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Abstract This chapter presents a solution to the problem of autonomous pizza toss-
ing and catching. Under the assumption that robotic fingers grasp the pizza dough
with soft contact, the grasp constraints are formulated and used to derive the indi-
vidual and combined Euler-Lagrange dynamic equations of motion of the robotic
manipulator and the dough. In particular, the dynamics of the dough is a modified
version of the rigid-body dynamics, taking into account the change of inertia due to
its deformation. Through these mathematical models, the two control problems of
tossing and catching are formulated. For the tossing phase, an exponentially conver-
gent controller that stabilizes a desired velocity of the dough as it leaves the fingers,
is derived. On the other hand, to catch the dough, an optimal trajectory for the end-
effector of the robotic manipulator is generated. Finally, the control laws to make
the optimal trajectory exponentially attractive are derived. The developed theory is
demonstrated with an elaborate simulation of the tossing and catching phases. This
chapter is based on the works presented in [1].

1 Introduction

The problem of tossing and catching a pizza dough is a procedure that is frequently
dexterously performed by human pizza makers. There are at least three important
reasons why tossing the dough during the preparation of the pizza is attractive: (i) the
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dough is stretched to the desired size, (i i) the doughnaturally assumes a configuration
that is thicker at the ends and thinner in the middle, and (i i i) as the spinning dough
freely falls, the outside of the dough dries, making it crunchy in the outside but light
in the middle. The pizza maker is trained to perform a streamlined hand motion to
toss and catch the dough, andwe are aiming to achieve a similar feat with a humanoid
robot.

There are several challenges to achieve this kind of manipulation. The fact that
the object that we are trying to manipulate is deformable complicates the several
previously well-studied problems, such as catching or grasping [2], motion estima-
tion [3, 4] and manipulation of rigid objects [5]. Furthermore, such nonprehensile
manipulation tasks typically require high-speed sensing and control action [6, 7].
While the deformation is beneficial for the grasping phase as it introduces more sur-
face area where normal force may be applied, motion estimation is more problematic
because the dynamic model of the rigid body is no longer valid. In this chapter, we
estimate the equations of motion of the dough by those of a rigid body whose mass
is constant but whose inertia varies due to its varying shape. We assume the ability
to receive the shape information via a vision sensor, which enables us to estimate the
motion of the dough while it is in the air. The specific literature for robotic tossing
and catching of pizza dough is limited. In [8] the authors have studied how different
forms of tossing might yield different desired behaviors.

With perfect knowledge of the motion of the dough, we can generate optimal
trajectories to intercept it. The generation of optimal trajectories in SE(3) has been
studied in [9, 10]. Sincewe only estimate thismotion,we repeat the optimal trajectory
generation as we are fed with new sensor information. The optimal trajectories are
generated to match the initial position, velocity, acceleration, and final velocity and
accelerations. Therefore, it is at least thrice continuously differentiable. An optimal
trajectory whose initial and final accelerations are desired to be prescribed has to
satisfy a sixth-order boundary value problem (BVP). We generate such a BVP using
the necessary conditions for a path to minimize a convex combination of the jerk and
acceleration functionals.While minimizing the jerk functional reduces the vibrations
in the structure of the robotic manipulator, minimizing the acceleration functional
reduces the total amount of energy expended during the catchingmotion [11].We can
determine which aspect to emphasize by choosing the convex coefficients suitably.
As soon as the first optimal trajectory is generated, the robot is instructed to move
along this trajectory and update its path as new measurements come in.

We derive control laws for both the tossing and catching phases. The control law
for tossing the object makes sure the object has the desired velocity as it leaves the
fingers,while the control law for catchingmoves themanipulator’s end-effector along
the previously generated optimal trajectory. The robotic manipulator is chosen with a
redundant, S-R-S topology tomimic the human armwith 7 degrees of freedom (DoF).
All of the quantities and mathematical operators needed to analyze the combined
robotic and dough system are presented in Table1. The extra DoF is exploited to
flow to the configuration with a maximum manipulability index along the nullspace
of the manipulator Jacobian. Finally, we demonstrate the developed theory with an
elaborate tossing and catching simulation.
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Table 1 Main symbols used in this chapter

Definition Symbol

Word (inertial) frame W

Homogeneous transformation between frames
A and B

Tab

Line brackets of the vector fields v and w [v, w]

Wedge and hat operators either between R3 and
SO(3) or R3 and SO(3)

∧, ∨

Frame at the i th contact point moving with the
dough

Ci

Frame at the i th contact point moving with the
i-th finger

Fi

Frame at the tool’s center (hand frame) H
Frame at the dough’s center of mass O
Standard unit vector e3 =

[
0 0 1

]T

Velocity (twist) of Ci with respect to Fi ,
expressed in body coordinates

vbfi ci ∈ R
6

Homogeneous transformation between a
generic frame A and a frame B

Tab ∈ SE(3)

Velocity (twist) of H with respect to W vsh ∈ R
6

Velocity (twist) of O with respect to W vso ∈ R
6

Body manipulator Jacobian Jbsh = J ∈ R
6×n

Vector of joint angles θ =
[
θ1 · · · θn

]T ∈ R
n

Radius of the pizza dough r > 0

Height of the pizza dough’s geometric center h > 0

Orientation of O with respect to W Rso ∈ SO(3)

Angular velocity of O with respect to W
expressed in the body frame O

ωo ∈ R
3

Inertia tensor of the pizza dough Io ∈ R
3×3

External torque applied to the pizza dough
expressed in O

υ ∈ R
3.

Gravity acceleration γ � 9.81 m/s2

Mass of the pizza dough mo > 0

Linear velocity of O with respect to W
expressed in the body frame O

v ∈ R
3

External force applied to the pizza dough
expressed in O

f ∈ R
3.

Mass matrix of the manipulator Mr (θ) ∈ R
n×n

Coriolis matrix of the manipulator Cr (θ, θ̇) ∈ R
n×n

Gravitational terms of the manipulator n(θ) ∈ R
n

Manipulator joint torques τ ∈ R
n

Mass matrix of the pizza dough Mo ∈ R
6×6

Wrench acting on the pizza dough fo ∈ R
6

Coriolis and gravity term of the pizza dough φo ∈ R
6

Contact force at the i th finger fci ∈ R
4
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2 Grasp Constraints

For the formulation of the contact constraint, we follow [5]. We assume that the
fingers contact the dough softly and that the contact points are fixed. The contact
frame Ci moves with the object, while the finger frame Fi moves with the hand. The
system and the frames are schematically displayed in Fig. 1.

The soft contact condition yields the equation BT
civ

b
fi ci

= 04, for each finger enu-

merated by the index i ∈ I := {1, . . . , k}, where Bci =
[
I3 03
O3 e3

]
∈ R

6×4. We adopt

the convention that when the superscript over a quantity is omitted, it is expressed
in the body coordinate frame, “b”. After some algebra, we find that

v fi ci = −Ad−1
Thci

vsh + Ad−1
Toci

vso.

where Ad : SE(3) → Aut (se(3)) is the adjoint operator on SE(3) whose range is
the set of isomorphisms of se(3).Therefore, we have the contact constraint

BT
ci

(
−Ad−1

Thci
vsh + Ad−1

Toci
vso
)

= 04,

where the∨ and∧ operators denote the isomorphism from se(3) toR6 and its inverse,
respectively. Because vsh = Jθ̇, we have

BT
civ fi ci = BT

ci

(
−Ad−1

Thci
J θ̇ + Ad−1

Toci
vso
)

= 04. (1)

Defining the following constraint matrices

Fig. 1 RoDyMan Prototype:
frames and joint axes
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Bc =

⎡
⎢⎢⎢⎣

Bc1 O6×4 · · · O6×4

O6×4 Bc2 · · · O6×4
...

...
. . .

...

O6×4 O6×4 · · · Bck

⎤
⎥⎥⎥⎦ ∈ R

6k×4k,

A = BT
c

⎡
⎢⎢⎢⎢⎣

AdT−1
oc1

−AdT−1
hc1
J

AdT−1
oc2

−AdT−1
hc2
J

...
...

AdT−1
ock

−AdT−1
hck
J

⎤
⎥⎥⎥⎥⎦

∈ R
4k×(6+n),

allows us to rewrite the contact constraints (1) in the Pfaffian form Av = 04k , where

v =
[
vTso θ̇

T
]T ∈ R

6+n . We call this equation the differential contact constraints

(DCC)

BT
ci

([
vhci , Ad−1

Thci
vsh
]

−
[
voci , Ad−1

Toci
vso
]

− Ad−1
Thci

v̇sh + Ad−1
Toci

v̇so
)

= 04.

This can be simplified by considering the following

vhci = −AdT−1
hci
vsh + AdT−1

oci
vso + voci ,

so that
[
vhci , AdT−1

hci
vsh
]

=
[
AdT−1

oci
vso, AdT−1

hci
vst
]

+
[
voci , AdT−1

hci
vst
]
.

Plugging this back to the DCC, we get

BT
ci

([
Ad−1

Toci
vso, Ad−1

Thci
vsh
]

+
[
voci , Ad−1

Thci
vsh
]

−
[
voci , Ad−1

Toci
vso
]

− Ad−1
Thci

v̇st + Ad−1
Toci

v̇so
)

= 04.

Now, since the contact point is fixed in the object frame of reference, we have
vboci ≡ 06 for all i ∈ I. Therefore, the second and the third brackets in the expression
above drop, yielding a simplified differential contact constraint

BT
ci

([
AdT−1

oci
vso, AdT−1

hci
vsh
]

− Ad−1
Thci

v̇sh + Ad−1
Toci

v̇so
)

= 04.

Invoking the relationship between the joint velocities and the end-effector velocity,
we get

BT
ci

([
AdT−1

oci
vso, AdT−1

hci
vsh
]

− Ad−1
Thci

J̇θ̇ − Ad−1
Thci

Jθ̈ + Ad−1
Toci

v̇so
)

= 04. (2)
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3 Kinematics

In order to map the tool velocities and forces to the joint velocities and torques, we
need to derive the kinematics of themanipulator and the object. Object kinematics are
well-known rigid body kinematics. To manipulate the pizza dough, we use a 7 DoF
serial robotic manipulator. We want this manipulator to have similar characteristics
as the human arm. To that end, we choose the topology of the manipulator to be
that of an S-R-S robot. We have developed a humanoid robotic torso mounted on an
omnidirectional mobile platform, called RoDyMan, in our laboratory and the S-R-S
manipulator corresponds to one of the arms of RoDyMan robot, whose frontal view
is shown in Fig. 1. We have chosen to perform the tossing and catching operations
with the right arm. This viewpoint lets us identify the first joint with the shoulder,
the second joint with the elbow, and the last joint with the wrist.

Again, we follow [5] for the derivation of the kinematics of the S-R-S manipula-
tor. This procedure involves using the exponential coordinates for the end-effector
position and therefore maintains the inherent geometric features of the manipula-

tor. The joint axes, expressed in W , are given by ξi =
[−ωi × pi

ωi

]
, for each joint

i ∈ {1, . . . , 7}, where,ωi ∈ R
3 is the axis of rotation of each of the i th joint expressed

inW and pi ∈ R
3 is any point on this axis of rotation, written inW .

The position forward kinematics is then given by

Tsh(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5eξ̂6θ6eξ̂7θ7Tsh(0), (3)

where Tsh(0) is the initial pose of the end-effector with respect to the base frame and
the exponential mapping exp : se(3) → SE(3) is as defined in [5].

The relationship between the joint velocities and the end-effector velocities is
given by the body manipulator Jacobian, Jb ∈ R

6×n . This is found by the following
computation

Jb = Jbsh = [ξ†
1 ξ†

2 ξ†
3 ξ†

4 ξ†
5 ξ†

6 ξ†
7

]
,

where
ξ†
i = Ad−1(

eξ̂i θi ···eξ̂7θ7Tsh(0)
)ξi ,

with i = 1, . . . , 7. Given the joint velocities, we can then find the end-effector veloc-
ities by the relation vbsh = Jbθ̇. Note that away from the singularities, Jb has rank 6.
Given an end-effector velocity, there are infinitely many joint velocities that supply
this end-effector velocity. To achieve the desired end-effector velocity, we need a
redundancy resolution technique to decide which joint velocity we want to supply.
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4 Dynamics

We have to model the natural motion of the pizza dough, which is a deformable
object. We assume the dough has a circular shape with a radius that changes due
to the various S1-symmetric forces. The height of the geometric center of the pizza
may change due to fluid dynamical forces on the dough.

4.1 Variable Inertia Rigid Body Orientation Dynamics

Although the mass of the dough remains constant, its moment of inertia changes
due to the change in its shape. In turn, this variation affects the conventional Euler-
Lagrange equations of motion of the rigid body. In this section, we derive the appro-
priate equations of motion for the orientation dynamics of the dough in the body
frame.

The Lagrangian of the pizza dough is given by

L(Rso, Ṙso) = −det (Io)
2

tr
[(
I−1
o ω̂o

)2] = 1

2
ωT

o Ioωo, (4)

where det () and tr() indicates the determinant and the trace of a square matrix,
respectively. The dependence of the Lagrangian (4) on Rso and Ṙso stems from the
orientation kinematics, namely, from the equation ω̂so = RT

soṘso.
Wewould like to calculate the conventional Euler-Lagrange equations for the rigid

body with a variable moment of inertia. It is well-known that the rotational dynamics
is symmetric with respect to the action of the group SO(3) on itself. Therefore, by
the theory of reduction of dynamics [12], the equations of motion drop to the quotient
T SO(3)/SO(3) ∼= so(3). We have

∂L

∂Rso
= − det (Io)

∂

∂Rso
tr
[(
I−1
o RT

soṘso
)2] = − det (Io)Rso

[
ω̂o, I−1

o ω̂oI−1
o

]

∂L

∂Ṙso
= −det (Io)

2

∂

∂Ṙso
tr
[(
I−1
o RT

soṘso
)2] = det (Io)RsoI−1

o
˙̂ωoI−1

o .

Here, the differentiation with respect to the matrices Rso and Ṙso is performed using
the familiar matrix differentiation rules, followed by projecting the result onto the
tangent space TRSO(3).

Pulling the derivatives above back to the Lie algebra via the left translation map
yields

∂L

∂Rso
= − det (Io)

[
ω̂o, I−1

o ω̂oI−1
o

]
,

∂L

∂Ṙso
= det (Io)I−1

o
˙̂ωoI−1

o .
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Finally, the Euler-Poincaré equations motion are found to be

Ioω̇o − Io

(
ω̂oI−1

o

dIo
dt

+ dIo
dt

I−1
o ω̂o

)∨
+ tr

(
I−1
o

dIo
dt

)
Ioωo + ωo × Ioωo = υ.

(5)

4.2 Rigid Body Translational Dynamics

The translational dynamics of the object are the usual Newton’s equations written in
the frame O

mov̇o + ωo × movo + moγRT
soe3 = f . (6)

4.3 RoDyMan Arm Manipulator Dynamics

We follow [5] once again to derive the manipulator dynamics, whose details have
been omitted for the sake of simplicity. This procedure yields

Mr (θ)θ̈ + Cr (θ, θ̇)θ̇ + n(θ) = τ . (7)

4.4 Object and Manipulator Combined Dynamics

When the fingers and the object are in contact, there are forces arising from this
interaction. In the combined system, the forces on the object may only be imparted
via the contact, therefore we have the following object dynamics

Mov̇bso + φo

(
Tso, vbso

) = fo, (8)

where

Mo =
[
moI3 O3

O3 Io

]
∈ R

6×6,

fo =
k∑

i=1

AdTT−1
oci
Bci fci ∈ R

6,

φo =
⎡
⎣

ωo × movo + moγRT
soe3

−Io

(
ω̂oI−1

o

dIo
dt

+ dIo
dt

I−1
o ω̂o

)∨
+ tr

(
I−1
o

dIo
dt

)
Ioωo + ω̂oIoωo

⎤
⎦ ∈ R

6,
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where the dependencies of φo have been dropped.
Similarly, each finger will experience a reaction force due to Newton’s third law.

These reaction forces occurring at the contact locations aremapped to the hand frame
by the corresponding adjoint transformation. Subsequently, the wrench at the hand
frame are mapped to the joint torques by the body manipulator Jacobian. Therefore,
the reaction force on the hand frame and on the joints are given by

fh = −
k∑

i=1

AdTT−1
hci

Bci fci ∈ R
6, τ reac = Jb

T
fh ∈ R

n .

Consequently, the manipulator dynamics become

Mr θ̈ + Cr (θ, θ̇)θ̇ + n(θ)︸ ︷︷ ︸
�φr(θ,θ̇)

= τ −
k∑

i=1

Jb
T
AdTT−1

hci

Bci fci .

In order to express these equations together, we are going to introduce some more
definitions, let

M =
[
Mo O6×n

On×6 Mr

]
∈ R

(6+n)×(6+n),

φ =
[
φo

φr

]
∈ R

6+n,

τ̄ =
[
06
τ

]
∈ R

6+n, fc =
⎡
⎢⎣
fc1
...

fck

⎤
⎥⎦ ∈ R

4k .

Then, we have the following system of differential-algebraic equations

M ˙̄v + φ(Tso, vso,θ, θ̇) = τ̄ + AT fc (9)

fc = (AM−1AT
)−1 (

AM−1(φ − τ̄ ) − χ
)
, (10)

or, equivalently, we have

[
M −AT

−A O4k

] [ ˙̄v
λ

]
+
[

φ
04k

]
=
[

τ̄
Ȧv̄

]
, (11)

with
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v̄ =
[
vb

T

so θ̇
T
]T ∈ R

6+n,

AT =
[

AdT
T−1
oc1
Bc1 · · · AdT

T−1
ock
Bck

−Jb
T
AdT

T−1
hc1

Bc1 · · · −Jb
T
AdT

T−1
hck

Bck

]
∈ R

(6+n)×4k .

5 Trajectory Generation

In order to render the catching problem as easy as possible, it may be desirable to
toss the dough in the air in such a way that it neither has any lateral linear velocity
nor any angular velocity along the roll and pitch axes. As desirable as it might be,
unmodeled dynamics due to aerodynamic forces and the compliance of the dough
inevitably imparts such velocitieswhile the dough is in flight.We assume the presence
of an estimator that predicts the dough’s motion while it is in the air and updates
its prediction at regular intervals. To begin with, we intend to consider the visual
tracking problem of a dough of a particular rigid shape, concentrating on obtaining
the motion of its center of mass using our prior experience in the estimation of such
objects [3, 4].Afterwards,we intend to develop visual tracking algorithms to track the
freely falling object’s deformation and orientation. Preliminary results on tracking
deformation and orientation can be found in the previous chapters. In this section,
we tackle the problem of generating an optimal trajectory for the end-effector of the
robotic hand, given the prediction of the motion of the dough.

5.1 Theory

Weare interested in trajectories for whichwe can specify the initial position, velocity,
acceleration, and final velocity and acceleration of the motion. The final position is
going to be dictated by the final position of the dough. This final position of the
dough is a function of the final time, which will be a parameter to be determined by
the optimization process. Note that the motion may be specified in either the joint
space, a torus, or the task space, the special Euclidean group of three dimensions
over the reals. At this stage, we are going to evade this distinction by assuming that
the path we would like to generate is on an arbitrary Riemannian manifold [13] Q.
Let us call this path c : (a, b) −→ Q, and the metric on Q is denoted by 〈·, ·〉. We let
f : (−ε, ε) × (a, b) −→ Q be a variation of c, with ε > 0,

f(0, t) = c(t), ∀t ∈ [a, b] and f (s, a) = c(a).

We have two vector fields of importance along the path c. The first one is called
the variation field, defined by
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sc(s) = ∂f(s, t)
∂s

= dft (s)
ds

,

and second one is the velocity vector field of c, given by

vc(s) = dc(t)
dt

= ∂f(s, t)
∂t

= dfs(t)
dt

,

In order to perform calculus on the curves of this Riemannian manifold, we
introduce the Levi-Civita connection, ∇. Given a curve c(t) and a connection, there

exists a covariant derivative, which we denote by
D

dt
.

Let X(Q) denote the set of vector fields on Q. The curvature R of a Riemannian
manifold Q is a correspondence that associates to every pair X,Y ∈ X(Q) amapping
R(X,Y ) : X(Q) −→ X(Q) given by

R(X,Y )Z = ∇Y∇X Z − ∇X∇Y Z + ∇[X,Y ]Z , Z ∈ X(M).

Many paths satisfy the conditions on initial and final positions, velocities, and
accelerations. Since we would like to specify the initial position, velocity, accelera-
tion, and final velocity and acceleration, we need a sixth-order differential equation
to plug these constraints as boundary conditions. Such a differential equation is what
we end up with when we minimize the jerk functional, for example. On the other
hand, the jerk functional is not necessarily a measure of howmuch effort is expended
as it is a measure of vibrations within the system. If we would like to minimize the
end-effector wrenches needed to catch the dough, we would have to minimize the
acceleration functional. This approach, however, yields a fourth-order differential
equation and so does not lend itself to imposing the desired boundary conditions.

In order to overcome this quandary, we propose to minimize not just the acceler-
ation nor just the jerk, but a convex combination of the two. As long as we keep the
weight of the jerk functional away from zero, we shall still end up with a sixth-order
differential equation and will be able to impose the desired boundary conditions.
Furthermore, we can tune the weight of the acceleration functional so that it is arbi-
trarily close to unity, which would practically ignore the effect of the jerk functional
and yield an almost optimal minimum acceleration path that successfully catches the
dough. With this motivation, we define the cost functional to be minimized to be

Lc(s) :=
∫ t f +sδt f

t0

α

〈
D2vc(s)

∂t2
,
D2vc(s)

∂t2

〉
+ β

〈
Dvc(s)

∂t
,
Dvc(s)

∂t

〉
dt (12)

where the weights α and β satisfy α + β = 1. Here, we consider only the case where
the final position is left free and is part of the minimization problem. We calculate
the first variation of this functional using analogous calculations as in [10] and, in
addition, taking special care of the free endpoint conditions. This yields
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1

2

d

ds
Lc(s) =

∫ t f

t0

〈
α

(
−D5vc(s)

∂t5
− R

(
vc(s),

D3vc(s)
∂t3

)
vc(s)

+ R

(
Dvc(s)

∂t
,
D2vc(s)

∂t2

)
vc(s)

)

+ β

(
D3vc(s)

∂t3
+ R

(
vc(s),

Dvc(s)
∂t

)
vc(s)

)
, sc(s)

〉
dt

+
(
1

2
α

〈
D2vc(s)

∂t2
,
D2vc(s)

∂t2

〉
+
〈
α
D4vc(s)

∂t4
− β

D2vc(s)
∂t2

,
dζ

dt

〉) ∣∣∣∣
t f

δt f .

Consequently, the necessary conditions for the minimization are

α

(
−D5vc(s)

∂t5
− R

(
vc(s),

D3V

∂t3

)
vc(s) + R

(
Dvc(s)

∂t
,
D2vc(s)

∂t2

)
vc(s)

)

+ β

(
D3vc(s)

∂t3
+ R

(
vc(s),

Dvc(s)
∂t

)
vc(s)

)
= 03, ∀t0 ≤ t ≤ t f (13a)

(
1

2
α

〈
D2vc(s)

∂t2
,
D2vc(s)

∂t2

〉
+
〈
α
D4vc(s)

∂t4
− β

D2vc(s)
∂t2

,
dζ

dt

〉) ∣∣∣∣
t f

= 0 (13b)

c(t0) = γ0, vc(s)(t0) = v0,
Dvc(s)

∂t
(t0) = a0, (13c)

c(t f ) = ζ(t f ), vc(s)(t f ) = Dvc(s)
∂t

(t f ) = 03, (13d)

where suitable parametrized initial and final conditions terms have been introduced.

5.2 Generating Hand Frame Trajectories

In this section, we discuss how we generate optimal trajectories for the motion
of the end-effector, given the initial position γo = [x0 y0 z0

]T ∈ R
3 and velocity

vc(s) = [vd0,x vd0,y vd0,z
]T ∈ R

3 of the dough at the moment it is tossed by the end-
effector. With this data, we can integrate the dynamics of the center of mass of the
dough to find the path it takes

pd(t) =
⎡
⎢⎣

x0 + vd0,x t
y0 + vd0,yt

z0 + vd0,z t − 1

2
γt2

⎤
⎥⎦ ∈ R

3.
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Moreover, we can also numerically integrate the rotational dynamics of the dough,
derived in Sect. 4.1, to find the rotational path the dough takes. We then use this
information tofind the extremal of the cost functional defined in the previousSect. 5.1.
In particular, we break this problem into two. We compute the optimal translational
path using the necessary conditions (13). Thefinal time generated from this procedure
is then used to determine the orientation the tool needs to have by evaluating the
orientational trajectory of the dough at this instant. Without breaking the problem
into two, one could also find the optimal trajectory directly in SE(3). However,
in this case, the rotational motion of the dough must be interpolated using one of
the available techniques [10]. Moreover, the free endpoint condition presented in
the necessary conditions (13) has to be solved iteratively, injecting a fair deal of
complexity into the problem.

The necessary conditions presented in Eq. (13) yields the differential equation
−αp(6) + βp(4) = 03, with p(t) ∈ R

3 the position of the end effector at time t , in
addition to the following concrete boundary condition equations for the translational
motion of the end-effector

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(t0) − p0
ṗ(t0) − v0
p̈(t0) − a0

p(t f ) − pd(t f ) − lhRd(t f )e3
ṗ(t f )
p̈(t f )

p(5)(t f )T ṗd(t f ) + 1

2
p(3)(t f )Tp(3)(t f )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 019,

where the first three equations are self-explanatory. They are boundary conditions
to match the hand frame’s initial position, velocity, and acceleration with that of the
dough. Assuming the body z-axis of the dough points orthogonal to the plane of
the dough and lh > 0 is a constant, the fourth equation states that the end-effector
should be placed directly underneath the dough at the final time. The fifth and sixth
conditions impose the design choice that the final translational velocity of the tool
frame vanishes. Upon experimentation, it was empirically observed that no slippage
occurs if the hand is stopped at the time of contact (catching). Lastly, the final equation
is the free endpoint condition from which we solve for the final time at which the
catching should occur.

The general solution to the differential equation is given by
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p(t) =
⎡
⎣
x(t)
y(t)
z(t)

⎤
⎦

=
3∑

n=0

⎡
⎣
antn

bntn

cntn

⎤
⎦+

(
α

β

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a4 cosh

(√
β

α
t

)
+ a5 sinh

(√
β

α
t

)

b4 cosh

(√
β

α
t

)
+ b5 sinh

(√
β

α
t

)

c4 cosh

(√
β

α
t

)
+ c5 sinh

(√
β

α
t

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We use this analytic expression in the boundary conditions presented above along
with a nonlinear root finder to solve for the 19 unknowns, namely, the coefficients
a0 through c5 and the final time t f .

The next task is to find the optimal rotational path the end-effector is desired to
follow. The necessary conditions in Eq. (13) yields the differential equation

−α

(
ω(5) + 2ω × ω(4) + 5

4
ω ×

(
ω × ω(3)

)
+ 5

2
ω̇ × ω(3) + 1

4
ω × (ω × (ω × ω̈)) + 3

2
ω × (ω̇ × ω̈) − (ω × ω̈

)

×ω̇ − 1

4
(ω × ω̇) × ω̈ − 3

8
ω × ((ω × ω̇) × ω̇) − 1

8
(ω × (ω × ω̇)) × ω̇

)
+ β

(
ω(3) + ω × ω̈

)
= 03,

along with the boundary conditions

⎡
⎢⎢⎢⎢⎢⎢⎣

I3 − Rsh(t0)TRso(t0)
ω̂sh(t0) − R−1

oh (t0)ω̂so(t0)Roh(t0)
α̂sh(t0) − R−1

oh (t0)α̂so(t0)Roh(t0)
I3 − Rsh(t f )TRso(t f )

ω̂sh(t f )
α̂sh(t f )

⎤
⎥⎥⎥⎥⎥⎥⎦

= O18×3,

where α ∈ R
3 is the angular acceleration. The first three equations match the initial

orientation, angular velocity, and angular acceleration of the hand frame and the
dough, taking into account the constant rotational offset between them due to the
choice of initial conditions of the reference frames. The fourth equation is a condition
that the final orientations of the end effector and the dough should match, where the
yaw rotation of the dough has been eliminated. The final two equations dictate that
the final angular velocity and acceleration of the hand vanish.

This boundary value problem has no analytical solution and needs to be found
using a numerical boundary-value problem solver. We have used Matlab’s “bvp4c”
function to accomplish this task.
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Table 2 Projectile motion

Time of flight t f
2vTo e3

γ

Max projectile height hd
(vTo e3)

2

2γ

No. of revolutions nd
ωT
o e3t f
2π

6 Control Law

There are two distinct control objectives that we are pursuing in this work. The first
one is to toss the pizza dough such that it reaches a certain height, hd > 0, and by the
time it comes back to the level of the fingers it has spun a certain number of times,
nd > 0. The second objective, which begins after the tossing phase, is to catch the
pizza dough. We assume that we have generated an optimal trajectory for the S-R-
S manipulator’s end-effector to follow to intercept the dough. The second control
objective is to have the end-effector follow this generated trajectory.

6.1 Tossing

The simplest plan to achieve the tossing goal may be excogitated by assuming that
the center of mass of the dough behaves like a point mass during the free-fall phase.
We can analytically determine how long the flight takes and the maximum height
that the center of mass reaches with this assumption. These are the familiar formulas
from elementary mechanics, cf. Table2.

From the maximum height formula, we can derive an expression for the desired
velocity of the dough at the time of release: vo,d = [0 0

√
2γhd

]T
. Substituting the

formula for the time of flight into the formula for nd , we find a formula for the desired
angular velocity of the dough at the time of release

nd = ωT
o e3t f
2π

= ωT
o e3v

T
o e3

γπ
= ωT

o e3
π

√
2hd
γ

=⇒ ωo,d =
[
0 0 πnd

√
γ

2hd

]T
.

Combining these last two expressions for the desired linear and angular velocities,
we get the desired velocity for the dough as

vso,d =
[
0 0

√
2γhd 0 0 πnd

√
γ

2hd

]T
.
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In order to achieve this velocity, we need to act at the acceleration level and control
the velocity accordingly. We go back to Eq. (8) and compute the contact forces, fc,
that will impose an exponentially stable velocity dynamics to the desired velocity.
To that end, let us prescribe

k∑
i=1

AdTT−1
oci
Bci fci = −MoKd

(
bso − vso,d

)+ φo, (14)

where Kd ∈ R
6×6 is a symmetric, positive-definite matrix. If we can find forces to

apply to our fingers such that the contact forces are as given above, then the object
velocity will converge to the desired velocity exponentially fast with the rate of
convergence given by the eigenvalues of Kd . To find suitable forces that we can
apply to the fingers in order to generate the desired contact forces (14), we go back
to the defining equation of the contact forces given by the second equation in (10).
Rearranging this equation gives

AM−1τ̄ = AM−1φ − AM−1AT fc − Ȧv̄.

However, we need to have the first six components of the vector τ̄ to vanish because
those are the forces that are imposed on the object directly and there is no such
physical for at our disposal. Imposing this constraint yields the following equation

−BT
c

[
AdT

T−1
tc1

AdT
T−1
tc2

· · · AdT
T−1
tck

]T
JbM−1

r︸ ︷︷ ︸
�G

τ = AM−1φ − AM−1AT fc − Ȧv̄.

Therefore, one possible set of joint torques that would yield the desired contact
forces is given by

τ = G†
(
AM−1φ − AM−1AT fc − Ȧv̄

)
, (15)

where G† is the pseudo-inverse of G and fc is any solution of the underdetermined
Eq. (14).

6.2 Catching

The strategy we employ to catch the dough is to move the end-effector directly
underneath the dough. This direction is determined by the body negative z-axis of
the object frame. Moreover, we orient the end-effector such that the z-axes of the
dough and the end-effector are parallel. The latter behavior is imposed so that all the
fingers come in contact with the dough almost simultaneously, which reduces the
likelihood that slippage occurs during the catching phase.
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We refer to the optimal trajectory, generated in Sect. 5 by ζ∗(t) = (R∗(t),p∗(t)) ∈
SE(3) and to the actual end-effector trajectory by ζ(t) = (R(t),p(t)) ∈ SE(3). In
order to follow the desired optimal trajectory, we find the desired velocity field
vdes ∈ X(SE(3))whose integral curves converge to the desired optimal trajectory. In
the next step, we control the joints of the manipulator so that the velocity of the end-
effector exponentially converges to this desired velocity. We utilize the redundancy
of the manipulator by adding an auxillary control term, which is the orthogonal
projection onto the null space of the manipulator Jacobian of the gradient vector
field of the dynamic manipulability index.

The desired vector field vdes is found as the gradient vector field of the potential
function � : SE(3) → R, given by

�(R,p) = kR‖(I3 − R∗TR
)
e3‖2 + kp

2
‖RT

(
p − p∗)‖2, (16)

where kR, kp > 0 are rotational and translational proportional gains, respectively.
The gradient of this potential function is then computed to be

vdes(R,p) = (−kRR
(
RTR∗e3eT3 − e3eT3 R

∗TR
)
, −kpRT (p − p∗)

)
.

Note that, the integral curves of vdes ∈ X(SE(3)) are such that (Re3,p) −−−→
t→∞

(R∗e3,p∗), exponentially fast. The final step in the control design procedure is then
to control the velocity v of the end-effector such that v −−−→

t→∞ vdes, exponentially fast.

If this is accomplished then by the vanishing perturbation theory [14], we can claim
that (Re3,p) −−−→

t→∞ (R∗e3,p∗), exponentially fast.

We solve this problem by differentiating the relation Jbθ̇ = v to get J̇bθ̇ + Jbθ̈ =
v̇. Substituting for θ̈ from Eq. (7), we arrive at the relation

v̇ = JbM−1
r

(
τ − Cr (θ, θ̇)θ̇ − n(θ)

)+ J̇bθ̇.

If we set the right hand side equal to −kd (v − vdes), then from the linear control
theory, we know that v −−−→

t→∞ vdes. For that purpose, we first set τ = Cr (θ, θ̇)θ̇ +
n(θ) + τ ′ and we then set

τ ′ = J̃T
(
J̃J̃T
)−1 (−kd (v − vdes) − J̇bθ̇

)+
(
In − J̃T

(
J̃J̃T
)−1

J̃
)

η,

where J̃ = JbM−1
r ∈ R

6×n is an auxiliary control term that is designed to maximize

the dynamic manipulability index, η =
∂

√
det
(
J̃J̃T
)

∂θ
∈ R

n .
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7 Simulation

In the RoDyMan prototype that we have developed (see Fig. 1), the n = 7 axes of
rotation ωi and the points qi on these axes of rotation are given by

ω1 =
[
0 − sin

(π

3

)
cos
(π

3

)]T
, ω2 = [−1 0 0

]T
,

ω3 = ω4 = ω6 = [0 −1 0
]T

, ω5 = ω7 = [0 0 −1
]T

q1 = q2 = q3 = [0 −l0y l0z
]T

, q4 = [0 −l0y l0z − l1
]T

,

q5 = q6 = q7
[
0 −l0y l0z − l1 − l2

]T
,

with l0y, l0z, l1, l2, l3 > 0 proper lengths. To complete the derivation of position level
forward kinematics, we have selected the initial pose of the end-effector with respect
to the base frame to be the following homogeneous matrix

Tst (0) =

⎡
⎢⎢⎣
1 0 0 0
0 −1 0 −l0y
0 0 −1 l0z − l1 − l2 − l3
0 0 0 1

⎤
⎥⎥⎦ .

Using the dynamics of the combined system introduced in Sect. 4, we have tested the
controllers developed in Sect. 6. When integrating the equations of motion, we use
the constraints due to the first finger and the z-components of the second and third
fingers since these constraints form a maximally independent set of constraints. For
the tossing objective, we have set hd = 0.5 m and nd = 5. With these numbers, the
desired object velocity at the instant of release reads vd = [0 0 3.1321 0 0 49.199

]T
,

in which the first three components have m/s as unit measure, and rad/s for the last
three components. However, in order to account for unmodelled dynamics and distur-
bances, we intentionally impart nonzero lateral linear velocity and roll-pitch angular
velocities to the dough by setting vd = [0.1 −0.1 3.1321 0.75 −0.5 49.199

]T
. We

consider the situation where there are k = 3 fingers in contact with the dough.
In this simulation the tossing phase lasts about 0.08 s. The plots in Fig. 2a show

the yaw velocity and angle of the object along with its velocity and position along
the inertial z-axis. We observe in the top-left subfigure that the vertical velocity of
the object has reached 3.132 m/s and in the bottom-left subfigure its yaw velocity
has reached 49.198 rad/s at the time of release. In the top-right figure we observe the
parabolic profile of the z-axis position of the object, and in the bottom-right figure,
we see that after the time of release (around 0.08 s), the object has rotated 5 times
by the time it is caught.

After the release has taken place, the optimal trajectory generation is performed
and the manipulator is commanded with the relevant control law. It turns out that the
best time to intercept the pizza is t f = 0.729 s at which instant the translation of the
center of mass of the dough and the orientation of the dough read
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Fig. 2 a Tossing: Object motion; b Catching: End-effector motion
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pd(t f ) = [0.31331 −0.26305 1.6793
]
m,

Rd(t f ) =
⎡
⎣

−0.3925 0.84341 −0.36686
−0.91162 −0.30383 0.27684
0.12203 0.4431 0.88813

⎤
⎦ ,

and the interception pose of the hand is computed to be

p(t f ) = [0.48 −0.38 1.46
]
m,

R(t f ) =
⎡
⎣
0.77963 −0.50743 −0.36686
0.61235 0.74053 0.27684
0.13116 −0.44048 0.88813

⎤
⎦ .

As desired, while the z-axes of the end-effector and dough frames are matched,
the x- and y-axes are not necessarily parallel. We observe in the top two plots of
Fig. 2b that the end-effector is successfully controlled to its desired pose, as the
positive semidefinite potential function � presented in Eq. (16) is bounded below
and above by a positive constant. In the usual Euclidean norm, the bottom left plot
depicts the total amount of torque expended at each instant in time. Finally, the
bottom right plot shows how the dynamic manipulability index evolves throughout
the manipulation. The decrease at the beginning is due to the rapid tossing of the
pizza. As the redundancy is exploited to favour themanipulability during the catching
phase, we see that it climbs back up slightly above its starting value.

8 Discussion and Conclusion

In this chapter, we have tackled the problem of tossing and catching a pizza dough
with a humanoid robot. We have developed the models of grasping the dough
with robotic fingers, the kinematics and dynamics of the robotic manipulator, the
deformable pizza dough, and the combined system. We have developed a control
law that achieves the desired tossing motion using these kinematic and dynamic
models. In order to plan the catching of the dough as efficiently as possible, we have
found an optimal path that minimizes a convex combination of the acceleration and
jerk functionals. Once the trajectory to be taken has been decided, the control law
we developed for the catching phase makes sure the robotic manipulator follows
this desired path. We have then presented simulation results in plots of interesting
quantities.
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