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Abstract This chapter reviews the problem of nonholonomic rolling in nonprehen-
silemanipulation tasks through two challenging and illustrative examples: the robotic
hula-hoop and the ballbot system. The hula-hoop consists of an actuated stick and
an unactuated hoop. First, the corresponding kinematic model is derived. Second,
the dynamic model is derived through the Lagrange-D’Alembert equations. Then a
control strategy is designed to rotate the hoop at some desired constant speedwhereas
positioning it over a desired point on the stick surface. A stability analysis, which
guarantees ultimate boundedness of all signals of interest, is carried out. The ball-
bot is an underactuated and nonholonomic constrained mobile robot whose upward
equilibrium point must be stabilised by active controls. Coordinate-invariant equa-
tions of motion are derived for the ballbot. The linearised equations of motion are
then derived, followed by the detailed controllability analysis. Excluding the rotary
degree of freedom of the ball in the inertial vertical direction, the linear system turns
out to be controllable. It follows that the nonlinear system is locally controllable, and
a proportional-derivative type controller is designed to locally exponentially stabilise

A. Gutierrez-Giles
CECAv-UNAM, Av. Universidad 3000, Ciudad Universitaria, CDMX 04510, Mexico
e-mail: alejandro_giles@cecav.unam.mx

A. C. Satici
Boise State University, 1910 University Drive, Boise 83709, USA
e-mail: aykutsatici@boisestate.edu

A. Donaire
The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
e-mail: alejandro.donaire@newcastle.edu.eu

F. Ruggiero (B) · V. Lippiello · B. Siciliano
Department of Electrical Engineering and Information Technology, PRISMA Lab, CREATE
Consortium & University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
e-mail: fabio.ruggiero@unina.it

V. Lippiello
e-mail: vincenzo.lippiello@unina.it

B. Siciliano
e-mail: bruno.siciliano@unina.it

© Springer Nature Switzerland AG 2022
B. Siciliano and F. Ruggiero (eds.), Robot Dynamic Manipulation,
Springer Tracts in Advanced Robotics 144,
https://doi.org/10.1007/978-3-030-93290-9_7

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93290-9_7&domain=pdf
mailto:alejandro_giles@cecav.unam.mx
mailto:aykutsatici@boisestate.edu
mailto:alejandro.donaire@newcastle.edu.eu
mailto:fabio.ruggiero@unina.it
mailto:vincenzo.lippiello@unina.it
mailto:bruno.siciliano@unina.it
https://doi.org/10.1007/978-3-030-93290-9_7


160 A. Gutierrez-Giles et al.

the upward equilibrium point and the translation of the ball. Numerical simulations
for these two examples illustrate the effectiveness of the proposed methods. This
chapter is based on the works presented in [1–4].

1 Brief Introduction

In the previous chapter, the manipulation problem of nonprehensile planar rolling
systems has been addressed. In planar rolling systems, the kinematic constraint asso-
ciated with the pure rolling motion (only rolling, no sliding) is integrable. Therefore,
the system is holonomic. In this chapter, the focus is shifted towards 3D systems in
which the pure rolling constraint is not integrable. A system with a set of kinematic
constraints, expressed in the so-called Pfaffian form [5], in which at least one of these
constraints is not integrable is said to be a nonholonomic system. A nonholonomic
constraint implies that some motion directions are instantaneously not allowed.

Therefore, this chapter tackles controlling an object manipulated through non-
holonomic rolling motions without form or force closure grasps. The ball-on-plate
gives the most illustrative example of it [6]. The primary objective is to steer the free-
rolling sphere toward the desired position and/or orientation or along a desired path. It
is worth pointing out that most of the works addressing the ball-and-plate application
consider the prehensile case obtained by caging the sphere between two plates [7–9].
In such a configuration, one plate is actuated while the other one is fixed. Dismissing
the fixed plate, the ball-and-plate application is addressed as a nonprehensile rolling
manipulation system in which the sole supporting moving plate controls the ball.
Therefore, position control of a basketball on a plate is tackled in [10]. An analysis
of the kinematics of rolling, based on a coordinate-free approach, considering the
cases of either pure rolling or twist-rolling, is proposed in [11]. An extension of the
DoD to the 3D case is given by the stabilization of a ball free to roll on an actuated
sphere in full gravity [12, 13].

This chapter first presents a control design for the hula-hoop task, which belongs
to the nonholonomic rolling nonprehensile manipulation primitive. From a robotic
point of view, this canbe schematized throughahoop freely rolling aroundan actuated
pole. A first mathematical derivation was proposed in [14] without taking correctly
into account the nonholonomic constraints. This issue is overcome in [1], in which a
control approach without velocity measurement is proposed. A formal mathematical
analysis that guarantees ultimate boundedness of all coordinates is developed in [2].

Afterwards, this chapter addresses the control design for the ballbot. The ballbot
is an underactuated, nonholonomically constrained, mobile robot whose upward
equilibrium point has to be stabilised by active controls [3, 4]. The ballbot is thus a
spherical robot with a turret that is actively controlled on a plane. It is very similar
to the ball-on-plate problem but, in this case, the actuation is in the sphere and not
in the plate.
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The outline of the chapter shows then the two examples depicted above with
modelling, control design, and simulation results. Table1 collects the main symbols
used in the chapter.

2 The Hula-Hoop Problem

The task consists of spinning the hoop around a stick at some desired angular speed
while simultaneously driving the hoop to an arbitrarily desired point over the pole
surface. First, the kinematic model is derived. Second, the dynamic model is derived
through the Lagrange–D’Alembert equations. Then a control strategy is designed
to rotate the hoop at some desired constant speed whereas positioning it over a
desired point on the stick surface. A stability analysis, which guarantees ultimate
boundedness of all signals of interest, is carried out. Finally, numerical simulations
illustrate the effectiveness of the proposed method.

2.1 Contact Kinematics

A draw of the hoop and pole system considered in this work is shown in Fig. 1, where
the inertial, pole (hand), hoop (object), and contact Cartesian frames are displayed,
which in the subsequent are denoted by W , H, O, and C, respectively. A given
coordinate frame X consists of an origin vector ox ∈ R

3, and three orthonormal unit
vectors xx , yx , zx ∈ R

3. The contact frame C is defined as follows: oc is located at
the contact point, xc is in the line connecting the hoop centre with the contact point
and pointing outwards the pole, zc is normal to the hoop equatorial plane passing
through oc, and yc is chosen to form an orthonormal frame.

In this section, the following notation is adopted: v j
i means that the vector vi

is referenced to the j frame. When a vector or matrix is referenced to the world
coordinate frame the superscript (·)w is obviated.

The next coordinates are defined to describe the pole surface:

• θ ∈ R: an angle from one arbitrarily defined point on the pole surface to the contact
point, measured by taking zh as the rotation axis.

• zo > 0: a distance form the origin oh to the contact point over the zh axis.

Defining the vector αh = [
θ z0

]T ∈ R
2, the pole surface in local coordinates is

described by
ch(αh) = [

rhcθ rhsθ zo
]T ∈ R

3 , (1)

where cθ = cos(θ) and sθ = sin(θ). The tangent vectors are computed as
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Table 1 Main symbols used in this chapter (pole and hoop are referred to the hula hoop system,
ball and top are referred to the ballbot system)

Definition Symbol

Frame attached to the pole’s and ball’s CoM H
Frame attached to the hoop’s and top’s CoM O
Frame attached to the contact point between the hoop and
the pole

C

Radius of the pole and the ball rh > 0

Pole metric tensor Mh ∈ R
2×2

Pole curvature tensor Kh ∈ R
2×2

Pole torsion form Th ∈ R
1×2

Radius of the hoop lo > 0

Thickness of the hoop 2ro > 0

Hoop metric tensor Mo ∈ R
2×2

Hoop curvature tensor Ko ∈ R
2×2

Hoop torsion form To ∈ R
1×2

Relative curvature tensor K̃h ∈ R
2×2

Relative angular velocities between the contact frames ωx ,ωy inR

Pfaffian matrix Ac ∈ R
3×5

Generalised coordinates of the pole qh ∈ R
m

Position of the hoop’s centre in H pho ∈ R
3

Mass of the hoop mo > 0

Mass of the pole mh > 0

Gravity acceleration g � 9.81 m/s2

Hoop inertia tensor with respect to H Io ∈ R
3×3

Rotation of O with respect to W Rst ∈ SO(3)

Angular velocity of the hoop in W ωo ∈ R
3

Standard unit vectors e2 =
[
0 1 0

]T
, e3 =

[
0 0 1

]T

Distance from the ball’s CoM and the top’s CoM l > 0

Position of the ball with respect to W psb ∈ R
3

Angular velocity of the ball with respect to W ωsb ∈ R
3

Rotation of H with respect to W Rsb ∈ SO(3)

Angular velocity of the top with respect to W ωst ∈ R
3

Linear velocity of the top with respect to W vst ∈ R
3

Linear velocity of the ball with respect to W vsb ∈ R
3

Angular velocity of the top with respect to the ball ωbt ∈ R
3

Position of the top with respect to W pst ∈ R
3

Inertia tensor of the ball with respect to W Ib ∈ R
3×3

Inertia tensor of the top with respect to W It ∈ R
3×3

Mass of the ball mb > 0

Mass of the top mt > 0
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Fig. 1 Sketch of the pole and hoop system

chu = [−rhsθ rhcθ 0
]T ∈ R

3 (2)

chv
= [

0 0 1
]T ∈ R

3 . (3)

It can be easily verified that ‖chu‖ = rh and ‖chv
‖ = 1. The corresponding normal

vector is given by
nh = [

cθ sθ 0
]T ∈ R

3 , (4)

with partial derivatives

nhu = [−sθ cθ 0
]T ∈ R

3 (5)

nhv
= 03. (6)

The second-order partial derivatives of chu , necessary to compute the torsion, are

chuu = [−rhcθ −rhsθ 0
]T ∈ R

3 (7)

chuv
= 03. (8)

Therefore, following the definitions given in [15], the metric and curvature tensors
and the torsion form of the pole surface are

Mh =
[
rh 0
0 1

]
, Kh =

[
1/rh 0
0 0

]
, Th = [

0 0
]

.

On the other hand, the following local coordinates for describing the hoop surface
are defined:
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• γ ∈ R: an angle fromone arbitrarily defined point in the hoop surface to the contact
point measured by taking zo as the rotation axis.

• ψ ∈ R: an angle of the equatorial plane of the hoop over yc.

Collect αo = [
γ ψ

]T ∈ R
2 such that the hoop surface in local coordinates is

described by

co(αo) = [−(lo − rocψ)cγ (lo − rocψ)sγ −rosψ
]T ∈ R

3. (9)

Therefore, the corresponding tangent vectors are computed as

cou = [−(lo − rocψ)sγ (lo − rocψ)cγ 0
]T ∈ R

3 (10)

c fv = [
rocγsψ rosγsψ −rocψ

]T ∈ R
3 . (11)

In such case, ‖cou‖ = lo − rocψ and ‖cov
‖ = ro. The normal vector is given by

no = [−cγcψ −sγcψ −sψ
]T ∈ R

3 , (12)

with partial derivatives

nou = [
sγcψ −cγcψ 0

]T ∈ R
3 (13)

nov
= [

cγsψ sγsψ −cψ

]T ∈ R
3 . (14)

The second order partial derivatives of cou are

couu = [−(lo − rocψ)cγ −(lo − rocψ)sγ 0
]T ∈ R

3 (15)

couv
= [−rosγsψ rocγsψ 0

]T ∈ R
3 . (16)

Regarding the hoop’s surface, the metric and curvature tensors and the torsion form
are given by

Mo =
[
lo − rocψ 0

0 ro

]
, Ko =

[−cψ/
(
lo − rocψ

)
0

0 1/ro

]
,

To = [−sψ/
(
lo − rocψ

)
0
]

.

An additional coordinate, necessary to compute the contact kinematics, φ ∈ R is
the angle form chu to cou , measured over the xc axis. Thus, the relative curvature is
computed to be

K̃h = 1

rh

[
c2φ −sφcφ

−sφcφ s2φ

]
. (17)
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Now, by combining both surface geometric parameters, the Montana’s equations
in terms of the relative velocities between the contact frames, assuming a pure rolling,
are given by

[
γ̇

ψ̇

]
= 1

loc2φ − (rh + ro)cψ

[
rh + ros2φ

(lo − rocψ)sφcφ

rosφcφ
(lo − rocψ)c2φ − rhcψ

][−ωy
ωx

]
(18)

[
θ̇
żo

]
= 1

loc2φ − (rh + ro)cψ

[
(lo − rocψ)cφ

−(lo − rocψ)(rh + ro)sφ

rosφcψ
−rocφ

(
lo − (rh + ro)cψ

)
] [−ωy

ωx

]

(19)

φ̇ =
(rh + ros2φ)sψωy − rosφcφsψωx

loc2φ − (rh + ro)cψ
. (20)

Let the contact coordinates vector be defined by

qc = [
γ ψ θ zo φ

]T ∈ R
5. (21)

Thus, the kinematic equations (18)–(20) can be rewritten as

q̇c = g1ωx + g2ωy , (22)

where

g1 = 1

loc2φ − (ro + ro)cψ

⎡

⎢
⎢⎢⎢
⎣

rosφcφ

(lo − rocψ)c2φ − rocψ

rosφcψ

−rocφ

(
lo − (ro + ro)cψ

)

−rosφcφsψ

⎤

⎥
⎥⎥⎥
⎦

∈ R
5 (23)

g2 = 1

loc2φ − (ro + ro)cψ

⎡

⎢⎢
⎢⎢
⎣

−(ro + ros2φ)
−(lo − rocψ)sφcφ

−(lo − rocψ)cφ

(lo − rocψ)(ro + ro)sφ
(ro + ros2φ)sψ

⎤

⎥⎥
⎥⎥
⎦

∈ R
5. (24)

Assume that the hoop thickness can be neglected, i.e., ro = 0. Therefore, by
choosing a basis for the left null space ofG = [

g1 g2
]
, a set of Pffafian constraints [16,

p. 320] can be constructed as follows

Ac(qc)q̇c = 03 , (25)

where

Ac(qc) =
⎡

⎣
−locφ/ro 0 1 0 0

sψ 0 0 1 0
losφ 0 0 0 1

⎤

⎦ . (26)
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At this point, an arbitrary number of degrees of freedom for the pole is considered.
The generalised coordinates of the pole express its pose (position and orientation) in
the Cartesian space. As one of the goals of this work is to have the best controllability
propertieswith the least actuated coordinates, the configuration space for the polewill
be chosen after the controllability analysis given later in this section. Now, define the
vectors qr = [

γ ψ qh
]T ∈ R

m+2, qs = [
θ φ zo

]T ∈ R
3, and q = [

qr qs
]T ∈ R

m+5.
Then, the constraints (26) can be written as

Ar (q)q̇r + q̇s = 0 , (27)

where

Ar (q) =
⎡

⎣
−locφ/ro 0 0 · · · 0

sψ 0 0 · · · 0
losφ 0 0 · · · 0

⎤

⎦ . (28)

2.2 Dynamic Model

The vector pho can be expressed in terms of the generalised coordinates is expressed
as follows

pho =
⎡

⎣
−locθcψ + rocθ + losθsφsψ
rosθ − locψsθ − locθsφsψ

losψ + zo

⎤

⎦ . (29)

Given the expressions Io = diag
{
1
2mol2o ,

1
2mol2o ,mol2o

}
and

Ro =
⎡

⎣
cψcθ − sφsψsθ −cφsθ cθsψ + cψsφsθ
cθsφsψ + cψsθ cφcθ −cψcθsφ + sψsθ

−cφsψ sφ cφcψ

⎤

⎦ , (30)

the hoop angular velocity can be obtained from Rst through S(ωo) = ṘoRT
o , where

S(ωo) is a well–known skew symmetric matrix constructed from ωo. The angular
velocity can be computed from

ωo =
⎡

⎣
cθφ̇ − cφsθψ̇
sθφ̇ + cφcθψ̇

sφψ̇ + θ̇

⎤

⎦ . (31)

The Lagrange–d’Alembert equations, subject to the Pfaffian constraints above, are
given by

(
d

dt

∂L
∂q̇r

− ∂L
∂qr

− ϒr

)
− AT

r (q)

(
d

dt

∂L
∂q̇s

− ∂L
∂qs

)
= 0m+2 , (32)
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where

ϒr =
[
02
u

]
, (33)

with u ∈ R
m the vector of generalised forces acting on the pole andL ∈ R the system

Lagrangian available in [1].
The vectors q̇s and q̈s can be eliminated by following the procedure described

in [16, Chap. 6], which results in the following dynamic model

Bo(q)q̈o + co(q, q̇o) + To(q)q̈h = 0, (34a)

Bh(q)q̈h + ch(q, q̇o) + TT
o (q)q̈o = u , (34b)

where qo = [
γ ψ

]T ∈ R
2, Bo(q) ∈ R

2×2 is the inertia matrix of the hoop, Bh(q) ∈
R

m×m is the inertia matrix of the pole, co(q, q̇o) ∈ R
2 is the Coriolis term related to

hoop, ch(q, q̇o) ∈ R
m is the Coriols term related to the pole, and To(q) ∈ R

2×m is
the inertia coupling matrix whose effects are analysed below. Notice that Bo(q) is
always invertible. Thus, Eq. (34b) can be solved for q̈h and substituted into (34a) to
obtain

Mr (q)q̈o + cr (q, q̇o) = Tr (q)u , (35)

where

Mr (q) = Bo(q) − To(q)B−1
h (q)TT

o (q) (36)

cr (q, q̇o) = co(q, q̇o) − To(q)B−1
h (q)ch(q, q̇o) (37)

Tr (q) = −To(q)B−1
h (q) . (38)

The dynamic model (35) can be further simplified to obtain

q̈o = f(q, q̇o) + g(q)u , (39)

with the definitions f(q, q̇o) = −M−1
r (q)cr (q, q̇o), and g(q) = M−1

r (q)Tr (q). The
model (34) represents the dynamics of the hula-hoop system along with the nonholo-
nomic constraints (27), which are equivalent to

θ̇ = locφ

rh
γ̇ (40)

żo = −losφγ̇ (41)

φ̇ = −sψγ̇ . (42)

The inertial coupling matrix plays a crucial role for underactuated mechanical
systems. In the present case, if rank(To(q)) = 2,∀q, the underactuated system is
said to be strong inertially coupled [17]. Whenever the mechanical system is strong
inertially coupled, the Penrose’s right pseudo-inverse matrix
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T+
o = TT

o

(
ToTT

o

)−1
(43)

is well defined and the following orthogonal projection matrices can be constructed

Po = T+
o To ∈ R

m×m (44)

Qo = Im − Po ∈ R
m×m . (45)

Notice that Po projects every R
m-vector onto the rank space of To. Conversely, Qo

makes the projection into the null space of To. It is straightforward to verify that the
following relations hold: PoTT

o = TT
o ,ToPo = To,QoTT

o = O2×m , andToQo = O2.

2.2.1 Controllability Analysis

The controllability of the system (34a)–(34b) depends on the configuration of the
pole. Several configurations of interest, namely (i) two rotations (m = 2), (i i) three
translations (m = 3), (i i i) two rotations plus two translations (m = 4), and (iv) three
rotations plus three translations (m = 6), have been analysed in this work with the
aid of a symbolic computing software (Wolfram Mathematica1). The correspond-
ing dynamic model is strong inertially coupled for all the configurations mentioned
above. Therefore, the main motivation for the comparison is to find the configura-
tion with fewer degrees of freedom having the best controllability properties. The
conclusions below are valid for all the cases mentioned.

For the model (34a)–(34b) the gravity torque of the underactuated part is not con-
stant. The inertia matrix depends on the unactuated variables, so it never satisfies the
structural necessary and sufficient conditions given in [18], and the nonholonomic
constraints are of the second-order kind. As a consequence, the dynamic system is
strongly accessible [19]. That means that, in principle, every possible configuration
can be reached. However, this strong accessibility property “is far from being suf-
ficient for the existence of a feedback control which asymptotically stabilises the
underactuated system” [19]. For the system (34a)–(34b), it turns out from [20] that
the Brockett’s necessary condition for the existence of a continuous asymptotically
stabilizing feedback control law is equivalent to check if the image of

B−1
o (q)co(q, q̇r ) (46)

contains a neighbourhood of the origin in R
2. This condition is satisfied by all the

case studies, although it does not imply that there exists such a control law.
The so-called small time local controllability (STLC) is a stronger notion of con-

trollability, which guarantees the existence of a piece-wise asymptotic stabilizing
feedback control law [21]. The STLC property also guarantees the existence of an
asymptotic stabilizing continuous time-periodic controller [22]. A sufficient condi-
tion to check the STLC property for mechanical systems is given in [19]. Unfortu-

1 https://www.wolfram.com.

https://www.wolfram.com
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nately, this condition is not met by any of the case studies, and thus no conclusion
can be made about the STLC property for the system (34a)–(34b). A necessary and
sufficient condition for the STLC is given in [23]. Regrettably, this condition is much
more challenging to check, even with the help of symbolic computing software.

Finally, the controller design and the dynamic analysis can be simplified by trans-
forming the system into a normal form as proposed in [24]. Once again, this sufficient
condition is not met by any of the cases under consideration.

2.3 Controller Design and Stability Analysis

The control objective is to spin the hoop at a desired angular velocity γ̇d > 0, while
simultaneously driving it to the desired position zod ∈ R over the pole surface, and
maintaining it perpendicular to the pole. A design of a feedback model-based control
for (34a)–(42) is a challenging problem from the control point of view. Some of the
main difficulties are listed below.

• The kinematic constraints (40)–(42) are completely nonholonomic [16, p. 320].
In addition, the relative grow vector of the related control system is (2, 1, 2), and
then it cannot be transformed into a chained form [25, p. 319].

• The model (34a)–(34b) is underactuated, and in the simplest case the shape coor-
dinates are not actuated. Therefore, the result of [26] cannot be applied. In the
remaining cases, the inertia matrices depend on both actuated and unactuated
coordinates.

• The system trajectoriesmust satisfy thenonholonomic constraints (40)–(42), hence
it is not clear whether it is possible to induce a periodic motion for the unactuated
coordinates satisfying the control objective stated above, which is a crucial step to
apply the methodology of [27, 28].

• Because of the nonholonomic nature of the system, the control objective cannot
be translated into a regulation problem, but it must be ensured tracking on the
unactuated coordinates, for which the result of [29] does not apply.

Given the difficulties for designing a standard controller for the system under
study, in the following development an ad-hoc strategy is employed to satisfy the
control objective.

Let the input u be defined as

u = Bh
(
PouP + QouQ

)
, (47)

where uP ∈ R
m and uQ ∈ R

m are two independent inputs belonging to orthogonal
subspaces. Taking into account (35), the noncollocated partial feedback linearisa-
tion (NPFL) [17] input can be defined as

uP = −T+
o (cr + MrvP) , (48)
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with vP ∈ R
2 a virtual control input to design. BecauseMr is always full rank [30],

it can be obtained
q̈o = vP , (49)

with zero dynamics given in (70).
The control objective for the hoop coordinates consists in designing the input

vP to drive γ̇ → γ̇d and (zo,ψ,φ) → (zod , 0, 0), while satisfying the nonholonomic
constraints (40)–(42). For this purpose, first define

ξ =
⎡

⎣
ξ1
ξ2
ξ3

⎤

⎦ =
⎡

⎣
zo − zod
−losφ
locφsψ

⎤

⎦ ∈ R
3, (50)

whose time derivative are

ξ̇ =
⎡

⎣
ξ̇1
ξ̇2
ξ̇3

⎤

⎦ =
⎡

⎣
ξ2γ̇
ξ3γ̇

losφs2ψγ̇ + locφcψψ̇

⎤

⎦ . (51)

Next, consider the auxiliary definitions

η =
[
η1
η2

]
=

[
γ̇ − γ̇d
ψ̇ − fψ

]
∈ R

2, (52)

where

fψ = fψ(ψ,φ, γ̇, ξ) = − (
losφs

2
ψ + kT

ξ ξ
) γ̇

locφcψ
, (53)

defined for −π/2 < φ,ψ < π/2, with kξ = [
kξ1 kξ2 kξ3

]T ∈ R
3 a vector of positive

constant gains. Substituting (52) into (51) yields

ξ̇ =
⎡

⎣
ξ2γ̇d + ξ2η1
ξ3γ̇d + ξ3η1

−kT
ξ ξγ̇d − kT

ξ ξη1 + locφcψη2

⎤

⎦ . (54)

In order to carry out the dynamic analysis, define the state

ζ = [
ξT ηT

]T ∈ R
5. (55)

Proposition 2.1 ([2]) Define the region Br = {ζ : ‖ζ‖ ≤ lo} and let the control law
be given by

vP =
[
vP1

vP2

]
=

[ −kη1η1
d

dt
fψ − kη2η2

]

, (56)
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where kη1, kη2 > 0. There exists a bounded region Bδ ⊂ Br , and a combination of
gainskξ, kη1, kη2 in (53) and (56), such that if the initial condition satisfiesζ(t0) ∈ Bδ ,
thenζ(t) ∈ Br ,∀t ≥ t0. Furthermore, the system trajectories are ultimately bounded
within an arbitrarily small region Bμ ⊂ Br , centred at the origin. �

Proof If η = 02 in (54) one gets

ξ̇ =
⎡

⎣
0 1 0
0 0 1

−kξ1 −kξ2 −kξ3

⎤

⎦ ξ = Aξξ , (57)

that is a linear time-invariant system with Aξ ∈ R
3×3 a Hurwitz matrix. A well-

established result of linear control [31, Theorem 4.6] states that there exist two
symmetric positive definite matrices Pξ ∈ R

3×3 and Qξ ∈ R
3×3 satisfying

AT
ξ Pξ + PξAξ = −Qξ . (58)

These matrices satisfy the bounds λPm‖x‖2 ≤ xTPξx ≤ λPM‖x‖2 and λQm‖x‖2 ≤
xTQξx ≤ λQM‖x‖2 for every vector x ∈ R

3, with 0 < λPm ≤ λPM , and 0 < λQm ≤
λQM , where we denote by λHm and λHM theminimum and themaximum eigenvalue,
respectively, of a generic matrix H ∈ R

3×3. Next, let the scalar function

V = ξTPξξ + 1

2
ηTη > 0 , (59)

satisfy the bounds
λVm‖ζ‖2 ≤ V (ζ) ≤ λVM‖ζ‖2 , (60)

where λVm = min{1,λPm} and λV M = max{1,λPM}. Define a region

Bδ =
{
ζ : ‖ζ‖ <

√
λVm

λV M
lo

}
and suppose that the initial condition satisfies ζ(t0) ∈

Bδ . Since
λVm

λV M
≤ 1, Bδ is a subset of Br .

By taking the time derivative of V along the system trajectories, one obtains

V̇ = −(γ̇d + η1)ξ
TQξξ + 2ξTPξbη2 + η1η̇1 + η2η̇2 , (61)

where b = [
0 0 locφcψ

]T ∈ R
3. Taking into account (49) and (52) and the control

law (56) yields

V̇ = −γ̇dξ
TQξξ − η1ξ

TQξξ − kη1η
2
1 + 2η2ξ

TPξb − kη2η
2
2 . (62)

Within the set Br , this function can be upper bounded by
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V̇ ≤ − γ̇dξ
TQξξ + λQMl

2
o |η1| − kη1|η1|2

+ 2λPMl
2
o |η2| − kη2|η2|2

≤ − γ̇dλQm‖ξ‖2 − |η1|
(
kη1|η1| − λQMl

2
o

)

− |η2|
(
kη2|η2| − 2λPMl

2
o

)

= − γ̇dλQm‖ζ‖2 − |η1|
((
kη1 − γ̇dλQm

) |η1| − λQMl
2
o

)

− |η2|
((
kη2 − γ̇dλQm

) |η2| − 2λPMl
2
o

)
, (63)

since ‖ζ‖2 = ‖ξ‖2 + |η1|2 + |η2|2. It can be noticed that the term

− |η1|
((
kη1 − γ̇dλQm

) |η1| − λQMl
2
o

)
(64)

is zero for |η1| = 0 and negative for |η1| > λQM
l2o

kη1 − γ̇dλQm
. Therefore, by con-

tinuity, a maximum for |η1| must exist. This maximum can be easily verified to be

at |η1|max = λQM
l2o

2
(
kη1 − γ̇dλQm

) . Similar arguments can be used for the last term

of (63). Overall, one has

V̇ ≤ −γ̇dλQM‖ζ‖2 + cη1 + cη2 , (65)

where cη1 = λ2
QM

l4o
2
(
kη1 − γ̇dλQm

) and cη2 = 2λ2
PM

l4o(
kη2 − γ̇dλQm

) , with kη1, kη2 >

γ̇dλQm . Thus, it can be ensured that V̇ ≤ 0 for

‖ζ‖ ≥
√
cη1 + cη2

γ̇dλQm
= μ , (66)

and the system trajectories are ultimately bounded by a region Bμ = {ζ : ‖ζ‖ ≤ μ}.
Because kη1 and kη2 can be chosen freely, the ultimate bound radius μ can be driven
arbitrarily small. Moreover, μ can be easily forced to satisfy

μ <

√
λVm

λV M
lo , (67)

to guarantee Bμ ⊂ Br .
There is a circularity in the proof2: when obtaining (63), it is implicitly assumed

that ζ ∈ Br ,∀t ≥ t0. To show that this is indeed the case, first notice that ‖ζ(t0)‖ ∈
Bδ =⇒ ‖ζ(t0)‖ <

√
λVm

λV M
lo ≤ lo. Suppose that ζ leaves Br . By continuity, a time

T > t0 exists such that ‖ζ(T )‖ = lo. Notice that, in order to leave Br , the trajectories

2 See [32], remarks on Theorem 5.3.1.
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cannot enter in Bμ since this set is positively invariant because V̇ ≤ 0 in its frontier.
Therefore, the trajectories must remain within Br\Bμ before leaving Br . On one
hand, since V̇ ≤ 0 for t ∈ [t0, T ), and after (60)

V (ζ(T )) ≤ V (ζ(t0)) < λVml
2
o . (68)

On the other hand, from the assumption ζ(T ) = lo and (60), one has

V (ζ(T )) = V (lo) ≥ λVml
2
o . (69)

By noticing that (68) and (69) are in contradiction, we can conclude that the original
assumption is incorrect, and thus ζ must remain in Br . �

In the interior of Br , taking into account (50) and (52), ζ ≈ 0 implies (zo,φ,ψ) ≈
(zod , 0, 0) and γ̇ ≈ γ̇d , fulfilling the control objective. For simplicity, the upper-bound
for the state ζ, which defines the region Br in Proposition 2.1, is chosen to be lo.
This choice makes the stability proof clearer, yet it is very conservative. However,
since this bound is arbitrary, it can be modified to enlarge the controller’s domain of
attraction.

The next step is to design a control strategy to stabilise the pole dynamics. For
this, it is assumed that the hoop has reached stationary state, such that q̈o ≡ 02.
From (34a) to (34b) and (47) one has

q̈h = fh + fuP + QouQ , (70)

where fh = M−1
h ch ∈ R

m and fuP = PouP ∈ R
m .

Investigating the controllability of the nonlinear system (70) is challenging, as
discussed earlier. For this reason, only a local result is pursued, based on the lineari-
sation of (70) around its nominal trajectory

q∗ = [
γ̇d t 0 zod (lo/rh)γ̇d t 0 q∗T

h

]T
, (71)

q̇∗ = [
γ̇d 0 0 (lo/rh)γ̇d 0 q̇∗T

h

]T
, (72)

where q∗
h ∈ R

m is the vector representing the nominal trajectory for the pole. Only
two of the study cases are analysed here: (i) m = 3, three Cartesian directions of
movement along the xw, yw, and zw axes of W3 and (ii) m = 4, two Cartesian
degree-of-freedom along xw and yw of W , and two rotations around the same axes.
The configuration coordinates for the three Cartesian degree-of-freedom case are the
pole centre of mass coordinates (ohx , ohy, ohz). For the latter case, the rotation matrix
of the pole with respect to the inertial frame is given by the composition of two basic
rotation matrices, namely

Ro = Rx (α1)Ry(α2), (73)

3 This is the configuration studied in [1].
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with α1,α2 ∈ R the rotation angles around xw and yw, respectively, and
Rx (α1),Ry(α2) ∈ SO(3). Hence, the configuration coordinates for the pole are
(ohx , ohy,α1,α2) when m = 4. Therefore, the nominal trajectories for the pole in
both cases are q∗

h = q̇∗
h = 0m .

Definined the state space coordinates x = [
qT
h q̇T

h

]T ∈ R
2m , the following lin-

earised model can be obtained

ẋ = A(t)x + B(t)uQ , (74)

where

A(t) =
[

Om Im
A21(t) A22(t)

]
, (75)

B(t) =Qo

∣∣∣∣
q∗,q̇∗

, (76)

a21(t) = ∂fh
∂qh

∣∣
∣∣
q∗,q̇∗

, (77)

a22(t) = ∂fh
∂q̇h

∣∣∣∣
q∗,q̇∗

. (78)

The term fuP in (70) is considered as an external bounded input to carry out the
linearisation. The periodic linear time-varying system (74) is not controllable [33,
Theorem 6.11] when the three Cartesian inputrs are considered for the pole (i.e.,
m = 3), while it is controllable [33, Theorem 6.12] when the two translations and
the two rotations inputs are considered for the pole (i.e., m = 4). For this last case,
it is possible to find a stabilising controller of the form [34]

uQ = −�−1BT (t)R(t)x , (79)

where R(t) ∈ R
8×8 is a symmetric positive definite time-varying matrix satisfying

the Riccati equation

Ṙ(t) + AT (t)R(t) + R(t)A(t) + G = R(t)B(t)�−1BT (t)R(t) , (80)

with G ∈ R
8×8 and � ∈ R

4×4 two positive definite matrices of constant gains. By
employing the quasi–linearisation of the periodic Riccati equation method [35, p.
137], an approximation for the solution of the Riccati equation (80) can be found.

2.3.1 Conditions for Maintaining Contact

Rolling without slipping between the surfaces of the objects has been assumed for
the modelling and control design presented in the above sections. Intuitively, it can
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be argued that theremust be aminimal spinning speed for the hoop not to lose contact
with the pole. For obtaining an approximation of the magnitude of this minimum
speed, assume that stationary state has reached, i.e., the hoop is spinning in the
orthogonal plane to the main pole axis. The Lagrange multipliers from the Lagrange-
d’Alembert formulation, which was used to obtain the model (34a)–(34b), can be
employed to compute the internal forces [16, p. 279]. A direct calculation of the
radial component gives the contact condition

moloθ̇
2 − mog > 0 , (81)

which represents the difference between the centripetal and gravity forces acting on
the hoop. This minimum velocity is intended for the best scenario (the hoop per-
pendicular to the pole), thus the desired velocity and the initial conditions should

satisfy θ̇ >>

√
g

lo
. If the pole is in the vertical position, keeping the contact depends

on the static friction between the surfaces. Hence, the desired and initial condition

for the spinning speed must satisfy θ̇ >>

√
g

fclo
, where fc > 0 is the static fric-

tion coefficient. On the other hand, the upper limit for the spinning speed depends
on the system’s bandwidth, which is mainly limited by the signals acquisition and
processing time and the actuators’ maximum speed and acceleration. As an assump-
tion for maintaining contact as well as to fulfil the requirements of Proposition 2.1,
the desired hoop spinning velocity γ̇d must be sufficiently close to the initial speed
γ̇, which in turn must be strictly greater than zero. The required swing controller to
obtain this initial spinning is considered out of the scope of this paper, although some
planar-motion open-loop controllers can induce it (e.g., the one proposed in [36]).

2.4 Numerical Simulation

Anumerical simulation is carried out to test the validity of the proposed approach.The
parameters employed for the simulation are listed inTable2. Thematrices and vectors
in (34a)–(34b) were obtained through a symbolic computing software (Wolfram
Mathematica) and are omitted here due to space constraints. It is assumed that the
pole’s apparent inertia can be assigned by the manipulator e.g., as proposed in [37]
for the pole not to be affected by the hoop motion. Notice that the pole’s actual mass
must not have to be large, but only its apparent inertia. The pole sample time is
considered to be T = 0.005 s, while the hoop coordinates are measured by means
of a vision system with sample time Tv = 0.02 s.

The desired references are γ̇d = 4
πrh
lo

≈ 1.0472 rad/s and zod = 0.3m. The gains

for the LQR controller in (79)–(80) are chosen as � = diag{0.5, 0.5, 1, 1} andG =
diag{200, 200, 40000, 40000, 10, 10, 4, 4}. The hoop controller gains are chosen
as kη1 = 20, kη2 = 10, kξ1 = 40, kξ2 = 40, and kξ3 = 4. The boundary condition
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Table 2 Simulation parameters

Parameter Value

mo 0.05 kg

mh 10 kg

lo 0.3 m

ro 0.005 m

rh 0.025 m

lh 0.7 m

for approximating R(t) is chosen as R(Ts) = O8×8, where Ts is the period of the

linearised system (74), which is given by Ts = lo
rh

γ̇d . The initial conditions for the

generalised positions are set to γ(t0) = 0 rad, ψ(t0) = 0.05 rad, zo(t0) = 0.05 m,
θ(t0) = π rad, and φ(t0) = −0.05 rad, while the initial conditions for the velocities
are set to γ̇(t0) = 0.8 rad/s, ψ̇(t0) = 0 rad/s, żo(t0) = −lo sin(φ(t0))γ̇(t0)m/s, θ̇(t0) =
lo cos(φ(t0))

γ̇(t0)

rh
rad/s, and φ̇(t0) = − sin(ψ(t0))γ̇(t0) rad/s.

The contact coordinates time evolution is shown in Fig. 2, where it can be seen
that the control objective is satisfied. In Fig. 3, the graphs of the ψ and φ coordinates
are displayed, showing their ultimate boundedness within a small region around
the origin. The θ̇ coordinate time evolution is displayed in Fig. 4, along with the
minimum speed required to maintain contact. This condition is satisfied during all
the simulation time with a considerably large margin. The Cartesian coordinates of
the pole centre of mass are shown in Fig. 5, while the time evolution of the two angles
describing the pole orientation is shown in Fig. 6. It can be seen that the proposed
controller stabilises all the pole coordinates. Finally, the control inputs, i.e., the forces
and torques acting on the pole, for the first 10 seconds of the simulation are shown
in Fig. 7.

3 Ballbot

Contemporary research on robotics has steered towards the incorporation of robots
into the everyday lives of humans. Robots are expected to interact with humans both
outdoors and in human environments safely. This motivation requires robots not
only to be mobile and slim but also tall enough to facilitate interaction. On the other
hand, conventional multi-wheeled statically-stable robots are typically built to have
a low center of gravity to prevent them from easily tipping over. The satisfaction of
these two conflicting requirements urges the mobile robots to have large, wide, and
heavy bases. At the cost of designing a more complicated controller, a more efficient
method to tackle the interaction problem is to utilize dynamically stable robots.
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Fig. 2 Contact coordinates evolution: real (—), desired (- - -)

Fig. 3 Asymptotic stabilisation of the ψ and φ coordinates
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Fig. 4 Evolution of θ̇ (—) and the minimum value required to maintain contact (- - -)

Fig. 5 Pole’s Cartesian coordinates with respect to the initial position

One of the most popular dynamically balancing robots is the two-wheeled Seg-
way [38]. The ballbot was introduced as a mobile robot moving on a single spherical
omnidirectional wheel [39, 40]. The ballbot, whose design is detailed in [41, 42], is
typically slim and as tall as an adult human, rendering it able to interact with humans
while navigating constrained environments.

Even though a variant of this robot has been built by many laboratories [43,
44], its control framework has been restricted to the use of classic methods such as
linearization about the desired equilibrium in coordinates and PID controllers [44,
45]. Derivation of the equations of motion of the ballbot with a 3-DoF manipulator
mounted on top using both Lagrange’s and Kane’s methods have been performed
in [46]. The authors have confirmed that the two approaches agree with each other
with a numerical simulation. They have also designed two control laws for the planar
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Fig. 6 Stabilisation of the pole’s rotation angles

motion of the ballbot and manipulation, respectively, without explicitly addressing
stability properties.Moreover,many controllers are typically developed by restricting
the dynamics of the ballbot to a vertical 2D plane and applied to the 3D robot
by an ad-hoc extension to two distinct vertical planes. This procedure inevitably
ignores the energetic interaction of the full dynamics of the robot along these planes.
Trajectory planning based on motion primitives has been presented in [47], while
in [48], authors plan a trajectory for the ballbot equipped with right and left arms. A
sliding-mode controller has also been designed for this system in [49]. For the most
part, the equations of motion of the whole dynamics of the ballbot have been derived
in coordinates, which injects a fair bit of unnecessary complexity into the problem
formulation, requires the use of symbolicmanipulation software and a decent amount
of storage space in the computer [44]. The only exception to this trend has been
provided in [50], where the authors derive a dynamic model of the ballbot, which
additionally assumes that the body has no yaw motion relative to the ball using
Newton’s laws. This lengthy procedure, which was omitted from the chapter due
to space considerations, leads to a dynamical model of the system, which is not
particularly easy to work with for control synthesis. Lastly, in [51], a stabilization
algorithm for a TWMM, which is a robot with similar characteristics to the ballbot,
has been presented. The controller designed in this chapter utilizes the ZMP idea from
the bipedal robotic literature to asymptotically stabilize the motion of the TWMM.

In this chapter, we derive the Euler-Lagrange equations of motion of the full
dynamics of the ballbot without resort to any coordinate system. This yields a com-
pact, yet explicit representation of the equations of motion, which recover the 2D
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Fig. 7 Force and torque inputs on the pole
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dynamics of the ballbot, restricted to a vertical plane, given in the literature [42]. Pre-
liminary results on the derivation and linearization of the intrinsic dynamics of the
ballbot are reported in [4]. The Euler-Poincaré dynamics developed in this chapter
yield a reduced set of 10 first-order ODEs that govern the motion of the ballbot as
opposed to the conventional Newton-Euler approach, which would yield 16 first-
order ODEs. We develop energy-shaping control laws that use the available control
inputs to make the system look like a new Lagrangian system with a desired asymp-
totically stable equilibrium point for both the 2D and the 3D dynamics of the ballbot.
While in the 2D case we can follow the procedure outlined in [29] to shape the
energy, this procedure needs to be extended for the 3D-case because the form of the
Euler-Poincaré does not precisely match the form of the Euler-Lagrange equations
as handled in that work. The derivation of the total energy shaping control law for
the ballbot shows the approach’s applicability to a system with considerably more
states than the examples previously reported in the literature. The main contribution
of this chapter is providing an intrinsic and unified framework to study dynamics and
control of the balancing system consisting of a heavy top on a spherical wheel and
providing nonlinear energy-shaping control law whose basin of attraction is almost
global as long as the mechanism is judiciously designed.

3.1 Lagrangian Dynamics of the Ballbot

In this section, we present the background information to be used in the remainder of
this chapter, including the kinematics and dynamics of the ballbot.We start by noting
that every vector quantity in this paper is represented in the spatial world frameW .

3.1.1 Background and Kinematics

The skeleton diagram of the ballbot is depicted in Fig. 8. It is constructed via the
interconnection of a rigid spherical wheel and a rigid cylindrical body. The body is
unable to translate with respect to the ball but is free to move otherwise. Therefore,
the configuration manifold of the ballbot is Q = R

2 × SO(3) × SO(3). The world

Fig. 8 Ballbot: bodies and
frames
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inertial frameW is fixed to a horizontal plane. The spherical wheel is represented by
the frame H and is assumed to have its center of mass at its geometric center. As a
result, the vector from the point of contact of the ball with the ground and its center
of mass is given by rhe3 in the inertial frame. The cylindrical rigid body situated on
the wheel is referred to as the “top,” and it is denoted by the reference frameO. The
center of mass of the top is assumed to lie on the central axis of its geometrical shape
at a distance l from the center of the ball. The ball is assumed to roll without slipping,
yielding the well-known nonholonomic constraint between the time derivative of its
position vector psb and its spatial angular velocity ωsb

ṗsb = rhωsb × e3 = rhω̂sbe3, (82)

where we introduced the hat ∧ operator, which stands for the standard isomorphism
between R

3 and so(3). Its inverse is denoted by the symbol ∨, known as the vee
map [16].

The kinematics of the orientation of the ball and the top are given in the frameW
by the familiar rigid body orientation kinematics

Ṙsb = ω̂sbRsb, Ṙst = ω̂stRst . (83)

Using notation andmethods from [16], we express the velocity of the topwith respect
to the inertial frame Vst ∈ R

6 in terms of the velocity of the ball with respect to the
inertial frame Vsb ∈ R

6 and the velocity of the top with respect to the ball Vbt ∈ R
6

Vst =
[
vst
ωst

]
=

[
vsb + psb × Rsbωbt

ωsb + Rsbωbt

]
. (84)

We can now compute the time derivative of pst as a function of the time derivative of
psb, the angular velocity of the top with respect toW and the orientation of the top:

ṗst = ṗsb + lωst × Rste3. (85)

Throughout this chapter, some properties of the hat map that we freely use in the
remainder are as follows

x̂y = x × y = −y × x = −ŷx,

xT ŷz = yT ẑx = zT x̂y,

x̂ŷẑ = (
xT z

)
y − (

xT y
)
z,

for any x, y, z ∈ R
3.
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3.1.2 Lagrangian

Wewrite the Lagrangian of the ballbot inW , that is, as seen by an observer stationary
in the inertial frame. Note that it is imperative that the rolling constraint (82) not be
inserted into the Lagrangian before its variation is taken. Suppose the variation of
the Lagrangian is taken after the substitution of the nonholonomic constraints. In
that case, this yields the vakonomic equations, which disagree with the dynamics
of rigid bodies. Instead, one should take the variation before the imposition of the
nonholonomic constraints, leading to theLagrange-d’Alembert equations, the correct
equations of motion [52, 53].

The kinetic energy of the ball, Kb ∈ R, is given by the sum of its rotational and
translational kinetic energies, while its potential energy, Vb ∈ R, is zero, since its
height with respect to the inertial frame remains a constant

Kb = 1

2
ωT

sbIbωsb + 1

2
mbṗT

sbṗsb,

Vb = 0.

The potential energy of the top, Vt ∈ R, is given by the height of its center of mass
from the horizontal multiplied by its mass. The kinetic energy of the top, Kt ∈ R, can
be written in terms of the rotational velocity of the top and the translational velocity
of the ball with respect toW by substituting from (85):

Kt = 1

2
ωT

stItωst + 1

2
mt ṗT

st ṗ
T
st

= 1

2
ωT

stItωst + 1

2
mtl

2ωT
stωst + 1

2
mt ṗT

sbṗsb

− 1

2
mtl

2
(
ωT

stRste3
)2 + mtlṗT

sb (ωst × Rste3) ,

Vt = mtgleT3 Rste3.

Therefore, the Lagrangian L = K − V = Kt + Kb − Vt ∈ R is

L = 1

2
ωT

stItωst + 1

2
mtl

2ωT
stωst + 1

2
ωT

sbIbωsb + 1

2
(mb + mt )ṗT

sbṗsb

− 1

2
mtl

2
(
ωT

stRste3
)2 + mtlṗT

sb (ωst × Rste3) − mtgleT3 Rste3. (86)

Let us define an element of the unit 2-sphere γ := Rste3. This quantity represents
the direction of the center of mass of the top expressed in W . Next, we write the
Lagrangian in terms of γ, the angular velocity of the top with respect to W and
the angular velocity of the ball with respect to O, all expressed in W . We repre-
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sent the latter quantity by ω̄tb ∈ R
3 and compute it by ω̄tb = ωsb − ωst . When the

Lagrangian (86) is expressed with these quantities, it takes the reduced form

� = 1

2

〈
ωst ,

(
It + Ib + mtl

2I3
)
ωst

〉 + 〈ωst , Ibω̄tb〉

+ 1

2
〈ω̄tb, Ibω̄tb〉 + 1

2
(mb + mt ) 〈ṗsb, ṗsb〉

− 1

2
mtl

2 〈ωst ,γ〉2 + mtl 〈ṗsb,ωst × γ〉 − mtgl 〈e3,γ〉 . (87)

3.1.3 Euler-Poincaré equations of the ballbot

The equations of motion of the ballbot can be reduced from T Q to so(3) × so(3) ×
S
2 × R

2 to yield the Euler-Poincaré equations [54] for the ballbot. We can derive the
evolution of γ by differentiating its definition and using the kinematics of the rigid
body

γ̇ = Ṙste3 = ωst × Rste3 = ωst × γ, (88a)

γ̇ + γ × ωst = 03. (88b)

We freely make use of the following identities when taking the variation of the
reduced Lagrangian (87):

δR−1 = −R−1δRR−1, (89a)

δI = δRR−1I − IδRR−1, (89b)

δω = η̇ + η × ω, (89c)

δṗ = d

dt
(δp) . (89d)

whereR ∈ SO(3),ω ∈ so(3),p ∈ R
3, and so(3) � η̂ = δRR−1 are generic element.

The action integral is given by s = ∫
� dt , whose variation, δs = ∫

δ� dt is com-
puted by

δs =
∫ (

δ�

δRst
δRst + δ�

δωst
δωst + δ�

δω̄tb
δω̄tb + δ�

δγ
δγ + δ�

δṗsb
δṗsb

)
dt.

Let us compute the individual terms of the above expression making use of the
additional relation δγ = ηst × γ



Nonholonomic Rolling Nonprehensile Manipulation Primitive 185

∫
δ�

δRst
δRst dt =

∫
1

2

〈
ωst ,

(
η̂st It − It η̂st

)
ωst

〉
dt =

∫ 〈
Itωst × ωst ,ηst

〉
dt,

∫
δ�

δωst
δωst dt =

∫ 〈
∂�

∂ωst
, η̇st + ηst × ωst

〉
dt

=
∫ {〈

− d

dt

∂�

∂ωst
+ ωst × ∂�

∂ωst
,ηst

〉}
dt

=
∫ 〈− (

ω̂st It − It ω̂st
)
ωst − (

It + Ib + mtl
2I3

)
ω̇st − Ib ˙̄ωtb

+ mtl
2 (〈ω̇st ,γ〉γ + 〈ωst ,γ〉ωst × γ)

− mtl ((ωst × γ) ×ṗsb + γ × p̈sb) + ωst

× (
It + Ib + mtl

2I3
)
ωst + ωst × Ibω̄tb − mtl

2 〈ωst ,γ〉ωst

×γ + mtl (ωst × (γ × ṗsb)) ,ηst
〉
dt,

∫
δ�

δω̄tb
δω̄tb dt =

∫
〈− d

dt

∂�

∂ω̄tb
+ ω̄tb × ∂�

∂ω̄tb
〉 dt

=
∫ 〈−Ib

(
ω̇st + ˙̄ωtb

) + ω̄tb × Ib (ωst + ω̄tb) , η̄tb
〉
dt,

∫
δ�

δγ
δγ dt =

∫ 〈
∂�

∂γ
,ηst × γ

〉
dt =

∫ 〈
γ × ∂�

∂γ
,ηst

〉
dt

=
∫ 〈−mtl

2〈ωst ,γ〉γ × ωst + mtl (γ × (ṗsb × ωst )) − mtglγ × e3,ηst
〉
dt,

∫
δ�

δṗsb
δṗsb dt =

∫
〈− d

dt

∂�

∂ṗsb
, δpsb〉 dt

=
∫

〈−(mb + mt )p̈sb − mtl (ω̇st × γ + ωst × (ωst × γ)) , δpsb〉 dt

=
∫

〈−(mb + mt )rh p̈sb

−mtl (ω̇st × γ + ωst × (ωst × γ)) ,
(
ηst + η̄tb

) × e3
〉
dt

=
∫

〈−(mb + mt )rhe3 × p̈sb − mtrhl (e3 × (ω̇st × γ) + e3

× (
ωst × (ωst × γ))) ,

(
ηst + η̄tb

)〉
dt.

Keeping accordance with the literature, we assume that the rotation of the ball
along the z-axis ofW cannot be actuated and is always a constant during the motion
of the ballbot. We consider the scenario where the relative orientation between the
ball and the top is actuated as in [42, 44]. In other words, the control input belongs
to the subbundle of the cotangent bundle of Q, characterized by the annihilator of
the relative angular velocity ωtb: τ ′ ∈ {σ ∈ so∗(3) : 〈σ,ωtb〉 = 0}, after its identi-
fication with R

3. We notice that ω̂tb = AdRT
st

(
ω̂sb − ω̂st

)
, where Ad is the adjoint

action, and using the dual of this mapping, we find the forced Euler-Lagrange equa-
tions of motion of the ballbot. We add the variations computed above and insert the
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rolling constraint (82) expressed as ṗsb = r (ωst + ω̄tb) × e3 to arrive at

(
It + mtl

2
(
I3 − γ ⊗ γT

) + Ib

−(mb + mt )r
2
h ê

2
3 − mtrhl

(
γ̂ê3 + ê3γ̂

))
ω̇st

+
(
Ib − (mb + mt )r

2
h

ˆb f e23 − mtrhlγ̂ê3
) ˙̄ωtb + mtl

2 〈ωst ,γ〉 γ̂ωst

+ mtrhl ê3ω̂
2
stγ + ωst × Itωst − ωst × Ibω̄tb − mtgle3 × γ = 03, (90a)

(
Ib − (mb + mt )r

2
h ê

2
3 − mtrhl ê3γ̂

)
ω̇st

+ (
Ib − (mb + mt )r

2
h ê

2
3

) ˙̄ωtb (90b)

+ mtrhl ê3ω̂
2
stγ − ω̄tb × Ibωst = Rstτ ,

with τ ∈ R
3 the control input. Notice that this system is defined on so(3) × so(3) ×

S
2 × R

2, which has dimension 10, as opposed to the original system,which is defined
on T Q, with a dimension count of 16. In case the translational dynamics of the ball,
which does not affect the stability of the system, is not considered, the reduced
equations evolve on an 8-dimensional manifold, whereas the original equations of
motion evolve on a 12-dimensional one.

We note the following definitions to be utilized as in the subsequent sections:

M11 = It + mtl
2
(
I3 − γ ⊗ γT

) + Ib − (mb + mt )r
2
h ê

2
3 − mtrhl

(
γ̂ê3 + ê3γ̂

)
,

M12 = Ib − (mb + mt )r
2
h ê

2
3 − mtrhlγ̂ê3,

M22 = Ib − (mb + mt )r
2
h ê

2
3.

A comparison of the Euler-Poincaré dynamics and the conventional Euler-
Lagrange equations derived using coordinates is made in Fig. 9, where the errors
in Rst , Rsb, and psb between the two approaches have been plotted when the ballbot
is operated freely under its drift vector field. Since the numerical integration error
margin to be tolerated has been selected to be 10−7, these errors are well within the
tolerance range.

3.1.4 2D Dynamics

We are interested in finding out how the equations of motion restrict to the plane
spanned by the inertial x-z axes ofW . In particular, we are going to use coordinates
x ∈ R and θ ∈ R on the circle for the rotation of the top with respect to W and the
rotation of the top with respect to the ball, respectively. With this choice, the relevant
quantities take on the values

Rst = Re2,x , ωst = ẋe2; Rtb = Re2,θ, ωsb = θ̇e2,
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Fig. 9 Error between Euler-Poincaré equations and the conventional Lagrangian approach

where Re2,ζ is the simple rotationmatrix by ζ ∈ R radians around the second standard
basis vector e2. When restricted to the plane, the nonholonomic constraint becomes
a holonomic one, and it is given by

ṗsb = rhωsb × e3 = [
rh

(
ẋ + θ̇

)
0 0

]T
. (91)

Using these quantities, the Lagrangian (86) restricted to the inertial x-z plane of
W is computed to be

L = 1

2

(
It + mtl

2 + mtrhl cos (x) + Ib + (mb + mt )r
2
h

)
ẋ2

+ (
Ib + (mb + mt )r

2
h + mtrhl cos (x)

)
ẋ θ̇

+ 1

2

(
Ib + (mb + mt )r

2
h

)
θ̇2 − mtgl cos x,

where Ib and It are the components (2, 2) of the matrices Ib and It , respectively. We
can either use the conventional Euler-Lagrange equations with coordinates (x, θ) or
directly the coordinate-invariant equations (90) derived in the previous section to
compute the equations of motion of the ballbot restricted to the plane. It is readily
checked that these two distinct methods yield exactly the same equations, which are
given by
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M(q)q̈ + C(q, q̇)q̇ + g(q) =
[
α + γ + 2β cos x α + β cos x

α + β cos x α

] [
ẍ
θ̈

]

+
[−β sin x ẋ 0
−β sin x ẋ 0

] [
ẋ
θ̇

]
+

[−μ sin x
0

]
=

[
0
1

]
τ , (92)

complemented by the rolling constraint (91) and with τ ∈ R the control input. The
various constants in these equations are given by α = Ib + (mb + mt )r2h , β = mtrhl,
γ = It + mtl2, and μ = mtgl. These equations correspond exactly to the ones given
in [42].

3.2 Passivity Based Control Design

When τ = 03, we can determine the equilibria of the ballbot using the equations of
motion (90) with the rolling contraints (82) and (88b). Along with the fact that the
inertial z-axis rotation of the ball is assumed to be stationary, the rolling constraints
yields ṗsb = 03 ⇐⇒ ωsb = ωst + ω̄tb = 03. Inserting psb = constant and ω̄tb = 03
into the equations of motion (90) along with ωst = 03 yields e3 × γ = 03. In other
words, the uncontrolled equilibria of the ballbot are given by

E± = {(psb,γ, ṗsb,ωsb,ωst ) ∈ T Q : psb = const, γ = ±e3
ωst = ω̄tb = 03, ṗsb = 03}.

Notice that E+ corresponds to the upward equilibrium point, that is, the top points
in the inertial positive z-direction and E− corresponds to the downward equilibrium
point. The control objective is to asymptotically stabilize the set E+.

3.2.1 Passivity and Energy Considerations for the 2D Ballbot

Partial feedback linearization of (92) is achieved by the following feedback

τ =
(

α − (α + β cos (x))2

α + γ + 2β cos (x)

)

u +
(

α + β cos (x)

α + γ + 2β cos (x)
− 1

)
β sin (x)ẋ2

+ μ (α + β cos (x))

α + γ + 2β cos (x)
sin (x),

which yields

(α + γ + 2β cos (x)) ẍ − β sin (x)ẋ2 − μ sin (x) =
− (α + β cos (x)) u, (93a)

θ̈ = u, (93b)
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with u ∈ R a virtual control input.
The following are two passive outputs

y1 = θ̇, (94a)

y2 = − (α + β cos (x)) ẋ, (94b)

with the corresponding storage functions

H1 = 1

2
θ̇2, (95a)

H2 = 1

2
(α + γ + 2β cos (x)) ẋ2 + μ cos (x). (95b)

3.2.2 2D Energy-Shaping Control

Let us consider the following Lyapunov function candidate

Hd = ke (k1H1 + k2H2) + 1

2
kk (k1y1 + k2y2)

2 + 1

2
kI (k1θ − k2 (αx + β sin (x)))2 ,

(96)

with ke, k1, k2, kk, kI > 0. Notice that this Lyapunov function candidate comes from

the desired energy function that can be written as Hd = 1
2

[
θ̇ ẋ

]
Md

[
θ̇
ẋ

]
+ Vd , where

Md =
[
kek1 + k21kk −k1k2kk
−k1k2kk kek2 (α + γ + 2β cos (x)) + k22kk (α + β cos (x))2

]
,

Vd = kek2μ cos (x) + 1

2
kI (k1θ − k2 (αx + β sin (x)))2 .

The conditions under which Md and Vd can be selected such that Hd is a Lyapunov
function are developed in the next subsection for the 3D-dynamics of the ballbot.
Taking the Lie derivative of (96) along the solutions of (93), we get

Ḣd = (k1y1 + k2y2)

[(
ke + k1kk + k2kk

(α + β cos (x))2

α + γ + 2β cos (x)

)
u

+ k2kk

(
−(α + βcx )

(
βsx

α + γ + 2βcx
ẋ2 + μsx

α + γ + 2βcx

)
+ βsx ẋ

2

)

+kI (k1θ − k2 (αx + βsx ))] ,

where cx and sx are shortened notations for cos(x) and sin(x), respectively.
Once we select the control as follows
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u = −1

k

[
k2kk

(
−(α + βcx )

(
βsx

α + γ + 2βcx
ẋ2 + μsx

α + γ + 2βcx

)
+ βsx ẋ

2

)

+kI (k1θ − k2 (αx + βsx )) + kp (k1y1 + k2y2)
]
.

where k = ke + k1kk + k2kk
(α + βcx )2

α + γ + 2βcx
. The time derivative of Hd becomes

Ḣd = −kp (k1y1 + k2y2)
2 ≤ 0.

Once the detectability of the output y = k1y1 + k2y2 is proven, this implies that
the desired equilibrium point is asymptotically stable. The detectability of this output
is proven in the next section for the full dynamics of the ballbot. It is omitted in this
section because that calculation can be applied to the 2D dynamics verbatim.

3.2.3 Passivity and Energy Considerations for the 3D Ballbot

Partial feedback linearization of the equations of motion (90) on the second factor
yields

(
It + mtl

2 (I3 − γ ⊗ γT
) + Ib − (mb + mt )r

2
h ê

2
3 − mtrhl

(
γ̂ê3 + ê3γ̂

))
ω̇st

+ mtl
2 〈ωst ,γ〉 γ̂ωst + mtrhl ê3ω̂

2
stγ + ωst

× Itωst − ωst × Ibω̄tb − mtgle3 × γ = − (
Ib − (mb + mt )r

2
h ê

2
3 − mtrhlγ̂ê3

)
u,

(97a)

˙̄ωtb = u, (97b)

with u ∈ R
3 a virtual control input and where the feedback linearizing torque is

given by

τ = RT
st

(
M22 − MT

12M
−1
11 M12

) (
u + mtrhl

(
I3 − mT

12M
−1
11

)
ê3ω̂

2
stγ

−MT
12M

−1
11 mtl

2〈ωst ,γ〉γ̂ωst + MT
12M

−1
11 mtgl (e3 × γ)

)
.

The following are two passive outputs

y1 = ω̄tb, (98a)

y2 = − (
Ib − (mb + mt )r

2
h ê

2
3 − βê3γ̂

)
ωst . (98b)

with the corresponding storage functions



Nonholonomic Rolling Nonprehensile Manipulation Primitive 191

H1 = 1

2
ω̄T

tbω̄tb, (99a)

H2 = 1

2
ωT

st

(
Ib − (mb + mt )r

2
h ê

2
3 − β

(
γ̂ê3 + ê3γ̂

) + It + mtl
2I3

)
ωst

− 1

2
mtl

2
(
ωT

stγ
)2 + μe3Tγ. (99b)

The passivity of the pair (b f y1, H1) is readily seen

dH1

dt
= 〈ω̄tb,u〉 = 〈y1,u〉.

To prove the same statement for the pair (y2, H2), we calculate

dH2

dt
= ωT

st

[(
Ib − (mb + mt )r

2
h ê

2
3 − β

(
γ̂ê3 + ê3γ̂

) + It + mtl
2) ω̇st − μe3

×γ + 1

2
β (γ × (ωst × (e3 × ωst )) − e3 × (ωst × (γ × ωst )))

]

= ωT
st

[− (
Ib − (mb + mt )r

2
h ê

2
3 − βγ̂ê3

)
u − β (e3 × (ωst × (ωst × γ)))

−1

2
β (2e3 × (ωst × (γ × ωst )))

]

= 〈− (
Ib − (mb + mt )r

2
h ê

2
3 − βê3γ̂

)
ωst ,u

〉 = 〈y2,u〉 ,

where the second to the last step follows by noticing that the first two terms in the
final expression below are orthogonal to ωst

γ × (ωst × (e3 × ωst )) = −ωst × ((e3 × ωst ) × γ) − (e3 × ωst ) × (γ × ωst )

= −ωst × ((e3 × ωst ) × γ) − ωst

× ((γ × ωst ) × e3) − e3 × (ωst × (γ × ωst )) .

Lemma 3.1 The integrals of the passive outputs can be computed to be

˙̄θtb = y1, (100a)

d

dt
{−M22θst − βe3 × γ} = y2, (100b)

with θ̄tb,θst ∈ R
3.

Proof We first compute the integral of part of the second output,−βe3 × (γ × ωst ).
Let φ(γ,ωst ) = βe3 × γ, then

d�

dt
= β (e3 × γ̇) = −β (e3 × (γ × ωst )). (101)
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To locally express the integral of the remaining terms,weuse the exponentialmapping
from so(3) to SO(3) [55] to express the rotation so that

Rst = eθ̂st , Rtb = eθ̂tb = e−θ̂st eθ̂sb .

Upon differentiation and utilization of the rigid body kinematics (83), we have

ω̂st = ṘstRT
st = ˙̂

θst ,

ˆ̄ωtb = AdRst ω̂tb = AdRst

(
ṘtbRT

tb

) = −˙̂
θst + ˙̂

θsb =: ˙̄̂
θtb.

Combining these with (101) yields the assertions of the lemma. �

3.2.4 3D Energy-Shaping Control

Let us consider the following Lyapunov function candidate

Hd = ke (k1H1 + k2H2) + 1

2
‖k1y1 + k2y2‖2Kk

+ 1

2
‖k1θ̄tb + k2 (−M22θst − βe3 × γ)‖2

KI
, (102)

withKk,KI ∈ R
3×3 constant matrices. Notice that this Lyapunov function candidate

comes from a desired energy function that can be written as Hd =
1

2

[
ωtb ωst

]
Md

[
ωtb

ωst

]
+ Vd , where

Md =
[
kek1I3 + k21Kk −k1k2KkMT

12−k1k2M12Kk kek2M11 + k22KkM12MT
12

]
, (103a)

Vd = kek2V + 1

2
‖k1θ̄tb + k2 (−M22θst − βe3 × γ)‖2

KI
. (103b)

Let q∗ = (Rst ,Rtb,ωst , ω̄tb) = (
eρê3 , eσê3 , 03, 03

)
, for some constants ρ,σ ∈ R.

In order to qualify Hd as a Lyapunov function, we need to make sure that Md (q∗)
is posititve definite, δVd (q∗) = 0, δ2Vd (q∗) is full rank along the directions orthog-
onal to the combined, but functionally related rotation of the ball and the top along
the inertial vertical axis, and Ḣd ≤ 0. As long as the yaw rotation of the ball is
restricted by its friction with the ground, by Lagrange-Dirichlet stability criterion,
these conditions will ensure that both the ball and the top will converge to the desired
orientation.

Theorem 3.1 At q∗, Vd has a global minimum V ∗
d , which is shared by a line of

points characterized by a combined rotation of the ball and the top along the inertial
vertical axis. �
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Proof We observe from the expression of Vd that it achieves a minimum only if
each term individually achieves a minimum. While the minimum of the second term
is zero, the minimum kek2μ of the first term kek2μeT3 γ is attained when γ = e3,
provided that k2 < 0 and ke > 0. Computing the first variation of Vd yields

δVd = kek2μηT
st (γ × e3)

+ (
k1θ̄tb − k2 (M22θst + βe3 × γ)

)T
KI

(
k1η̄tb − k2

(
M22 − βê3γ̂

)
ηst

)
,

which vanishes at q∗. Note that when θst = 03, it follows that γ = Rste3 = eθ̂st e3 =
e0̂3 e3 = e3.

Computing the second variation δ2Vd of Vd at q∗ = 0 yields

δ2Vd = kek2η
T
st ê

2
3ηst + ‖k1η̄tb − k2

(
M22 − βê23

)
ηst‖2KI

.

This expression shows that δ2Vd positive semidefinite and is degenerate only on the

subspace spanned by ηst = e3 and η̄tb = k2
k1
M22e3. SinceM22 is a diagonal matrix,

η̄tb is a multiple of e3 by a negative constant. �

The assumption that the yaw rotation of the ball is constrained by frictional forces
implies that ηT

sbe3 = 0. Since η̄tb = −ηst + ηsb, it follows that η̄T
tbe3 = −ηT

ste3.
Notice that this subspace and the nullspace of δ2Vd intersect only at the zero section
of the tangent bundle (state space).

Theorem 3.2 If the ballbot is strongly inertially coupled [17], i.e., the rank of
M12 (q) is three, then appropriate gains ke, k1, k2, Kk can be chosen such that
Md (q) is positive definite. �

Proof Md is positive definite if kek1I3 + k21Kk is positive definite and�11 is positive
definite, where �11 is the Schur-complement of the (1, 1) block of Md , that is,

�11 = k2
(
keM11 + k2M12KkMT

12

) − k1k
2
2M12Kk (keI3 + k1Kk)

−1 KkMT
12.

The condition that kek1I3 + k21Kk is positive definite holds if ke, k1 > 0 and Kk

is positive definite. These constraints on the gains will be in force in the sequel. Let
λk ∈ R be the smallest eigenvalue ofKk , λ̄11 ∈ R denote themaximum of eigenvalue
of M11, and λ12 ∈ R denote the minimum eigenvalue of M12MT

12 as γ varies over
S
2. Note that when the hypothesis of the theorem holds, then λ12 is bounded away

from zero. Since k2 < 0 and M11 is positive definite, we have that �11 is positive
definite if and only if the matrix

keM11 + k2M12Kk
(
I3 − k1 (keI3 + k1Kk)

−1 Kk
)
MT

12

is negative definite. This implies that also the matrix
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keλ̄11I3 + k2λk

(
1 − k1λk

ke + k1λk

)
M12MT

12

is negative definite. Finally, this implies that

keλ̄11 + k2λk

(
1 − k1λk

ke + k1λk

)
λ12 < 0.

This last implication shows that choosing the quantity
|k2| λk

ke
large enough ensures

that the desired mass matrixMd is positive definite at all points q where the system
is strongly inertially coupled. �

Whether or not the system is strongly inertially coupled depends on the design
of the mechanism. If the mass and inertia of the ball are large enough with respect
to the top’s mass, then this property holds everywhere in the configuration space.
Therefore, the following control law achieves global asymptotic stability for those
mechanism designs.

Proposition 3.1 Consider the partially feedback linearized dynamics of the ball-
bot (97) in close loop with the control law

u = −K−1
[
s + Kp (k1y1 + k2y2)

]
, (104)

with the expressions for the matrices K ∈ R
3×3 and s ∈ R

3 that are as given in the
proof, Kp ∈ R

3×3 a positive definite matrix, and k1, k2 satisfy the conditions that
render Md a positive definite matrix, δVd(q∗) = 0, and δ2Vd(q∗) a positive definite
matrix.

Then, q∗ is an asymptotically stable equilibrium of the closed-loop system. �

Proof Taking the Lie derivative of (102) along the solutions of (97) yields

Ḣd = 〈
k1y1 + k2y2,

[(
keI3 + k1Kk + k2KkMT

12M
−1
11 M12

)
ught.

+ k2Kk
(−ṀT

12ωst + MT
12M

−1
11 (c1 + g1)

)

+KI
(
k1θ̄tb + k2 (−M22θst − βe3 × γ)

)]〉

= 〈k1y1 + k2y2,Ku + s〉 ,

where c1 = mtl2 〈ωst ,γ〉 γ̂ωst + βê3ω̂
2
stγ + ωst × Itωst − ωst × Ibω̂tb, g1 =

−μe3 × γ. We thus select

u = −K−1
[
s + Kp (k1y1 + k2y2)

]
, (105)

where K = (
keI3 + k1Kk + k2KkMT

12M
−1
11 M12

)
, s consists of all the terms not mul-

tiplied by u in the second factor of the natural pairing andKp being positive definite,
yielding
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Ḣd = −‖k1y1 + k2y2‖2Kp
.

This implies that k1y1 + k2y2 −−−→
t→∞ 03. Let us analyze the smallest invariant set

within E = {k1y1 + k2y2 = 03}. We have

03 = k1KkPy1 + k2KkPy2 = (
k1Kk + k2KkMT

12M
−1
11 M12

)
u + δ1,

where δ1 = k2Kk
(−ṀT

12ωst + MT
12m

−1
11 (c1 + g1)

)
. Thus, we can write the above

equation as (K − keI3)u = −δ1. From the control law (104), we have Ku =
− (δ1 + δ2), where δ2 = KI

(
k1θ̄tb + k2 (−M22θst − βe3 × γ)

)
. Therefore, from

the following two equations

(K − keI3)u = −δ1,

Ku = − (δ1 + δ2) ,

we deduce that u = − 1

ke
δ2 on E . Plugging this into (97), shows that the first of these

equations is unstable unless u = δ2 = 03. This implies ω̄tb = constant = 03, which,
in turn, implies ωst = 03 because otherwise its dynamics would again be unstable.
This discussion shows that the system asymptotically converges to an equilibrium
point. Since the closed-loop system comes from a Lagrangian system, it is readily
shown that, the only stable equilibrium point is the upward equilibrium point, with
θst = [

0 0 constant
]T

and θtb = [
0 0 constant

]T
, where the inertial z-axis rotation

of the system goes to a certain constant because this motion is uncontrollable. �

3.2.5 Controlling the Ball Position

We can use a similar technique as in Sect. 3.2.4 to control the position of the ball as
well as the upward equilibrium point of the top. In order to do this, we start from (97)
and switch to the error system dynamics, with the error defined by ētb = ω̄tb − ω̄d

tb,
where ω̄d

tb is the desired angular velocity of the ball with respect to the top expressed
in W . We compute this quantity from the desired angular velocity of the ball with
respect to the spatial frame, ωd

sb ∈ R
3, which is, in turn, computed from the rolling

constraint (82). In order to get psb −→ pdsb, where psb
d ∈ R

3 is the desired position of
the ball on the x-y plane (the z component is a constant), we would like the rolling
constraint Eq. (82) to look like

ṗsb = rhω
d
sb × e3 = kt ê23

(
psb − pdsb

)
.

As a result, we set ωd
sb = − kt

rh
ê3

(
psb − pdsb

)
, where kt > 0. This implies that the

desired angular velocity of the ball with respect to the top expressed inW is, ω̄d
tb =

ωd
sb − ωst . We use (82) in the time derivative of this relation to get
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˙̄ωd
tb = ω̇d

sb − ω̇st = kt ê23 (ω̄tb + ωst ) − ω̇st . (106)

We set the control u in Eq. (97b) to u = ˙̄ωd
tb + v, with v ∈ R

3 a virtual input,
which yields the error system dynamics

(M11 − M12) ω̇st + c2 + g1 = −M12v, (107a)

˙̄etb = v, (107b)

where c2 = c1 + ktM12ê23 (ω̄tb + ωst ). Solving (107b) for ω̇st and substituting
into (106), we derive the form of the control u as

u = (
I3 + (M11 − M12)

−1 M12
)
v

+ (M11 − M12)
−1 (c2 + g1) + kt ê23 (ω̄tb + ωst ) .

We identify a passive output y1 = ētb with the storage function H1 = 1

2
ēTtbētb.

We keep the second output y2 = −MT
12ωst and modify its storage to H ′

2 = H2 −
ωT

stM12ωst . Note that this output with the storage function H ′
2 is not passive any

more due to the additional terms appearing in c2. It is also important to note that, we
do not need to asymptotically stabilize the orientation of the ball to a desired value.
We would rather asymptotically stabilize ētb to zero, which implies ωsb −→ ωd

sb,
which, in turn, asymptotically stabilizes psb to pdsb. This observation implies that, we
only need to devise a desired potential energy which has γ = e3 a point of minimum.
This is easily achieved by setting Vd = kek2V . Recall that the product kek2 is negative
and since the original potential energy V has a minimum at γ = −e3, this desired
potential energy is good enough.

To shape the kinetic energy of the system, we use the same desired mass matrix
as the one (103b) used in the previous subsection. We use the following desired
Hamiltonian (energy) for the closed loop system

Hd = ke
(
k1H1 + k2H

′
2

) + 1

2
‖k1y1 + k2y2‖2Kk

+ 1

2

〈
psb − pdsb,psb − pdsb

〉
.

Proceeding analogously to Proposition 3.1, we compute the time derivative of Hd to
be

Ḣd = 〈
k1y1 + k2y2,

[(
keI3 + k1Kk + k2KkMT

12 (M11 − M12)
−1 M12

)
v

+k2Kk
(−ṀT

12ωst + MT
12 (M11 − M12)

−1 (c2 + g1)
)]〉

− β

2

〈
ωst , ê23ω̂

2
stγ

〉
+

〈
−kekt ê23

(
y1 − kt

rh
ê3

(
psb − pdsb

))
, k2y2

〉

+ 〈
kt ê23

(
psb − pdsb

)
,psb − pdsb

〉 + 〈
rhy1, ê3

(
psb − pdsb

)〉
,



Nonholonomic Rolling Nonprehensile Manipulation Primitive 197

where the second and third natural pairings arise because of the extra terms in the
new Coriolis term, c2. We select the virtual input term v as

v = −K−1
b

[
sb + Kp (k1y1 + k2y2) + kek2t

rh
ê23

(
psb − pdsb

)
]

, (108)

whereKb = (
keI3 + k1Kk + k2KkMT

12 (M11 − M12)
−1 M12

)
, sb ∈ R

3 consists of all
the terms not multiplied by v in the second factor of the first natural pairing, and
Kp ∈ R

3×3 is a positive definite constantmatrix. This selection yields to the following
expression for the time derivative of Hd along the solutions of the system

Ḣd = −‖k1y1 + k2y2‖2Kp
+ kek2kt

〈
ê23y1, y2

〉 − β

2

〈
ωst , ê23ω̂

2
stγ

〉

+ kt
〈
ê23

(
psb − pdsb

)
,psb − pdsb

〉 +
〈(

rh − k1kek2t
rh

)
y1, ê3

(
psb − pdsb

)〉
.

Selecting kt = rh√
k1ke

ensures that the last natural pairing in this expression van-

ishes. While the first natural pairing may be absorbed into the very first term, using
the Cauchy-Schwarz inequality, by a proper selection of the gain Kp, the second
natural pairing satisfies the linear growth condition as long as strong inertial cou-
pling condition is satisfied. As a result, this pairing may also be dominated by the
first term semi-globally by increasing the magnitude of the gain k2. These arguments
prove that Ḣd ≤ 0. Since the detectability of the output y = k1y1 + k2y2 is proven
in exactly the same way as in the proof of Proposition 3.1, we can summarize the
result in the following proposition

Proposition 3.2 Consider the partially feedback linearized dynamics of the ball-
bot (97b) in closed loop with the control law

v = −K−1
b

[
sb + Kp (k1y1 + k2y2) + kek2t

rh
ê23

(
psb − pdsb

)
]

, (109a)

u = (
I3 + (M11 − M12)

−1 M12
)
v

+ (M11 − M12)
−1 (c2 + g1) + kt ê23 (ω̄tb + ωst ) , (109b)

with the expressions for Kb, sb and kt are as given above the proposition, Kp a
positive definite matrix, and k1, k2 satisfy the conditions that render Md positive
definite, δVd(γ = e3) = 0, and δ2Vd(γ = e3) a positive definite matrix.

Then, γ = e3, ωst = 03, ω̄tb = 03, and psb = pdsb is an asymptotically stable
equilibrium of the closed-loop system. �

Remark 7.1 Although the control design in the section is inspired by the develop-
ment in [29], the technique presented in that work cannot be applied verbatim. The
fundamental reason for this shortcoming is that the dynamics (90b) is not derived
directly from Euler-Lagrange equations, but are reduced to yield the Euler-Poincaré
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equations. Consequently, the construction of a second passive output in (98b), a cor-
responding storage function in (99b) and an integral of this passive output (100) has
to be novelly performed. Once these quantities have been obtained, we can construct
the Lyapunov function (102).

3.3 Numerical Examples

The inertial properties of the ballbot that are utilized in the simulations are given in
Table3.

First, simulation results for the ballbot whose dynamics is restricted to the 2D x-z
plane are presented. The initial conditions and the control gains used in the simulation
are given in the first row of Table4. The corresponding simulation results are shown
in Fig. 10. The top two plots illustrate the convergence of the orientation of the top
and the ball, in other words, the fact that x and θ tend both to zero. The bottom left
plot shows the evolution of the passive output y = k1y1 + k2y2, while the bottom
right plot shows the evolution of the closed-loop energy functional Hd (96).

Second, simulation results are presented that show the response of the ballbot to
a feedback control (104). In this simulation, the initial conditions and the control
gains are given by the second row of Table4. Notice that the initial conditions are
quite far away from the desired upward equilibrium Rst = eρê3 and the desired ball
orientation Rsb = eσê3 , where ρ and σ are constant real numbers. On the left of
Fig. 11, we illustrate the asymptotic stabilization. The top two plots illustrates the
fact that both the ball and the top move to an orientation such that Rst e3 = e3 and
Rsbe3 = e3, which is another way to state that Rst = eρê3 and Rsb = eσê3 for some
constant numbers ρ and σ. The bottom left plot shows the evolution of the passive
output y = k1y1 + k2y2, while the bottom right plot shows the evolution of the closed
loop energy functional Hd (102). The path tracked by the ballbot on the plane is shown
on the right in Fig. 11.

Table 3 System parameters

Parameter Symbol Value

Ball radius rh 0.1058 m

Ball mass mb 244 kg

Ball inertia Ib 1.821 kg·m2

Top center of mass height l 0.69 m

Roll moment of inertia It,11 12.59 kg·m2

Pitch moment of inertia It,22 12.48 kg·m2

Yaw moment of inertia It,33 0.66 kg·m2

Top mass mt 51.66 kg
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Table 4 Initial conditions and control gains

Initial conditions Control gains

Sim 1 x(0) = 2π

3
θ(0) = 4π k1 = 5 k2 = −70 ke = 20

ẋ(0) = 0 θ̇ = 0 kk = 11 kp = 10 kI = 1

Sim 2 Rst (0) =
R

y,
π

3

R
x,−π

2

Rsb(0) = I3 k1 = 5 k2 = −70 ke = 20

ωst (0) = ωsb =
03

psb = 03 Kk = 11I3 Kp = 10I3 KI = I3

Sim 3 Rst (0) =
R
z,
4π

3

Ry,1.74Rx,1

Rsb(0) = I3 k1 = 5 k2 = −70 ke = 20

ωst (0) = ωsb =
03

p̃sb(0) =
(
1

4
,
2

y
, 0)

Kk = 11I3 Kp = 7.5I3 kt = r√
k1ke
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Fig. 10 Asymptotic stabilization of the 2D Ballbot
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Fig. 11 a Time evolution of quantities of interest b The path tracked by the Ballbot
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Finally, we present the simulation results that use the controller (109), designed
to stabilize the position of the ball along with the upward equilibrium of the top. The
initial conditions and the control gains are selected as the third row of Table4. On
the left of Fig. 12, the top left plot shows that the top asymptotically converges to the
upward equilibrium point, where γ = e3. The top left figure depicts the evolution
of the position error of the ball, which converges to zero, indicating that psb −→ pdsb.
Additionally, while the bottom left plot shows that the passive output is asymptoti-
cally driven to zero, the bottom right plot shows that the closed-loop energy function
Hd converges to itsminimumvalue, as expected due to the detectability of the passive
output y. Again, the path tracked by the ballbot on the plane is shown on the right of
Fig. 12.

4 Discussion and Conclusion

This chapter investigated the control design for nonprehensile rolling manipulation
dealing with nonholonomic constraints. Two systems were addressed, namely, the
hula-hoop and the ballbot.

The considered robotic hula-hoop is an underactuated mechanical system subject
to second-order nonholonomic constraints. We designed a locally stable controller
scheme by exploiting the null space of the inertia coupling matrices, making it possi-
ble to simultaneously satisfy the control objective of (i) spinning the hoop at a desired
angular velocity on the desired position over the pole surface and (i i) stabilizing the
pole coordinates. A formal proof that guarantees locally ultimate boundedness of the
hoop coordinates was presented, with arbitrary small ultimate bound on the tracking
error and boundedness of the pole coordinates. To validate the proposed approach,
we presented a numerical simulation that showed our solution’s good performance.
The main challenges for the experimental setup are the necessity of a high-speed
reconstruction of the hoop position and orientation (in the simulation is was consid-
ered to be implemented at a 20 Hz rate) with good resolution and the high velocities
and acceleration required for the actuator (e.g., for the humanoid-like robot used in
the simulations).

The ballbot robotic system is made of an actuated ball with a top. A reduced set of
dynamic equations, whose configuration space is Q = R

2 × SO(3) × SO(3), was
derived. These 10 first-order ODEs can express the system’smotion comprehensibly,
given the kinematic relations that the system has to satisfy. We can analyze dynamic
properties and derive control laws that achieve asymptotic stabilization for several
purposes thanks to the compact form of these equations of motion. In particular, we
identified two passive outputs for the restricted 2D dynamics and the full 3D dynam-
ics, which were then used to devise energy-shaping control laws making the system
behave as a new Lagrangian system whose desired equilibrium point is asymptoti-
cally stable. The basin of attraction was shown to be global as long as the mechanism
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is designed to be strongly inertially coupled. We emphasize that modeling, analysis,
and computations can be carried out directly in a geometric coordinate-free frame-
work, as illustrated for the ballbot in this chapter. This fact facilitates the analysis of
the dynamics and control synthesis for complex systems such as the ballbot.
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