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Abstract In this chapter, the design of nonlinear controllers for non-prehensile
holonomic rolling system is reviewed.Ageneralmodel for the class of non-prehensile
rolling system considered in this work is first formulated. Then, both the input-state
linearisation approach and the interconnection and damping assignment passivity-
based control technique for rolling systems are addressed.The class of control designs
presented in this chapter make use of energy concepts and physical properties. Three
benchmark examples are used to illustrate the control design presented, namely the
disk-on-disk, the ball-and-beam, and the eccentric disk-on-disk This chapter is based
on the works presented in [1–3].

1 Brief Introduction

Themanipulation problemof nonprehensile planar rolling concerns tasks that involve
an actuated manipulator, which in this chapter is called the hand, and an object that
is manipulated without form or force closure grasps [4]. There exist many examples
of such robotic systems, the disk-on-disk [5, 6], the ball-and-beam [7, 8], and the
butterfly robot [9–11] among the benchmarks presented in the literature. In detail,
DoD is composed of an upper disk (object) that can roll without slipping on the
rim of a lower actuated disk (hand). The BnB consists of a beam (hand) actuated
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by a torque around its CoM together with a ball (object) rolling on it. The butterfly
robot is composed of an actuated butterfly-shaped link (hand) and a ball (object)
that can freely roll on the rim of the link. The control objective in these examples
is to balance the object and drive the hand towards the desired configuration. The
shared characteristic of these planar systems is the holonomic nature of the pure
rolling constraint. A constraint is said to be holonomic if it comes from an integrable
kinematic constraint that can be expressed in the so-called Pfaffian form [12]. The
integrability condition allows instantaneous motion in every admissible direction,
that is just one in the case of planar systems like the ones addressed in this chapter
(Table 1).

This chapter presents control designs for nonprehensile planar rolling systems
based on two techniques: input-state FLin and IDA-PBC. The designs are illustrated
on two benchmarks, namely the disk-on-disk and the ball-and-beam systems. In
addition, a different system, referred to as eccentric DoD, is used to demonstrate a
novel procedure to design IDA-PBC controllers. This last example is a variant of the
DoD system, where the center of rotation of the hand and its geometric center are
not coincident.

This chapter is organised as follows. First, a generalmodel of nonprehensile planar
rolling systems is presented. Then, a control design based on FLin is presented
to design controllers for nonprehensile planar rolling systems. In a subsequence
section, the IDA-PBC technique is used to design controllers for nonprehensile planar
rolling systems. In each section, the control designs are applied to all or some of the
benchmark examples. The chapter is wrapped up with discussion and conclusions.

2 Dynamic Model of Nonprehensile Holonomic Rolling
Manipulation Systems

In this section, the model of a general class of nonprehensile planar rolling systems
shown in Fig. 1 is formulated. Previous models are derived under the assumption that
the hand can only rotate around its center ofmass [2, 5, 6]. However, the development
in this section relax this assumption and allows the formulation of the dynamics of
a larger class of rolling tasks [3]. Consider the inertial world fixed frame W , which
is without loss of generality attached to the holder where the hand is actuated (i.e.,
the center of rotation of the hand).

At least locally, the shapes should be of class C2. Any point of the hand shape
is given by the chart chh(sh) = [

uh(sh) vh(sh)
]T ∈ R

2, expressed with respect to H,

while any point of the object shape is given by coo(so) = [
uo(so) vo(so)

]T ∈ R
2,

expressed with respect to O. Notice that sh increases counterclockwise along the
hand, while so increases clockwise along the object.With this choice, the pure rolling
assumption is ṡh = ṡo. Without loss of generality, the frames W and H coincide at
θh = 0, the point sh = 0 is at the intersection between the vertical (gravitational)
axis of W and the hand shape (i.e., ch(0) = [

0 vh(0)
]T

in W), and thus sh = so at



Holonomic Rolling Nonprehensile Manipulation Primitive 131

Table 1 Main symbols used in this chapter

Definition Symbol

Frame attached to the CoM of the hand H
Frame attached to the CoM of the object O
Angle of the hand in W θh ∈ R

Position of H in W ph(θh) ∈ R
2

Position of O in W po ∈ R
2

Angle of the object in W θo ∈ R

Arclength parameter for the hand sh ∈ R

Arclength parameter for the object so ∈ R

Rotation of H with respect to W R(θh) ∈ SO(2)

Rotation of O with respect to W R(θo) ∈ SO(2)

Configuration vector q =
[
q1 q2

]T ∈ R
2

Mass matrix M(q) =
[
m11(q) m12(q)

m12(q) m22(q)

]

∈ R
2×2

Coriolis matrix C(q, q̇) =
[
c11 c12
c21 c22

]

∈ R
2×2

Gravity vector g(q) =
[
g1(q) g2(q)

]T ∈ R
2

Inertia of the hand Ih ∈ R

Mass of the hand mh > 0

Inertia of the object Io ∈ R

Mass of the object mo > 0

Gravity acceleration g = 9.81 m/s2

Selection vector e=
[
0 1

]T ∈ R
2

Momentum vector p = M(q)q̇ ∈ R
n

Hand torque applied at the hand’s center of
rotation

τh ∈ R

Hand acceleration ah ∈ R

Radius of the actuated disk (DoD and eccentric
DoD setups)

ρh > 0

Radius of the upper disk (DoD setup and
eccentric DoD setups) and radius of the rolling
ball (BnB setup)

ρ > 0

Distance between the beam’s CoM and its
surface where the ball rolls (BnB setup)

dh > 0

Hamiltonian function H : R4 → R

Desired Hamiltonian function Hd : R4 → R

Desired mass matrix Md (q) ∈ R
2×2
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Fig. 1 A general
nonprehensile planar rolling
manipulation system with the
center of rotation of the hand
(indicated by the × symbol)
not corresponding to its
center of mass. The world
fixed frame W is in red. The
hand frame H and the object
frame O, in green and blue,
respectively, are placed at
their respective CoM

all times during rolling. Therefore, the contact location will be specified only by sh
throughout the remainder of the paper.As the first assumption, the hand and the object
maintain pure rolling contact for all time. The arclength parametrization implies the
property ‖ch′

h ‖ = 1, with the symbol ′ indicating the derivative with respect to the
parameter sh . The same holds for coo(sh). At the contact point chh(sh), the tangent
vector to the shapes is expressed as th(sh) = ch′

h ∈ R
2 forming an angle φh(sh) =

atan2(v′
h(sh), u

′
h(sh)) in H. The same tangent can be expressed with respect to O

with an angle φo(sh) = atan2(v′
o(sh), u

′
o(sh)). The signed curvatures of the shapes

are defined as: κh(sh) = φ′
h(sh) = u′

h(sh)v
′′
h (sh) − u′′

h(sh)v
′
h(sh), κo(sh) = φ′

o(sh) =
u′
o(sh)v

′′
o (sh) − u′′

o(sh)v
′
o(sh). The relative curvature at the contact point is given by

κr (sh) = κh(sh) − κo(sh). (1)

Notice that κh(sh) > 0 and κo(sh) < 0 denote convexity at the contact point for the
hand and the object, respectively. Hence, κr (sh) > 0 guarantees a single contact point
at least locally [6]. The following constraint expresses the angle of the tangent th(sh)
with respect to W: θh + φh(sh) = θo + φo(sh). Therefore, taking into account (1),
the following relations hold

θo = θh + φh(sh) − φo(sh), (2a)

θ̇o = θ̇h + κr (sh)ṡh . (2b)

Assuming that R(θ) ∈ SO(2) is the rotation matrix in the 2D space, notice that the

relation Ṙ(θ) = R(θ̄)θ̇ holds with θ̄ = θ + π

2
. The position of the CoM of the hand

inW is denoted byph(θh) = [
uw(θh) vw(θh)

]T
. The coincidence between the contact

points on both the hand and the object is expressed by ph(θh) + R(θh)chh(sh) = po +
R(θo)coo(sh), yielding to the equation po = ph(θh) + R(θh)chh(sh) − R(θo)coo(sh),

and, consequently, ṗo = γ (q)θ̇h + η(q)ṡh = [
γ (q) η(q)

]
q̇, with q = [

θh sh
]T

and
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γ = p�
h + R(θ̄h)chh − R(θ̄o)coo, (3a)

η = R(θh)ch′
h − R(θo)co′o − κrR(θ̄o)coo, (3b)

in which dependencies have been dropped, while (2b) is included and (2a) has to be
plugged in. The symbol � indicates the derivative with respect to θh . For this class of
systems the kinetic energy is given by

T = 1

2

(
Ih θ̇

2
h + mh ṗT

h (θh)ṗh(θh) + moṗT
o ṗo + Ioθ̇

2
o

) = 1

2
pTM−1(q)p,

where the elements of the mass matrix are given bym11(q) = Ih + Io + mhp�T
h p�

h +
moγ

T (q)γ (q), m12(q) = Ioκr (sh) + moγ (q)Tη(q), and m22(q) = Ioκ2
r (sh) +

moη(q)Tη(q). The potential energy is, instead, given by

V (q) = geT2 (mopo(q) + mhph(q)). (4)

Given the kinetic and potential energy functions, then the dynamics of a mechanical
system can be readily derived using the Euler-Lagrange equations or equivalently
the Hamilton canonical equation of motion [13].

3 Input-State Feedback Linearisation

The scope of this section is to find and apply a general diffeomorphism to achieve
an input-state FLin of the whole dynamics. Such state transformation renders the
system in the so-called normal form (i.e., a chain of integrators) without internal
dynamics. Given some assumptions on the shapes of both the object and the hand,
EFL is employed to stabilize the system.

For a brief mathematical background regarding input-state linearisation and dif-
ferential flatness, please see [2].

3.1 Hypotheses on the Shapes and Input-State Linearisation

Having in mind the derivation in Sect. 2, the dynamic model is derived through
the Euler-Lagrange formalism. The so-called Lagrange function is given by L =
T − V . The dynamic model equations are then given by

d

dt

∂L
∂ q̇i

− ∂L
∂qi

= τi , with

i = 1, 2 and τi the associated generalized force acting on the i th generalized
coordinate. Therefore, by computing the Lagrange equations and considering the
Christoffel symbols of the first type [12], the dynamic model can be written as
M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , where τ = [

τh 0
]T

represents the generalized input
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force, g(q) =
(

∂V(q)

∂q

)T

, and C(q, q̇) is a suitable matrix whose generic element

is given by

ci j (q, q̇) = 1

2

2∑

k=1

(
∂mi j (q)

∂qk
+ ∂mik(q)

∂q j
− ∂m jk(q)

∂qi

)
q̇k, (5)

with i, j = 1, 2. By neglecting dependencies, the dynamic model can be written in
the following extended form

m11θ̈h + m12s̈h + c11θ̇h + c12ṡh + g1 = τh, (6a)

m12θ̈h + m22s̈h + c21θ̇h + c22ṡh + g2 = 0. (6b)

During experimentation, when highly-geared harmonic drive plus DC motors are
present, the hand’s angular acceleration ismore convenient than the hand’s torque [6].
It is thus suitable to rewrite (6) with θ̈h = ah as input

θ̈h = ah, (7a)

s̈h = −m−1
22 (m12ah + c21θ̇h + c22ṡh + g2), (7b)

where dependencies have been neglected. The equation relating τh and ah is given
by

τh = ξ(q, q̇) + σ(q)ah, (8)

with ξ(q, q̇) = g1 + c11θ̇h + c12ṡh − m12

m22
(g2 + c21θ̇h + c22ṡh) and σ(q) = m11 −

m2
12

m22
.

Assumption 3.1 The Coriolis terms c21(q, q̇) and c22(q, q̇) are equal to zero.

Remark 3.1 Looking at (5), Assumption 3.1 is verified when termsm12 = m21 and
m22 do not depend on q, and whenm11 depends only on θh . Looking at the particular
expressions ofmi j , this means that κr has to be constant, i.e. κ ′

r = 0, the combination
of the products γ (q)T η(q) and η(q)Tη(q) do not depend on q, and the product
γ (q)T γ (q) depends only on θh . Considering (3) and the expressions of κh(sh) and
κo(sh), the aforementioned properties are thus governed by the shapes of both the
hand and the object.

Assumption 3.1 simplifies (7) as follows

θ̈h = ah, (9a)

s̈h = − 1

m22
(m12ah + g2(q)). (9b)
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By indicating the state of the system as x = [
x1 x2 x3 x4

]T = [
θh θ̇h sh ṡh

]T ∈ R
4,

(9) can be written in the affine state-space form ẋ = f(x) + b(x)u, with u = ah and

f(x) =
[
x2 0 x4 −g2(x)

m22

]T

∈ R
4, (10a)

b =
[
0 1 0 −m12

m22

]T

∈ R
4. (10b)

In order to checkwhether (9) is input-state FLin, the controllabilitymatrixT(x) =[
b adfb ad2f b ad3f b

] ∈ R
4×4 has to be invertible in a certain region�, and the set given

by the first three columns of T(x) has to be involutive. Taking into account (10), the
detailed expression of the controllability matrix is

T(x) =

⎡

⎢⎢⎢⎢
⎣

0 −1 0 0
1 0 0 0

0
m21

m22
0 t34

−m21

b22
0 t43 t44

⎤

⎥⎥⎥⎥
⎦

, (11)

with t34 = 1

m22

∂g2(x)
∂x1

− m12

m2
22

∂g2(x)
∂x3

, t43 = m12

m2
22

∂g2(x)
∂x3

− 1

m22

∂g2(x)
∂x1

, and t44 =

x4
m12

m22

∂2g2(x)

∂x23
− x2

m22

∂2g2(x)

∂x21
. Defining the region � =

{
x ∈ R

4 : ∂g2(x)
∂x1

�= m12

m22

∂g2(x)
∂x3

}
, it is possible to prove thatT(x) in (11) ismade by

linearly independent columns: the first three of them build an involutive set (proofs
are omitted for brevity). The system (9) is then input-state FLin in �.

To bring (9) in the following normal form

{
żi = zi+1

żn = v
, (12)

with i = 1, . . . , n − 1, and v ∈ R and zi ∈ R a new input and state variable, respec-
tively, a diffeomorphism

z = [
z1 z2 · · · zn

]T = φ(x) = [
z1 L f z1 . . . Ln−1

f z1
]T

(13)

has to be found. Hence, in order to compute the first component z1, the following
equations
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∂z1
∂x

adifb = 0, (14a)

∂z1
∂x

adn−1
f b �= 0, (14b)

with i = 0, . . . , n − 2, must hold for the vector fields (10). In particular, looking

at the expression of the first three columns of T(x), condition (14a) yields
∂z1
∂x2

−
m12

m22

∂z1
∂x4

= 0,
m12

m22

∂z1
∂x3

− ∂z1
∂x1

= 0, and
∂z1
∂x4

t43 = 0. The solution to this system is

then given by z1 = m12

m22
x1 + x3. It is easy to verify that such a choice for z1 also

satisfies (14b). Therefore, the complete diffeomorphism is given by

φ(x) =

⎡

⎢⎢
⎣

z1
z2
z3
z4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

y
ẏ
ÿ
y(3)

⎤

⎥⎥
⎦ =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

m12

m22
x1 + x3

m12

m22
x2 + x4

−g2(x)
m22

− 1

m22

(
∂g2(x)
∂x1

x2 + ∂g2(x)
∂x3

x4

)

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (15)

where y( j) is the j th-order derivative, with j ≥ 3. The input transformation ah =
α(x) + β(x)v finally renders (9) in the normal form (12), with

α(x) = −

(
∂2g2(x)

∂x21
x2 − g2(x)

m22

∂g2(x)
∂x3

+ ∂2g2(x)

∂x23
x4

)

(
∂g2(x)
∂x1

− m12

m22

∂g2(x)
∂x3

) , (16a)

β(x) = −m22

(
∂g2(x)
∂x1

− m12

m22

∂g2(x)
∂x3

)−1

. (16b)

This is the core result since, under Assumption 3.1, a general diffeomorphism is
found to change a nonprehensile 2D rolling manipulation system into a normal form
where simple linear controllers can be applied.

Therefore, in general, any suitable approach can be employed to control the nor-
mal form (12). The EFL technique [14] is here considered. In detail, a change of
coordinates is applied to (9)–(15). To get the normal form, the EFL technique does
not use the feedback transformation ah = α(x) + β(x)v, but ah = α(x�) + β(x�)v,
where x� is the desired state1 (in feedforward). The new virtual input v is instead
designed as an extended PIDn−1 plus a feedforward action

1 Eventually retrieved from z� through φ−1.
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v = z�
4 +

4∑

i=0

ki ei , (17a)

e0 =
∫ t

o
e1(τ )dτ, (17b)

ei = z�
i − zi , (17c)

with ki positive gains such that the resulting characteristic polynomial is Hurwitz.

3.2 Case Studies

3.2.1 Disk-on-disk

This case study considers the balancing of a disk free to roll on an actuated disk.
Referring to Fig. 2, the shape of the hand, i.e. the actuated disk, is parametrized

by chh(sh) = ρh

[
− sin

sh
ρh

cos
sh
ρh

]T

. The upper disk’s shape is parametrized by

coo(sh) = −ρo

[
sin

sh
ρo

cos
sh
ρo

]T

. Considering (1), the relative curvature is given by

κr = ρh + ρo

ρhρo
. The upper disk angular velocity is given by θ̇o = θ̇h + κr ṡh . The vec-

tors γ (q) and η(q) are computed like in (3): γ (q) = −(ρh + ρo)[
cos

(
θh + sh

ρh

)
sin

(
θh + sh

ρh

)]T

, and η(q)= − ρoκr

[
cos

(
θh + sh

ρh

)
sin

(
θh + sh

ρh

)]T

.

Therefore, the parameters of the DoD dynamic model are m11=Ih + Io + mo(ρh +
ρo)

2,m12=m21 = Ioκr + mo
(ρh + ρo)

2

ρh
,m22 = Ioκ2

r + moρ
2
oκ

2
r , c11 = c12 = c21 =

Fig. 2 A representation of
the DoD system. In red the
world fixed frame W . In
green the hand frame H,
while in blue the object
frame O, placed at the
respective CoMs
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c22 = 0, g1 = −mog(ρh + ρo) sin

(
θh + sh

ρh

)
and g2 = −mogρoκr sin

(
θh + sh

ρh

)
.

Notice that the quantity θh + sh
ρh

is the angle of the object’s CoM with respect to the

vertical axis ofW . It is possible to verify that the DoD dynamic model fully verifies
Assumption 3.1. Hence, considering the acceleration ah of the actuated disk as input,
theDoDdynamics can bewritten as in (9)with τh as in (8). The affine state space form

assumes the following vector fields (10) f(x) =
⎡

⎣
x2 0 x4

mogρo sin

(
x1 + x3

ρh

)

Ioκr + moρ2
oκr

⎤

⎦

T

and b =
[
0 1 0 −moρ

2
o + moρhρo + Io

κr (moρ2
o + Io)

]T

. Computing the matrix T(x) as in (11),

it is possible to verify that the approximate dynamic model is input-state linearizable

in the region � =
{
x ∈ R

4 : cos
(
x1 + x3

ρh

)
�= 0 ⇒ |x1 + x3

ρh
| <

π

2

}
. Notice that

such a region is not restrictive because, with no bound on other states, � covers all
practical situations since outside it the disk falls down from the hand. Finally, the
diffeomorphism (15) is

φ(x) =
[
m12

m22
x1 + x3

m12

m22
x2 + x4

mogρo sin

(
x1 + x3

ρh

)

Ioκr + moρ2
oκr

mogρoκr

(
x2 + x4

ρh

)
cos

(
x1 + x3

ρh

)

b22

⎤

⎦

T

,

with

α(x) =
sin

(
x1 + x3

ρh

)
x2 −

(
mogρoκr

b22ρh
sin

(
x1 + x3

ρh

)
+ x4

ρ2
h

)
cos

(
x1 + x3

ρh

)

(
1 − b12

b22ρh

)
cos

(
x1 + x3

ρh

)

and β(x) = m22

(
mogρoκr

(
1 − m12

m22ρh

)
cos

(
x1 + x3

ρ3

))−1

. The control is again

performed with the EFL technique described in Sect. 3.1.

Remark 3.2 Notice that in this case study the only possibility of balancing is with

the object directly above the hand’s CoM, i.e. θh + sh
ρh

= 0. As noticed in [6], any

other balancingposition leads to constant angular acceleration resulting in unbounded
velocities. The differential flatness loses thus some sense for the disk on disk.

Looking at φ(x), stabilizing the origin z = 04 is equivalent to stabilizing x = 04
and then x1 + x3

ρh
= 0. However, notice that through the following further change of
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coordinates z̄ =
[
z1 −

(
m12 − m22ρh

m22
θ�
h

)
z2 z3 z4

]T

∈ R
4 it is possible to balance

the object with θh at a desired constant angle θ�
h = x�

1 . It is easy to verify that such
additional diffeomorphism does not change the normal form (12) expressed now in
terms of z̄. With some algebra, it is possible to show that stabilizing the origin z̄ = 04
yields x1 = x�

1 , x1 + x3
ρh

= 0 and x2 = x4 = 0.

The input-state FLin plus the EFL controller are employed in [2] on a real-
hardware DoD device.

3.2.2 Ball-and-beam

Referring to Fig. 3, the beam can rotate around its center of mass while the
ball can only roll along the beam. The shape of the hand, i.e., the beam, is
parametrized through chh(sh) = [−sh dh

]T
. The ball’s shape is parametrized by

coo(sh) = −ρo

[
sin

sh
ρo

cos
sh
ρo

]T

. Considering (1), the signed curvatures of the beam

and the ball are κh = 0 and κo = ρ−1
o , respectively. The relative curvature is thus

given by κr = ρ−1
o . The ball’s angular velocity is instead given by (2b) θ̇o = θ̇h + ṡh

ρo
.

In order to compute the mass matrix of the system, the vectors γ (q) and η(q)

in (3) are γ (q) = [−(ρo + dh) cos θh + sh sin θh −(ρo + dh) sin θh − sh cos θh
]T

,

and η(q) = [− cos(θh) − sin(θh)
]T
. Therefore, the parameters of the BnB dynamic

model are m11 = Ih + Io + mod2
h + 2modhρo + moρ

2
o + mos2h , m12 = m21 = Io

ρo
+

modh + moρo, m22 = Io
ρ2
o

+ mo, c11 = moshṡh , c12 = mosh θ̇h , c21 = mosh θ̇h , c22 =
0, g1 = −mog((dh + ρo) sin θh + sh cos θh) and g2 = −mog sin θh . Considering the
acceleration ah of the beam as input, the system can be written as in (7), with τh as
in (8). However, it is possible to verify that Assumption 3.1 is not verified for the ball
and beam case since c21 �= 0. Even if κr is constant and the products γ (q)T η(q) and
η(q)Tη(q) do not depend on q, the product γ (q)T γ (q) does not depend only on θh ,
but it depends on the arclength parameter. Therefore, the ball and beam system is not

Fig. 3 A representation of
the BnB system. In red the
world fixed frame W . In
green the hand frame H,
while in blue the object
frame O, placed at the
respective CoMs
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input-state linearizable. This result is well known in the literature, nevertheless, in
many cases it is possible to approximate c21 to zero [7]. This is true for small veloc-
ities of the beam, small masses of the ball and not so long beam. Hence, by putting
c21 = 0, only for control design purposes, it is possible to write the approximated ball
and beam system like in (9). The affine state space form of the approximated ball and

beam system has the following vector fields (10) f(x) =
[
x2 0 x4

moρ
2
o g sin x1

Io + moρ2
o

]T

and b =
[
0 1 0 −ρo

moρ
2
o + dhmoρo + Io
Io + moρ2

o

]T

. Computing thematrixT(x) as in (11),

it is possible to verify that the approximate dynamic model is input-state FLin in the

region � =
{
x ∈ R

4 : cos θh �= 0 ⇒ |θh | <
π

2

}
. Notice that such a region is not

restrictive because, with no bound on other states, � covers all practical situations
since outside it the ball falls down from the hand. Finally, it is possible to compute the

diffeomorphism (15) φ(x) =
[
m12

m22
x1 + x3

m12

m22
x2 + x4

mog

b22
sinx1

mogx2
m22

cosx1

]T

,

yielding the normal form

ż1 = z2, (18a)

ż2 = z3, (18b)

ż3 = z4, (18c)

ż4 = β(x)|−1
x=φ−1(z)

(
ah − α(x)|x=φ−1(z)

)
, (18d)

with α(x) = mogx2 tan x1 and β(x) = m22

mog cos x1
from (16). The control is then

performed with the EFL technique described in Sect. 3.1.
The designed controller for the BnB system is tested in simulation within [2],

showing acceptable performance despite the employed assumption to make the BnB
system as input-state feedback linearisable.

4 Passivity-Based Approach

4.1 Background on Passivity-Based Control

4.1.1 Port-Hamiltonian Systems

The pH framework allowsmodeling ofmechanical systems including the information
about the energy transfer explicitly. The canonical Hamiltonian equations of motion
are [

q̇
ṗ

]
=

[
O2 I2
−I2 O2

]
∇H(q,p) +

[
02

gi (q)

]
u, (19)
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where gi (q) ∈ R
2 is the input mapping vector. The function H is the Hamiltonian,

which represents the total energy (kinetic plus potential) stored in the system, having
the form

H(q,p) = 1

2
pTM−1(q)p + V (q).

A full development of the Hamilton canonical equations of motion can be found in
[13].

4.1.2 Interconnection and Damping Assignment

The stabilisation problem of the dynamics (19) to the desired equilibrium (q,p) =
(q�, 02) is achieved using the IDA-PBC by assigning the target dynamics to the
closed loop [8]

[
q̇
ṗ

]
=

[
O2 M−1(q)Md(q)

−Md(q)M−1(q) J2(q,p)

]
∇Hd(q,p), (20)

where J2(q,p) ∈ R
2×2 is the desired interconnectionmatrix. The desired total energy

function is given by

Hd(q,p) = 1

2
pTM−1

d (q)p + Vd(q), (21)

with Vd(q) ∈ R the desired potential energy function. Then, (q�, 02) will be a stable
equilibrium configuration of the closed-loop (20) if

C.1 Md(q) is symmetric and positive definite;
C.2 q� = argmin Vd(q);
C.3 J2(q,p) is skew-symmetric.

The stabilization of the desired equilibrium is achieved by identifying the class of
Hamiltonian systems that can be obtained via feedback. The conditions under which
this feedback law exists are the matching conditions, i.e., matching the original
dynamic system (19) and the target dynamic system (20):

[
O2 I2
−I2 O2

]
∇H +

[
02

gi (q)

]
u =

[
02 M−1Md

−MdM−1 J2

]
∇Hd , (22)

where the dependency of the functions on their argument has been drop to simplify
the notation. The first line in (22) is straightforwardly satisfied, while the second line
in (22) corresponds to the following set of PDEs

g⊥
i (q)

(∇q H(q,p) − Md(q)M−1(q)∇q Hd(q,p) + J2(q,p)M−1
d (q)p

) = 0, (23)
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where g⊥
i (q) ∈ R

1×2 is the full rank left annihilator of gi (q), which satisfies
g⊥
i (q)gi (q) = 0. The PDEs (23) can be separated into the two subsets of PDEs,
namely

g⊥
i

(
∇q (pTM−1(q)p) − Md (q)M−1(q)∇q (pTM−1

d (q)p) + 2J2(q,p)M−1
d (q)p

)
= 0,

(24)

g⊥
i

(∇qV (q) − Md(q)M−1(q)∇qVd(q)
) = 0, (25)

where (24) and (25) are the kinetic and the potential energy matching equations,
respectively. By solving (24)–(25) for Md(q), Vd(q) and J2(q,p), subject to C.1,
C.2, and C.3, the energy shaping control is given by

ues = (gTi (q)gi (q))−1gTi (q)(∇q H(q,p) − Md (q)M−1(q)∇q Hd (q,p) + J2(q,p)M−1
d (q)p).

(26)
It is worth remarking that not every desiredMd(q), Vd(q) and J2(q,p) can be chosen,
but only those solving (24)–(25) subject to the conditions C.1, C.2, and C.3.

By applying (26) to theHamiltonian dynamics (19), the closed-loop target dynam-
ics (20) is obtained. Damping aimed at achieving asymptotic stability is then injected
through

udi = −KvgTi (q)∇pHd(q,p), (27)

where Kv > 0 is a gain. The damping injection (27) and the energy shaping con-
trol (26) are then assembled to generate the IDA-PBC

u = ues + udi . (28)

Therefore, through this adjustment, the closed-loop dynamics (20) takes the form

[
q̇
ṗ

]
=

[
O2 M−1(q)Md(q)

−Md(q)M−1(q) J2(q,p) − Rd(q)

]
∇Hd(q,p), (29)

where Rd(q) = gi (q)KvgTi (q) ∈ R
2×2 is the positive-(semi)definite dissipation

matrix [8, 15].
The stability of desired equilibrium is analysed by using the desired Hamilto-

nian (21) as a Lyapunov function and computing its time derivative along the trajec-
tories of the closed-loop dynamics (29) as follows

Ḣd(q,p) = ∇pH
T
d ṗ + ∇q H

T
d q̇

= −pTM−1
d gi KvgTi M

−1
d p ≤ 0,

which ensures stability of the desired equilibrium. Asymptotic stability follows from
LaSalle’s invariance principle [16], or equivalently from detectability of the signal
yd = KvgTi M

−1
d p [17].
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4.1.3 Integral Control

In many cases, the presence of disturbances deteriorates the control system’s perfor-
mance, or in the worst case, will produce instabilities. A typical scenario in practice
is to consider constant disturbances, which account for slow-varying perturbations.
The dynamics of the closed-loop (29) under the action of a matched disturbance is

[
q̇
ṗ

]
=

[
O2 M−1(q)Md(q)

−Md(q)M−1(q) J2(q,p) − Rd(q)

]
∇Hd(q,p) +

[
02

gi (q)

]
(v + δd),

(30)
where δd ∈ R is the matched constant disturbance considered here and v ∈ R is a
control input that will be used to compensate for the unknown disturbance. To obtain
the dynamics (30), the control u = ues + udi + v and the disturbance δd are used
in (19). Notice that the disturbance shifts the equilibrium of the closed loop, defined
by zero velocities (equivalently p = 02), from the desired equilibrium q� to a new
equilibrium q̄, which is the solution of

−Md(q̄)M(q̄)−1∇qVd(q̄) + gi (q̄)δd = 02.

This shows that the controller does not achieve the control objective in the presence
of constant disturbances since q will not reach the desired value at the steady-state
as desired. This motivates the implementation of an outer-loop controller to reject
constant unknown disturbances.

In this section, the methodology to design integral-based controllers and enhance
the robustness of the energy shaping controller reported in [1] will be introduced. The
fundamental idea proposed in [1] is to find a dynamic control law v(q,p, ζ ), where
ζ ∈ R is the state of the controller, and a change of coordinates such that the closed-
loop dynamics that include the controller state expressed in the new coordinates can
bewritten as a port-Hamiltonian system, thus stability is ensured. The proposed target
port-Hamiltonian dynamics in new coordinates z ∈ R

5, where the state vector has
been augmented by adding the controller state. The target port-Hamiltonian system
is ⎡

⎣
ż1
ż2
ż3

⎤

⎦ =
⎡

⎣
−�1 M−1Md −�2

−MdM−1 −KvgigTi −gi K3

�T
2 K3gTi −�3

⎤

⎦

⎡

⎣
∇z1Hz

∇z2Hz

∇z3Hz

⎤

⎦ , (31)

with Hamiltonian

Hz(z) = 1

2
zT2 M

−1
d z2 + Vz(z1) + 1

2
KI (z3 − z�

3)
2, (32)

where
Vz(z1) = Vd(q)

∣∣∣
q=z1

, (33)

and the gains are equal to
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�1 � K1M−1gigTi M
−1,

�2 � K2M−1gi ,

�3 � K2K3gTi M
−1
d gi ,

z�
3 � K−1

I

(
KvK2gTi M

−1
d gi + K3

)−1
δd ,

where the new coordinates z = ψ(q,p, ζ ) are obtained by the state transformation

z1 = q, (34)

z2 = p + K1gigTi M
−1∇Vd(q) + K2KI (ζ − z�

3)gi , (35)

z3 = ζ, (36)

with Kv > 0, KI > 0, K1 > 0, K3 > 0 and K2 = (
gTi M

−1
d gi

)−1
.

Notice that Hamiltonian Hz in (32) has a minimum at z� = (q�, 0n, z�
3), which is

the desired equilibrium. Therefore, we look for a control law that render the extended
closed-loop dynamics in the form (31) to ensure stability of the equilibrium z�. As
shown in [1], the control law is obtained bymatching the dynamics (30) and (31), and
using the change of coordinates (34)–(36). It is shown that, under a few assumptions
on the matrices M,Md and gTi , the integral controller takes the form

v(q,p, ζ ) = −
[
KvK1gTi M

−1
d gigTi M

−1 + K1g�
i Ṁ

−1

+K2KI

(
K2 + K3gTi M

−1
d gi K1

)
gTi M

−1

]
∇Vd

−
[
K1gTi M

−1∇2VdM−1 + (gTi gi )
−1gTi J2M

−1
d

+K2KI K3gTi M
−1
d

]
p

−
(
KvK2gTi M

−1
d gi + K3

)
KI ζ, (37)

and

ζ̇ =
(
K2gTi M

−1 + K3K1gTi M
−1
d gigTi M

−1
)
∇Vd

+K3gTi M
−1
d p. (38)

The controller, composed by the control law (37) and the integrator (38), does not
require the information of the constant disturbance δd , as desired. By construction,
the dynamics (30) in a closed loop with the integral action controller (37)–(38) can
be written in the form (31). The Hamiltonian form of the full closed-loop dynamics
ensures the stability of the desired equilibrium. Indeed, the Hamiltonian in (32) has
a minimum at the desired equilibrium z� and it qualifies as a Lyapunov function for
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the dynamics (31). The time derivative of Hz is

Ḣz = −K1∇T Vd(z1)M−1gigTi M
−1∇Vz − KvzT2 M

−1
d gigTi M

−1
d z2

−KI�3KI (z3 − z�
3)

2

≤ 0,

which ensures stability. Asymptotic stability follows using LaSalle arguments and
verifying that themaximum invariant set included inS = {(z1, z2, z3)|gTi M−1∇Vz =
0, gTi M

−1
d z2 = 0, z3 = z�

3} is the desired equilibrium z�.

4.2 Control Design for Nonprehensile Systems

In this section, the IDA-PBC method is used to design controllers for the DoD, the
BnB, and the eccentric DoD. These examples show how a passivity-based framework
canbeused to solve the control problemof nonprehensile planar rollingmanipulation.

4.3 Case Studies

4.3.1 Disk on Disk

DynamicModel.TheDoD is a rolling-balancing system shown inFig. 2. The dynam-
ics of the DoD can be described as displayed in Sect. 3.2.1. However, now we derive
the dynamics in the pH form. Besides, we write the dynamics in terms of the angle
of the hand θh and the deviation angle of object respect to the upright position

ϕ = θh + sh
ρh

. By overwriting the configuration vector q as q = [
θh ϕ

]T
, the DoD

model takes the following pH form

[
q̇
ṗ

]
=

[
O2 I2
−I2 O2

] [∇q H
∇pH

]
+

[
02
gi

]
u, (39)

where gi = [
1 0

]T
. The Hamiltonian function is

H(q,p) = 1

2
pT M−1p + V (q). (40)

The elements of the mass matrixM(q) differ from those in Sect. 3.2.1 because of the
new definition of q. Therefore, the elements ofM(q) are given bym11 = ρ2

hmo + Ih ,
m12 = −moρh(ρo + ρh) and m22 = 2mo(ρo + ρh)

2. The expression of the potential
energy is instead V (q) = V0 cos(ϕ), with V0 = mog(ρo + ρh).
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IDA-PBC Controller. The objective is to design a IDA-PBC controller for the DoD
system that stabilises the point q∗ = (θ∗

h , 0), where θ∗
h is the desired equilibrium

for angle of the hand. This problem is solved by using energy shaping and damping
injection as described in Sect. 4.1.2. That is, the control design aims to find a func-
tion Vd and matrices Md and J2 that solve the KE-ME and PE-ME, (24) and (25)
respectively. Thus, the energy shaping control is obtained from (26) and the damping
injection control from (27).

Since the mass matrixM(q) of the DoD is constant, i.e., it does not depend on the
coordinates q, the desired mass matrixMd is selected as a constant matrix as follows

Md =
[
a11 a12
a12 a22

]

where a11, a12 and a22 are free constant parameters. To simplify the notation, we
note

MdM−1 = −
[
γ δ

α β

]
.

Then, the PE-ME (25) is as follows

[
0 1

] { [
0

−V0 sin(ϕ)

]
+

[
γ δ

α β

] [∇θh Vd

∇ϕVd

] }
= 0

−V0 sin(ϕ) + α ∇θh Vd + β ∇ϕVd = 0.

(41)

Asolutionof the partial differential equation (41) forVd , obtainedbyusing a symbolic
software (e.g. Mathematica, Maple), is

Vd(q) = − 1

β
V0 cos(ϕ) + k2

2

(
θh − α

β
ϕ − k1

)2

(42)

where k1, k2 ∈ R are free constant parameters to be selected such that the potential
function has a minimum at the desired equilibrium.

Since Md was chosen as a constant matrix, it is clear that the KE-ME (24) is
satisfied by selecting J2(q,p) = O2. The energy shaping design also requires that
Md is positive definite and that Vd has an isolatedminimumat the desired equilibrium
q�.

The minimum of Vd is assigned by ensuring that the Jaccobian zero when it is
evaluated at q� and Hessian is positive when it is evaluated at q�. These conditions
are verified through

R-I) ∇qVd(q)
∣
∣
q=q∗ = 0 ⇔

⎡

⎢
⎢
⎣

k2

(
θh − α

β
ϕ − k1

)

V0

β
sin(ϕ) − k2α

β

(
θh − α

β
ϕ − k1

)

⎤

⎥
⎥
⎦

∣∣∣∣
∣∣∣∣
q=q∗

= 0

which is satisfied if k1 = θ∗
h .
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Fig. 4 Desired potential energy for the DoD case study with the pH formalism. In this picture
θh = θ

R-II) ∇2
q Vd(q)

∣∣
q=q∗ > 0 ⇔

⎡

⎢
⎣

k2 −k2
α

β

−k2
α

β

V0

β
cos(ϕ) + k2

(
α

β

)2

⎤

⎥
⎦

∣
∣∣∣∣∣
∣
q=q∗

> 0

which is satisfied provided that k2 > 0 and β > 0 (equivalently a12m12 −
a22m11 > 0).

The positive definiteness of Md is ensured if a11 > 0 and a11a22 − a212 > 0.
Figure4 shows that effectively the potential energy has a minimum at the desired

equilibrium (θ�
h , ϕ

�) = (0, 0) (the parameter values used to create the figure satisfy
all the requirements R-I and R-II above).

Finally, the control law is computed from (26) to (27) as follows

u = ues + udi =
− δ

β
∇ϕV + k2

(
γβ − δα

β

) (
θh − α

β
ϕ − θ�

h

)
+ Kv β σ

(
θ̇h − α

β
ϕ̇

)
(43)

where σ = m11m22 − m2
12

a11a22 − a212
and the free parameters a11, a12, a22, k2 and Kv should

satisfy
a11 > 0, k2 > 0, Kv > 0,

a11a22 − a212 > 0,

a12m12 − a22m11 > 0.

Thus, the dynamics of the DoD system (39) in closed loop with the controller (43)
can be written in the pH form
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[
q̇
ṗ

]
=

[
O2 M−1Md

−MdM−1 −KvgigTi

] [∇q Hd

∇pHd

]
(44)

with

Hd = 1

2
pTM−1

d p + Vd(q).

Asymptotic stability of the desired equilibrium follows directly from the fact that the
closed-loop dynamics has a pH form and the fact that the output yd = KvgTi M

−1
d p

is dectable [17].

IntegralController. In this section, the dynamics (44) of theDoD in closed loopwith
the IDA-PBC controller subject to disturbances is considered. Under this scenario,
the dynamics is described as

[
q̇
ṗ

]
=

[
O2 M−1Md

−MdM−1 −KvgigTi

] [∇q Hd

∇pHd

]
+

[
02
gi

]
(v + δd), (45)

where v is the input used for integral control and δd is the disturbance. As shown in
Sect. 4.1.3 the control law (37)–(38), specialised for the DoD case, compensates for
the action of the disturbance and it preserves the stability of the desired equilibrium
q�. The IDA-PBC controller and the integral action controller were tested in both
simulation and experimental setup. The results can be found in [1]. The results
showed satisfactory performance of the closed loop and smooth time history of the
control inputs and variables of the system.

4.3.2 Ball and Beam

Dynamic Model. The BnB system shown in Fig. 3 is another rolling-balancing
benchmark addressed to test the controller addressed in this section. Now, we come
back to the original definition of the configuration vector q as in Sect. 3.2.2, that
is q = [

θh sh
]T
. In these coordinates, the BnB model takes the pH form (39) with

gi = [
1 0

]T
, the potential function given by

V (q) = mog[(dh + ρo) cos(θh) − sh sin(θh)], (46)

and the mass matrix elements as in Sect. 3.2.2.

IDA-PBC Controller. The control objective for the BnB system is to stabilize the
equilibriumq� = (0, s�

h), where s
�
h ∈ R is the desired position of the ball on the beam.

The control design follows the procedure proposed in [3] to compute energy shaping
controllers for planar rolling manipulations, that is for systems in the form (19).

The procedure in [3] can be summarised as follows. Consider the vector of coor-
dinates q = [

q1 q2
]T

and the desired mass matrix parametrized as follows
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Md(q) = �

[
a11(q) a12(q)

a12(q) a22(q)

]
, (47)

where � = m11(q)m22(q) − m2
12(q) > 0, which allows to write the PE-ME (25) as

eT2
(∇qV (q) − �(q)∇qVd(q)

) = 0, (48)

with

�(q) =
[
a11m22 − a12m12 a12m11 − a11m12

a12m22 − a22m12 a22m11 − a12m12

]
. (49)

The PDE (48) can be equivalently written as

∇q2V (q) + α(q)∇q1Vd(q) + β(q)∇q2Vd(q) = 0. (50)

with

α(q) = a22(q, )m12(q) − a12(q)m22(q), (51)

β(q) = a12(q, )m12(q) − a22(q)m11(q). (52)

Then, the scalar functions α(q, c1) and β(q, c1) can be chosen to obtain a suitable
solution of (50) such that Vd(q) satisfies C.2. Once α(q) and β(q) are selected, the
entries a12(q) and a22(q) of the desired mass matrix are computed as

a12(q) = −α(q)m11(q) + β(q)m12(q)

�
, (53)

a22(q) = −α(q)m12(q) + β(q)m22(q)

�
. (54)

By this construction, the desired mass matrix is symmetric, and thus the condition
C.1 is fulfilled if and only if a11(q) > 0 and a11(q)a22(q) − a212(q) > 0. Therefore,
by selecting a11 as

a11(q) = kaa212(q)

a22(q, c1)
> 0, (55)

where ka > 1 is a constant, the positiveness ofMd is satisfied if

α(q)m12(q) + β(q)m22(q) < 0. (56)

If this condition cannot be satisfied, then it is necessary to re-design α(q) and β(q)

and find another solution for (50). Finally, the desired mass matrix takes the form

Md(q) =
⎡

⎣−ka(αm11 + βm12)
2

(αm12 + βm22)
−(αm11 + βm12)

−(αm11 + βm12) −(αm12 + βm22)

⎤

⎦ . (57)
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In addition, the degree of freedom given by the matrix J2(q,p) is used to satisfy the
KE-ME (24). The interconnection matrix J2 has the following structure

J2(q,p) =
[

0 j2(q,p)

− j2(q,p) 0

]
, (58)

with j2(q,p) a scalar function. Since eT2 J2(q,p) = − j2(q,p)eT1 , then the KE-
ME (24) can be expressed as

eT2 ∇q (pTM−1(q)p) − eT2 Md (q)M−1(q)∇q (pTM−1
d (q)p) − 2 j2(q,p)eT1 M

−1
d (q)p = 0.

(59)
The scalar function j2(q,p) can be from (59) as follows

j2(q,p) =
(
2eT1 M

−1
d (q)p

)−1 (
eT2 ∇q (pTM−1(q)p) − eT2 Md (q)M−1(q)∇q (pTM

−1
d (q)p)

)
,

(60)
and the IDA-PBC law can be finally computed from (26).

Notice that the method used to satisfy the KE-ME, inspired by [18], provides
a solution that is not always well-defined. Close to the equilibrium, the numerator
of (60), which has a quadratic dependence on p, tends towards zero faster than the
denominator, which depends linearly on p, which would avoid singularities. Despite
this, a study about the denominator of the relation (60) reveals that, far from the
equilibrium, it might be nullified if the equality (α(q)m12(q) + β(q)m22(q))p1 =
(α(q)m11(q) + β(q)m12(q))p2 holds. This situation is addressed in practice by sat-
urating the denominator of (60) when its absolute value is smaller than a suitable
threshold. The simplification of the design proposed here is at the expense of the
presence of possible singular solutions of (60), but these can always be numerically
managed in the controller implementation. Recently, this problemhas been overcome
in [19].

For the BnB case study, the functions α(q) and β(q) are selected as α(θh) =
ksinc(θh) and β(θh) = −sinc(θh), where k ∈ R is a constant parameter. Notice that
the sinc(·) function is analytic everywhere. Assuming the domain of interest as
−π < θh < π , then 0 < sinc(θh) < 1. Using these functions in (50), the PE-ME
becomes

− mog sin(θh) + ksinc(θh)∇θh Vd(q) − sinc(θh)∇sh Vd(q) = 0. (61)

A solution of (61) is given by

Vd(q) = mogθ2
h

2k
+ f

(
θh + ksh

k

)
, (62)

where f (·) is a function to be selected to satisfy C.2. Then, f (·) is chosen such that
the desired potential function (62) results as follows
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Vd(q) = mogθ2
h

2k
− cos

(
k f

k

[
θh + k

(
sh − s�

h

)]
)

, (63)

with k f ∈ R a constant parameter. The Jacobian of Vd(q) is computed to verify that
q� is a minimum of the desired potential function (63), which yields

∇Vd(q) =

⎡

⎢⎢
⎣

mog

k
θh + k f

k
sin

(
k f

k
[θh + k(sh − s�

h)]
)

k f sin

(
k f

k
[θh + k(sh − s�

h)]
)

⎤

⎥⎥
⎦ , (64)

where it is possible to verify that ∇Vd(q) is zero at q�. Then, the corresponding
Hessian is given by

∇2Vd(q) =

⎡

⎢⎢
⎣

mog

k
+ k2f

k2
cosφ

k2f
k

cosφ

k2f
k

cosφ k2f cosφ

⎤

⎥⎥
⎦ , (65)

with φ = k f

k

[
θh + k

(
sh − s�

h

)]
. It is possible to verify that ∇2Vd(q) is positive

definite at the desired equilibrium q� if k > 0 and k f �= 0. The conditions on the
Jacobian and the Hessian of Vd(q) ensure that the desired potential function Vd(q)

has a minimum at the desired equilibrium q�.
In addition, the inequality (56) must be satisfied to ensure the positiveness ofMd .

Using the selected functions α(q) and β(q), the inequality (56) becomes

km12 − m22 < 0, (66)

which has the straightforward solution k <
m22

m12
. Since

m22

m12
> 0, the parameter k

has to be selected to satisfy 0 < k <
m22

m12
.

Finally, the entries a12(q) and a22(q) of Md(q) are computed from (53) to (54)
as follows

a12(q) = − sinc(θh)(km11(sh) − m12)

�
, (67)

a22(q) = − sinc(θh)(km12 − m22)

�
,

while a11(q) is computed as in (55). Therefore, the desired mass matrix is

Md(q) =
⎡

⎣ −ka (km11(sh) − m12)
2

(km12 − m22)
−sinc(θh) (km11(sh) − m12)

−sinc(θh) (km11(sh) − m12) −sinc(θh)(km12 − m22)

⎤

⎦ . (68)
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Fig. 5 Desired potential function and coordinate trajectory for the BnB case study with the pH
formalism

Fig. 6 Desired potential function and coordinate trajectory for the BnB case study with the pH
formalism

The KE-ME (24) is satisfied using (60), and the IDA-PBC control law is computed
from (28).

Figures5 and 6 show the desired potential function (63) and a trajectory from a
particular initial condition. As expected, the trajectory converges to the minimum,
that is the desired equilibrium q�. An exhaustive simulation study of the closed loop
has been presented in [3].
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4.3.3 Eccentric Disk-on-disk

Dynamic Model. The eccentric DoD system is represented in Fig. 7 [3]. In this
system, the hand is the actuated bottom disk and the object is the non-actuated
disk that sits on top. With respect to the classic DoD seen before, the hand’s
CoM and the actuation point are at a distance λ > 0. It can be shown that the

mass matrix elements are m11 = cb1 + cb2 cos

(
sh
ρh

)
, m12 = cb3 + cb4 cos

(
sh
ρh

)
,

and m22 = Ioκ2
r + moρ

2
oκ

2
r , where cb1 = Ih + Io + λ2(mh + mo) + mo(ρh + ρo)

2,

cb2 = 2λmo(ρh + ρo), cb3 = Ioκr + mo
(ρh+ρo)

2

ρh
, and cb4 = moλρoκr . The potential

energy (4) for the eccentric DoD is

V (q) = g(mo(ρh + ρo) cos

(
θh + sh

ρh

)
+ (mo + mh)λ cos(θh)). (69)

A detailed derivation of this model can be found in [3].

IDA-PBC Controller. The control objective is to balance the object on top of the
hand. In this configuration, the CoM of the hand can be placed above or below its
center of actuation. In both cases it is possible, under a suitable change of coordinates,
to express the desired equilibrium point as q� = (0, 0) in both cases.

The controller for the eccentric DoD is computed using the same procedure
used for the BnB in Sect. 4.3.2. Thus, the functions α(q) and β(q) are selected

as α(θh, sh) = sinc

(
θh + sh

ρh

)
and β(θh, sh, k) = ksinc

(
θh + sh

ρh

)
, where k ∈ R

is a constant parameter. The function sinc(·) satisfies 0 < sinc

(
θh + sh

ρh

)
< 1 in

the domain of interest−π <

(
θh + sh

ρh

)
< π . Using the selected function α(q) and

β(q) in (50) yields

Fig. 7 A schematic of the
eccentric DoD system



154 A. Donaire et al.

− cv sin

(
θh + sh

ρh

)
+ sinc

(
θh + sh

ρh

)
∇θh Vd (q) + ksinc

(
θh + sh

ρh

)
∇sh Vd (q) = 0,

(70)

where cv = mog
ρh + ρo

ρh
is a positive constant parameter. A solution for (70) is given

by

Vd(q) = cvθ
2
h (ρh − k) + 2cvθhsh

2ρh
+ f (sh − kθh), (71)

where f (·) is a function to be chosen. To satisfy C.2, f (·) is selected such that the
desired potential function (71) becomes

Vd(q) = cvθ
2
h (ρh − k) + 2cvθhsh

2ρh
+ k f (sh − kθh)

2, (72)

where k f ∈ R is a controller gain.
To verify that q� is a minimum for (72), the Jacobian and the Hessian of the

potential function are computed. The Jacobian is

∇Vd(q) =
⎡

⎢
⎣

cv(−kθh + θhρh + sh)

ρh
+ 2kk f (kθh − sh)

cvθh

ρh
− 2kk f θh + 2k f sh

⎤

⎥
⎦ , (73)

where it is possible to verify that ∇Vd(q) is zero at q�. Also, the Hessian of Vd(q) is

∇2Vd(q) =
⎡

⎢
⎣
cv + 2k2k f − cvk

ρh
−2kk f + cv

ρh

−2kk f + cv

ρh
2k f

⎤

⎥
⎦ . (74)

It is possible to verify that ∇2Vd(q) is positive definite at the desired equilibrium q�

if k > −ρh and k f >
cv

2ρh(k + ρh)
. These conditions on the Jacobian and Hessian

of the desired potential function ensure that Vd(q) has a minimum at the desired
equilibrium q�.

Following the design procedure sketched out in Sect. 4.3.2, the inequality (56)
must be solved. Using the functions α(q) and β(q) selected above, equation (56)
yields

m12(sh) + km22 < 0, (75)

which has the straightforward solution k < −m12(sh)

m22
. Since it is possible to verify

that ρh >
(cb3 − cb4)

m22
and together with the previous condition k > −ρh , then the

gain k must satisfy −ρh < k < −cb3 − cb4
m22

.
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Finally, the entries of Md(q) are computed as in (53) and (54)

a12(q) = −
sinc

(
θh + sh

ρh

)
(m11(sh) + km12(sh))

�
, (76)

a22(q) = −
sinc

(
θh + sh

ρh

)
(m12(sh) + km22)

�
,

while a11(q) is taken as in (55). The desired mass matrix is thus positive definite and
it can be written as

Md(q) =

⎡

⎢⎢
⎣

�a11 −(m11 + km12)sinc

(
θh + sh

ρh

)

−(m11 + km12)sinc

(
θh + sh

ρh

)
−(m12 + km22sinc

(
θh + sh

ρh

)
)

⎤

⎥⎥
⎦ .

(77)
The KE-ME (24) is satisfied using (60), while the IDA-PBC control law is computed
from (28). The controller has been implemented in an real setup and the experiments
show a satisfactory performance of the closed loop. The results can be found in [3].

5 Discussion and Conclusion

This chapter investigated the control design for nonprehensile planar rolling manip-
ulation using FLin techniques, PBC methods, and pH theory. The dynamic model of
nonprehensile holonomic rolling manipulation systems was presented in its general
form and then used for control design purposes.

The first class of controllers presented in this chapter was obtained using FLin,
thus requiring the cancellation of all system nonlinearities. Upon certain conditions
given by the shapes of the hand the object in contact with it, it has been possible to
found a diffeomorphism rendering the original system in a normal form (i.e., a chain
of integrators). Therefore, any linear technique can be, in principle, employed. In
this chapter, the EFL technique was employed on two benchmark systems: the DoD
and the BnB.

The second class of controllers developed in this chapter was designed using IDA-
PBC methods and pH dynamics. Two different designs were followed within this
framework. First, the classical IDA-PBC procedure to stabilise mechanical systems
was used to obtain a controller for the DoD. Also, an integral action controller
was added in the loop to robustify the control system against disturbances. It was
shown that the closed loop dynamics preserve the pH structure and thus its intrinsic
passivity properties. This design requires solving a set of PDEs, which results from
the so-called matching equation. To simplify solving PDEs, an alternative procedure
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was used to design the second class of controllers. This procedure was successfully
applied to the BnB and the eccentric DoD systems.

The effectiveness of the controllers presented in this chapter was verified by
simulations and experiments on real physical set-ups, and the results reported in [1–
3, 5]. These positive results show that the set of methods presented in this chapter
is suitable for controlling nonprehensile planar rolling manipulation systems and
provides a potential framework for the control design of general dynamic robotic
manipulation tasks. Future research will aim at the development of a framework for
a general class of dynamic manipulations.
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