction

Nonprehensile manipulation through the sliding primitive is a critical control appli-
cation in the industry, particularly in the so-called part feeders. Accordingly, much
research has been carried out over the last years in various directions. For example,
optimisation in terms of the time required to positioning and orienting a part on a
plane is one of the most pursued objectives. Another direction of research deals with
the minimum number of actuators/degrees of freedom required to complete a given
sliding motion task.
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Table 1 Main symbols used in this chapter

Definition Symbol

World frame W
Peel (hand) frame H
Pizza (object) frame O
Position of the origin of the frame H in W oh =

[
xh yh zh

]T ∈ R
3

Position of the origin of the frame O in H oho =
[
xo yo zo

]T ∈ R
3

Rotation matrix of H with respect to W Rh ∈ SO(3)

Rotation matrix of O with respect to H Rh
o ∈ SO(3)

Rotation angle of H with respect to W around
xh

θ ∈ R

Rotation angle of O with respect to H around
zo

φ ∈ R

Mass of the peel mh > 0

Mass of the pizza mo > 0

First row-first column element of the peel’s
inertia matrix in H

Ihx ∈ R

Inertia matrix of the pizza in O Io ∈ R
3×3

First row-first column element of Io Iox ∈ R

Third row-third column element of Io Ioz ∈ R

Gravity acceleration g = 9.81 m/s2

Force applied over the peel along xh uh ∈ R

Torque applied around the axis xh τh ∈ R

Linear Coulomb friction coefficient between
the pizza and the peel

μo > 0

Angular Coulomb friction coefficient between
the pizza and the peel

μφ > 0

Desired pizza rotation speed φ̇d ∈ R

Controller gains ki ∈ R, with i = 1, . . . , 9

From a theoretical point of view, the specialists have made a great effort to under-
stand the dynamic effects of all the forces that interact during a sliding manipulation
task. In particular, it has been noticed that friction, both static and dynamic, plays a
fundamental role in this kind of task. Although there are very precise mechanisms in
the actuality that can efficiently move a given part to an arbitrary position and orien-
tation in the plane, most of them carry out this task employing open-loop controllers.

The advantages of the feedback control are well-known inside and outside the
control community, and thus there are some efforts to incorporate feedback for non-
prehensile slidingmanipulation. This chapter aims to design amodel-based feedback
controller for a specific sliding manipulation task, which consists of an unactuated
disk and a 2-DoF manipulator.
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First, a review of the current state of research is introduced, related to moving
parts through force fields generated by the friction forces arisingwhen two surfaces in
contact are in relativemotion. Then, a particular application of the sliding primitive in
the context of the RoDyMan project is described, i.e., a pizza and peel manipulation
system. Amathematical model is developed for this system, which in turn serves as a
base for designing the feedback control strategy. The notation employed throughout
this chapter is summarized in Table1 for the convenience of the reader.

2 State of the Art

Manipulating objects through a vibrating surface has been a handy application in the
industrial context, in particular for part feeders. This application has motivated much
research in the last decades. From a theoretical point of view, in the late 1990s, the
static equilibrium positions and orientations of two-dimensional parts under planar
vector fields are investigated in [2],without specifyingwhichmechanism is employed
to create these vector fields. On the other hand, the mechanisms to create such vector
fields are analysed in [3], where a pixel-wise array is proposed as a universal planar
mechanism. In this same work, the authors establish a theoretical tradeoff between
mechanical design and motion planning complexities. The universal parts feeders
are studied in [4] for non-symmetric parts in the philosophy of minimalist robotics,
i.e., the minimal configuration of resources required to solve a given task. Later, a
fascinating result is stated in [5]: a horizontal vibrating plate is a universal planar
manipulator, including the construction of the proposedmechanism. Thismechanism
is improved in [6], where the authors are capable of moving a specific part among
several others over the plate without moving the remaining ones. A variation of the
universal planar manipulator, similar to the one developed in [3], is constructed in [7]
by employing three orthogonal actuators. All the approaches mentioned above use
open-loop controllers.

To the best of the authors’ knowledge, one of the first attempts to introduce
feedback is presented in [8], where the authors utilise non-smooth analysis and
discontinuous control to stabilise an arbitrary position and orientation of the part.
Interestingly, in the samearticle, it is shown that the open-loop controllers are unstable
in the orientation coordinate near the static equilibrium points.

In [9], it is noted that the existing universal planar manipulators always generate a
force vector fieldwith zero divergence, which is a practical disadvantage. The authors
design a universal planar manipulator up to 6 DoFs that can generate force fields with
non-zero divergence to solve this problem. This mechanism is employed in [10] in
conjunction with a bang-bang control strategy, contrarily to the commonly employed
sinusoidal, to generate movement in the parts towards and away predefined nodal
lines. Later, the same authors proposed an optimal controller to generate a twist field
that can position and orient a part using their previously designed universal planar
manipulator. The effect of both dynamic and static friction on the velocity of the part
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is studied in [11], where a strategy is proposed to maximise the transport velocity of
the sliding parts.

A task-specific mechanism is designed in [12] to translate and rotate a disk to an
arbitrary position and orientation. The Neapolitan pizza chefs inspired this mecha-
nism, and the design philosophy is that of minimalist robotics. The authors analyse
several configurations for completing the task, arriving at the solution of a two-DoF
manipulator. The mechanism and the control strategy are further improved in [13].
The authors also show in [14] that the same strategy can be applied to rotate a
deformable disk. Later, the same authors proposed a model of the deformable object
in [15]. At the same time, they also find a correlation between the plate frequency
and different kinds of motion, i.e. sliding, walking, and running. Finally, in [16], the
same authors find that a deformable disk rotates faster than a rigid one. The effects
of the friction between the plate and the disk are investigated in the same article.

3 Pizza-Peel Manipulation Task

In this section, a dynamic model is first developed based on the Euler-Lagrange
equations of motion and some friction properties found in the literature. Then, a
feedback control strategy is designed to rotate the pizza. A stability analysis is later
presented to show the boundedness of both pizza and peel coordinates and a limit
cycle that rotates the pizza at the desired speed. Finally, a numerical simulation is
presented to illustrate the validity of the approach.

3.1 Dynamic Model

Recall the relevant frames as the world frame, W , the frame attached to the peel
(hand), H, and the frame attached to the pizza (object), O, as shown in Fig. 1. In
this chapter, a superscript is used to denote to which frame is the vector or matrix
referenced. When referred to W , this superscript is omitted. It is assumed that that

Fig. 1 Peel and pizza system
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the peel is driven by a robotic manipulator. The generalised coordinates for the peel
are chosen to be xh ∈ R and θ ∈ R. The generalised coordinates for the pizza are
chosen as xo, yo,φ ∈ R. Therefore, the configuration of the system is completely
described by the vector

q = [
xh θ xo yo φ

]T ∈ R
5. (1)

The pizza centre of mass with respect toW is given by

po = ph + Rhpho = [
xh + xo yocθ yosθ

]T
, (2)

where sx and cx are shorthand notations for sin(x) and cos(x), respectively. The
orientation of O with respect toW is described by the rotation matrix

Ro = RhRh
o . (3)

From this last matrix, one can obtain the pizza angular velocity vector ωo ∈ R
3

through the relation
Ṙo = S(ωo)Ro (4)

The kinetic energy, in terms of the generalised coordinates and velocities, is given
by

T (q, q̇) = 1

2
mhẋ

2
h + 1

2
Ihx θ̇

2 + 1

2
moṗTo ṗo + 1

2
ωT

oRoIoRT
o ωo. (5)

The potential energy can be computed by

U(q) = mogsθ yo . (6)

For obtaining the dynamic model, consider the Euler–Lagrange equations of motion

d

dt

(
∂L
∂q̇

)T

−
(

∂L
∂q

)T

= ξ (7)

with Lagrangian L(q, q̇) = T (q, q̇) − U(q) and the non-conservative and external
forces are represented by the vector

ξ = [
uh τθ fx fy τφ

]T
, (8)

where fx , fy , and τφ are explained below.
The Coulomb friction terms play an important role for this particular task. These

terms are defined as functions of the relative velocities between the peel and the pizza
ẋo and ẏo, and are described by [13]
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fx = mogμosign(ẋo) (9)

fy = mogμosign(ẏo) , (10)

where sign(x) is the function defined by

sign(x) =

⎧⎪⎨
⎪⎩

1 if x > 0

0 if x = 0

−1 if x < 0

.

As explained in [13], there is a torque over the zho axis produced by the movement of
the xh coordinate and the change of the pressure distribution which in turn is induced
by the acceleration on the θ coordinate and is given by

τφ = μφ Ioxsign(ẋo)θ̈. (11)

By Newton’s third law of motion, there must be a reaction torque acting on the θ
coordinate. However, this torque can be neglected by assuming that the inertia of the
peel is much bigger than that of the pizza.

A further simplification can be made if the linear and angular accelerations of the
peel are assumed to be the inputs, i.e.,

u �
[
uh uθ

]T �
[
ẍh θ̈

]T
. (12)

The following approximation of the sign function is made in order to employ con-
tinuous tools to analyse the system dynamics

sign(xi ) ≈ tanh(ki xi ) , (13)

where each ki > 0 is a constant. The objective is to control the pizza rotation speed,
for which the regulation error is defined as

˜̇φ = φ̇ − φ̇d ∈ R , (14)

Next, let the state space vector x ∈ R
9 be defined by

x = [
x1 x2 · · · x9

]T

�
[
xh θh xo yo ẋh θ̇h ẋo ẏo

˜̇φ
]T

. (15)

Thus, the system dynamics can be put in the form

ẋ = f(x) + g1u1 + g2(x)u2 , (16)
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where

f(x) =

⎡
⎢⎢⎢⎢⎣

x5
x6
x7
x8

f2(x)

⎤
⎥⎥⎥⎥⎦

g1 =
[
04
g12

]
g2(x) =

[
04

g22(x)

]
, (17)

with

f2(x) =

⎡
⎢⎢⎢⎢⎣

0
0

− bo
mo
x7 − gμo tanh(k7x7)

− bo
mo
x8 − gμo tanh(k8x8) − g sin(x2) + x4x26

0

⎤
⎥⎥⎥⎥⎦

(18)

g12 = [
1 0 −1 0 0

]T
(19)

g22(x) = [
0 1 0 0 −μφ (Iox/Ioz) tanh(k7x7)

]T
. (20)

By computing the Philip Hall basis [17, p. 344] with the vector fields f , g1,
and g2, it can be verified that the accessibility distribution is of dimension 9 in the
set D = {

x ∈ R
9 : θ̇ �= 0, ẋo �= 0, yo �= 0

}
, and therefore the system is accessible.

Furthermore, by computing the base

{
g1, g2,

[
g1, f

]
,
[
g2, f

]
,
[
g1, g2

]
,
[
f,

[
g1, f,

]]
,
[
f,

[
g2, f

]]
,[

f,
[
g1, g2

]]
,
[
g1,

[
g1, f

]]
,
[
g2,

[
g2, f

]]}

it can be proven that the system is strongly accessible inD [18, p. 180]. Nevertheless,
if the centripetal force term x4x26 is neglected, as it is commonly assumed in the related
literature (see for example [13, 19]), the strong accessibility condition is no longer ful-
filled, but only the accessibility one, restricted to Da = {

x ∈ R
9 : ẋo �= 0, ẏo �= 0

}
.

The following assumption is made in this work.

Assumption 1 The centrifugal force term x4x26 in (16) can be neglected.

This assumption is made to simplify the controller design and the stability analysis,
but the term x4x26 is kept for the numerical simulation of the system dynamics.

3.2 Controller Design and Stability Analysis

The control objective of this work is to induce a rotating movement on the pizza
dough at a desired angular speed φ̇d while keeping the remaining coordinates as
close to zero as possible. The contribution of this work is the design of a closed-loop
control law for achieving the task mentioned above. The first control law, intended
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for the linear motion of the peel, is composed of a feedforward term, very similar to
the reported open-loop controllers in the literature, plus a PD control to stabilise the
linear peel direction, that is

u1 = −k1x1 − k5x5 + ah sin (ωht) (21)

u2 = tanh(k7x7)Ioz
μφ Iox

k9x9 − k2x2 − k6x6 , (22)

with ah ∈ R and ωh > 0. The feedforward term ah sin (ωht) ensures the required
condition ẋo �= 0.On the other hand, the control law (22) is a PDcontrol that stabilises
the peel orientation, plus a nonlinear term employed to induce a rotation in the pizza
by exploiting the torque generated from (11).

In order to carry out a mathematical analysis, consider the closed-loop dynamics

ẋ1 =x5,

ẋ2 =x6,

ẋ3 =x7,

ẋ4 =x8,

ẋ5 = − k1x1 − k5x5 + ah sin (ωht) ,

ẋ6 = − k2x2 − k6x6 + Ioz
μφ Iox

tanh(k7x7)k9x9,

ẋ7 = − gμo tanh(k7x7) + k1x1 + k5x5 − ah sin (ωht) ,

ẋ8 = − gμo tanh(k8x8) − g sin(x2),

ẋ9 = − k9x9 tanh
2(k7x7) + μφ Iox

Ioz
tanh(k7x7) (k2x2 + k6x6) . (23)

The following analysis is developed considering that stationary state has reached.
For a more straightforward exposition of the following development, the closed-loop
dynamics is divided into the four subsystems shown in Fig. 2.

(1) The subsystem�1, comprised of the states x1 and x5, is a linear stable systemwith
arbitrarily chosen poles by means of the gains k1 and k5, under the effect of the
sinusoidal input ah sin(ωht). The amplitude of the states x1 and x5 in stationary

Fig. 2 Closed-loop
dynamics
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Fig. 3 Nonlinear feedback
loop

state are sinusoidals with frequency ωh and amplitude easily computed to be

|x1| = ah
D(k1, k5,ωh)

(24)

|x5| = ahωh

D(k1, k5,ωh)
, (25)

where

D(k1, k5,ωh) =
√(

k1 − ω2
h

)2 + k25ω
2
h . (26)

(2) The second subsystem, which corresponds to the states x3 and x7, is analysed by
employing the describing function method [20, p. 157], for which the configu-
ration shown in Fig. 3 is considered with u = −u1 and y = x7. To approximate
the nonlinearity in the �2 subsystem, the following describing function is used

gμo tanh(·) ≈ 4 gμo

πA(·) , (27)

where A(·) is the input amplitude of the nonlinear block signal, which in turn is
assumed to be sinusoidal. The approximate closed-loop transfer function of the
subsystem �2 is

y(s) =
(

πA(·)
sπA(·) + 4 gμo

)
u(s) = h(s)u(s) . (28)

The output of this system is the sum of a self-oscillatory response and a forced
response [21, Chap. 3]. The frequency of the self oscillatory component ωs is
obtained by solving the equation

jωs = 4 gμo

πA(·) . (29)

Because A(·) is a positive and real function, no unforced periodic response is
present. On the other hand, the gain for the closed-loop pseudo-transfer function
can be computed as
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|h(s)| = π2 A2(·)√
ω2
hπ

2 A2(·) + 16 g2μ2
o

, (30)

which has aminimum at zero and amaximum atω−1
h . The input to this subsystem

is u = −u1, which is a sinusoidal signal with zero mean, frequency ωh and
amplitude bounded by

|u1| ≤ ahω2
h

D(k1, k5,ωh)
. (31)

Therefore, the approximate steady state output of this subsystem is a sinusoidal
with zero mean given by

x7 = a7 sin (ωht + φ7) , (32)

where
|a7| ≤ ahωh

D(k1, k5,ωh)
(33)

and φ7 ∈ R is the phase shift given by

φ7 = atan2(−ahωh, 4 gμo/(πA(·))) , (34)

which can be bounded by −π/2 ≤ φ7 ≤ 0. The response in steady state for x3
can be approximated by

x3 = a3 sin (ωht + φ3) + c3 , (35)

where c3 ∈ R is a bias constant, φ3 ∈ R is a phase shift, and

|a3| ≤ ah
D(k1, k5,ωh)

. (36)

(3) For showing the stability properties of the subsystem �3, it is first recalled the
following [22, Theorem 10.3].

Theorem 1 Consider the system

ẋ = f(x) + εg(t, x, ε) . (37)

Suppose

• f , g, and their first partial derivatives with respect to x are continuous and bounded
for all (t, x, ε) ∈ [0,∞) × D0 × [−ε0, ε0], for every compact set D0 ⊂ D, where
D ⊂ R

n is a domain that contains the origin.
• The origin is an exponentially stable equilibrium point of the autonomous system
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ẋ = f(x) ; (38)

• g(t, x, ε) is T -periodic in t .

Then, there exist positive constants ε∗ and k such that for all |ε| < ε∗, Eq. (37) has a
unique T-periodic solution x̄(t, ε) with the property that ‖x̄(t, ε)‖ ≤ k|ε|. Moreover,
this solution is exponentially stable.

After employing the identity tanh2(x) = 1 − sech2(x), the dynamics of the sub-
system �3 can be written as Eq. (37) with x = [

x2 x6 x9
]T

and

f =
⎡
⎣

x6
−k2x2 − k6x6

−k9x9

⎤
⎦ (39)

g =

⎡
⎢⎢⎣

0
1

cμ
tanh(k7x7)k9x9

sech2(k7x7)k9x9 + cμ tanh(k7x7) (k2x2 + k6x6)

⎤
⎥⎥⎦ (40)

where cμ = μφ Iox I−1
oz , f(x) = f and g(t, x, ε) = g, with ε = 1. As proven in the item

2), the steady state solution for x7 is a T -periodic function of time t with period
T = 2π/ωh, and thus it is g in (40). It is not difficult to prove that the autonomous
subsystem ẋ = f(x), with f(x) defined in (39), is exponentially stable. By applying
Theorem 1 restricted to the regionD � {x : ‖x‖ ≤ ρ}, with ρ > 0, one can conclude
that the solution trajectories for the states x = [

x2 x6 x9
]T

are T -periodic functions of
time, and the states converge exponentially to these solutions. As stated in Theorem1,
the periodic solution is bounded by ‖x̄(t, ε)‖ ≤ k|ε|. Furthermore, from the theory of
linear bounded input-bounded output systems, the ultimate bound k|ε| can be made
arbitrarily small by making the gains k2, k6, and k9 arbitrarily large.

(4) For the fourth subsystem, consider again the block diagram depicted in Fig. 3,
with u = g sin(x2), y = x8, and w = x4. The transfer function employed to
approximate this system is given by (28). By the same arguments as the given
in the item 2), the solution trajectories for this system can be approximated by

x4 = a4 sin(ωht + φ4) + c4 (41)

x8 = a8 sin(ωht + φ8) , (42)

where c4 ∈ R is a bias constant and

a4 ≤ c8g

ω2
h

(43)

a8 ≤ c8g

ωh
, (44)
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with c8 = sup
t

(| sin(x2(t))|).
In summary, the above analysis shows that the approximate solutions of the closed-

loop system are bounded and periodic. Furthermore, the ultimate bound for the states
x2, x6, and x9 can be driven arbitrarily close to zero, which means that the peel will
be as close as desired to the horizontal position and that the pizza rotation speed will
be arbitrarily close to the desired value, i.e. φ̇ ≈ φ̇d .

3.3 Numerical Simulation

Anumerical simulation is proposed to validate the results of Sect. 3.1. The centrifugal
term x4x26 in (20) is kept for the simulation to test the robustness of the controller
design. The parameters considered for the system are displayed in Table2.

The parameters of the controller (21)–(22) were chosen empirically as ωh =
18 rad/s, ah = 2, k1 = 10, k2 = 10, k5 = 10, k6 = 50, k7 = 20, and k9 = 40. It is
considered that the sample time for the control loop is T = 5ms. The desired speed
for the pizza rotation is 1 rad/s in counter-clockwise direction.

The actual and desired rotation speed are shown in Fig. 4. It can be appreciated
that the actual speed is very close to the desired one in the steady-state.

Table 2 Parameters for the numerical simulation

Meaning Parameter Value

Pizza mass mo 0.25 kg

Pizza x-inertia moment Iox 0.01 kgm2

Pizza z-inertia moment Ioz 0.028 kgm2

Linear Coulomb friction
coefficient

μo 0.5

Rotational Coulomb friction
coefficient

μφ 0.5

Gravity acceleration constant g 9.81m/s2

Fig. 4 Pizza rotation speed: real (—), desired (—)
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Fig. 5 Phase portrait of xh
and ẋh: t = 0 s (∗),
0 < t ≤ 15 s (—),
t > 15 s (—)

The phase portrait of xh is shown in Fig. 5. In this plot and the following ones, a
blue marker indicates the initial point, a green line denotes the first 15 seconds (tran-
sient response), and a red line indicates the last 15 seconds (steady-state). It can be
appreciated that the xh and ẋh coordinates keep oscillating around zero. Indeed, the
amplitude of xh coincides with the one predicted by (24), i.e. , |xh | = 5.5 · 10−3 m.
On the other hand, the phase portrait for the θh coordinate is shown in Fig. 6. In

Fig. 6 Phase portrait of θh
and θ̇h: t = 0 s (∗),
0 < t ≤ 15 s (—),
t > 15 s (—)
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Fig. 7 Phase portrait of xp
and ẋp: t = 0 s (∗),
0 < t ≤ 15 s (—),
t > 15 s (—)

this figure, it can be appreciated that in the stationary state, this coordinate remains
oscillating very close to zero, following the stability analysis of Sect. 3.1.

The phase portrait for the xp coordinate is shown in Fig. 7. The predicted value
for the amplitude of the oscillations for xp computed in (36) has as an upper bound
|a3| ≤ 5.5 · 10−3, which is a very conservative one, as can be seen in the figure.
The reason behind this large margin is because we are taking the worst case for the
pseudo-transfer function gain in (30). Finally, the phase portrait for the yp coordinate
is displayed in Fig. 8. As it can be appreciated in the figure, the oscillation amplitude
of this coordinate can be made arbitrarily small, as it depends on the amplitude of
θh, which in turn can be made arbitrarily small. However, in this case, there is a
non-negligible bias term of about 6 · 10−3 m as stated in (41).

4 Discussion and Conclusion

In this chapter, an overview of the sliding manipulation primitive is first given, and
then a particular case was studied. The main intention was to underline the potential
of moving parts using sliding and the complication arising in the control design
and mathematical analysis. The literature review showed that although within the
nonprehensile manipulation tasks, the sliding primitive is one of the most commonly
used in the industry, most controllers are designed in an open-loop fashion, and they
lack a formal mathematical analysis. This chapter attempted to solve a particular
sliding manipulation task from the model-based feedback control perspective. By
employing a numerical simulation, the designed controller satisfies the desired task
with the stability properties given by the mathematical analysis carried out in this
chapter.
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Fig. 8 Phase portrait of yp
and ẏp: t = 0 s (∗),
0 < t ≤ 15 s (—),
t > 15 s (—)

Although there are some nice features of the designed controller over the existing
ones in the literature, it still has some room for improvement. In this direction, the
design could be improved to obtain asymptotic stability in all the coordinates or
practical asymptotic stability. The experimental evaluation of the controller is also
left as remaining work. Furthermore, the generalisation of the results presented in
this chapter to a more extensive set of sliding manipulation tasks is the ultimate goal
pursued in this work.
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