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Abstract Stretching a pizza dough with a rolling pin is a nonprehensile manipu-
lation. Since the object is deformable, force closure cannot be established, and the
manipulation is carried out in a nonprehensile way. The framework of this pizza
dough stretching application that is explained in this chapter consists of four sub-
procedures: (i) recognition of the pizza dough on a plate, (i i) planning the necessary
steps to shape the pizza dough to the desired form, (i i i) path generation for a rolling
pin to execute the output of the pizza dough planner, and (iv) inverse kinematics
for the bi-manual robot to grasp and control the rolling pin properly. Using the
deformable object model described in Chap.3, each sub-procedure of the proposed
framework is explained sequentially.

1 Brief Introduction

Making a pizza is a wonderful art, and it requires delicate skills like preparing a pizza
dough mixed with wheat powder, water, salt, and other ingredients. An accurate ratio
is put in the preparation, stretching it dynamically and quickly into a disk-shaped,
saucing or dressing it with proper ingredients and quantity, and finally burning it
evenly and sufficiently in a wood-burning oven.
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Fig. 1 Application: stretching a pizza dough with a rolling pin

Table 1 Main symbols used in this chapter

Definition Symbol

Center of the pizza dough x0 =
[
cx cy

]T ∈ R
2

Generic point of the dough x ∈ R
2

Boundary of the pizza dough ∂S

Thickness of the dough h > 0

Frame associated to the plate D
Angle between the longest-axis of the dough
shape and the x-axis of D

θ ∈ R

Among these technical processes, this chapter focuses on stretching a pizza dough
with a rolling pin (Fig. 1). This process includes two critical techniques: (i) the
manipulation of a deformable object, and (i i) the control of the rolling pin to execute
the proper actions. Regarding the former, difficulties arise during the manipulation
planning of a deformable object because of the absence of a precise model. Indeed,
typical deformable objects can not be described with just one property but have
multiple properties like viscosity, elasticity, plasticity, or others, and mixed of them.
Even though several proposed models represent these properties of a deformable
object, it is not easy to find a suitable one for the pizza dough. In this chapter, the
SPH formulation explained in Chap. 3 is used to model a highly viscous deformable
object like the pizza dough, which is eligible to describe highly deformable objects,
even for liquids. Regarding the latter, researches about controlling a tool with a
robotic system are well established. However, nonprehensile manipulation is still a
relevant and challenging topic. A general inverse-kinematics manipulation planning
for the RoDyMan robot equipped with a rolling pin has been used in this pizza dough
stretching application (Table1).

http://dx.doi.org/10.1007/978-3-030-93290-9_3


Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin 231

Both techniques are explained in this chapter. The outline of the chapter consists
of this introduction and a survey about the related state of the art (Sect. 2). The sketch
of the proposed framework for the pizza dough stretching is depicted in Sect. 3, while
the explanation of each sub-procedure is given from Sect. 4 to Sect. 7. Simulation
results are explained in Sect. 8. Finally, Sect. 9 concludes the chapter.

2 Related Research

Manipulation of a deformable or a rheological object (i.e., the pizza dough) requires
an understanding of the object’s properties like viscosity, elasticity, and plasticity.
For example, a bread dough consists of gluten proteins and various minor ingredi-
ents, including minerals. The gluten proteins play a crucial role in determining the
unique baking quality of wheat by conferring water absorption capacity, cohesiv-
ity, viscosity, and elasticity. Gluten proteins can be divided into two main fractions
according to their solubility in aqueous alcohols: the soluble gliadins and the insolu-
ble glutenins [1]. It is widely accepted that gliadin accounts for the viscous properties
and glutenin imparts the strength and elasticity that are necessary to hold the gases
that are produced during fermentation and baking [2].

Many researchers have tried to characterize the bread dough’s fundamental prop-
erties and analyze the influences of the substances. The densities of various doughs
were measured in [3], while the viscoelasticity of bread dough was examined in [4–
6]. The main substances for the bread dough that are H2O (water), D2O (heavy
water), esterifying agents for glutamine residues, urea, salts, agents affecting disul-
fide bonding, and the protein subunits, were listed up in [7], also characterizing the
influence of the substances for the rheology of the bread dough. Seventeen com-
mercially available European wheat cultivars were sampled in [2]. Through these
samples, the authors had the creep-recovery experiments and analyzed for a set of
chemical and rheological parameters and baking quality using the PCAmethod. The
dynamic rheological properties of glutens fractions with two English-grown wheat
cultivars, Hereward and Riband, were studied in [8]. The authors confirmed that the
viscoelasticity of the glutenin sub-fraction of gluten and differences in the ratio of
gliadin to glutenin are the main factors governing inter-cultivar differences in the
viscoelasticity of wheat gluten. Similarly, in [9], the authors experimented with the
uniaxial elongational and shear rheology properties of doughs affected by the protein
contents or glutenin-to-gliadin ratio. The conclusion was that increasing protein con-
tent lowered the maximum shear viscosity while increasing the glutenin-to-gliadin
ratio increased the maximum shear viscosity. Stress and strain of the dough related
to the ratio of the feed sheet thickness of the roller gap and the roller’s speed in the
sheeting system were studied in [10]. The authors applied the lubrication approx-
imation for the equation of motion and used an inelastic power-law model for the
dough rheology. The relationship between the rheological properties for static dough
and dynamic rheological properties for dough crumbs was also investigated in [11].
The former was evaluated by texture profile analysis, like uni-axis (stretching) and
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bi-axial extension (inflation), and gluten index in static compression. The latter was
evaluated through dynamic mechanical analysis and thermal mechanical analysis
in dynamic compression. In [12], the authors described the influence of various
substances in a dough. They introduced widely used modeling methods for dough
rheology like power-law,Maxwellmodel, Lethersichmodel, Pelegmodel, and listing
the various measurement methods for dough properties like farinograph, mixograph,
rheomixer, extensigraph, alveograph, amylograph, maturograph, and so on. Base on
these known properties, several visco-elastoplastic models were proposed, as the
Herschel-Bulkley model and the K-BKZ model [13]. Bingham model is also one of
the well-known models for representing plastic properties [14].

The baking industry uses rolling (or sheeting) process using counter-rotating rolls
as a dough forming process for various products, such as cookies, crackers, pizza,
bread, and pastry. The rolling process is akin to calendering, which is used in many
industries, such as the paper, plastics, rubber, and steel industries [15, 16]. An overall
process for stretching of bread doughs was designed and implemented in [17].

There are more general researches for acquiring the properties of deformable
objects. A four-element model for characterizing the viscoelasticity was proposed
in [18]. In [19], a neural network model was employed to estimate an object’s elastic
properties. A FEM model was instead employed in [20] to estimate such properties.
Interactive approaches to get object’s elastic properties, even without the use of any
specific model, were used in [21–25].

3 Framework for a Pizza Dough Stretching Behaviour

The application handled by this chapter roughly consists of three main components:
(i) a robotic system grasping a tool, (i i) a deformable object, and (i i i) the tool
itself. In this application, the employed robotic system is the RoDyMan robot, the
deformable object is a pizza dough, and the tool is a rolling pin (see Fig. 1).

The proposed framework is described in this section. Input data from a sensor
device are acquired. This generates a proper action sequence for the robot. The
employed 9 sensor device is a RGB-D Kinect camera mounted on the head of the
RoDyMan robot.

The devised framework can be split into four components: (i) (deformable) object
recognition, (i i) planning actions on the deformable object; (i i i) planning actions
for the tool, and (iv) robot manipulaiton planning. As evident from Fig. 2, these
components are concatenated each other.

The first component, which is the object recognition module, gets sensor data
as input. Its output is the status of the recognized object. In this application, an
RGB-D Kinect camera takes pictures of the pizza dough on a plate. Afterwards, this
component separates the area of the pizza dough and the background. It reconstructs
the 3D shape of the pizza dough based on the 2D image data and some additional
information about the pizza dough. Finally, this object recognition module describes
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the shape of the pizza dough through numerical data. This description indicates the
current status of the pizza dough.

The second component, which is the one in charge of planning the actions on
the deformable object, gets the output of the previous component, the desired final
shape of the dough, and some additional information ( i.e., the transform look-up-
table, which will be illustrated in the following sections). Its output is the planned
sequence of actions on the deformable object. In this application, the current shape
of the pizza dough, the desired shape of the pizza dough, and information about the
dough deformation (i.e., how a particular action of the rolling pin deforms the object
into another shape) are given. Then, this component finds out the best sequence of
actions of the rolling pin to get the desired shape.

Similarly, the third component gets the output of the previous one and generates a
continuous motion of the tool to realize the desired actions on the deformable object.
Each action from the previous component is disconnected from the other. Therefore,
it is necessary to generate a smooth continuous motion, which is the output of this
module.

Finally, the last component is in charge of the robot planning to realize the output
of the previous component. Considering the kinematic information of the employed
robot and all the constraints, this component generates a smooth motion sequence
for the robot to suitably moving the tool as specified by the previous component.

Each component is explained in detail wtihin the sequel sections.

4 Pizza Dough Recognition

The pizza dough recognition component consists of two procedures: (i) digital image
processing for raw data from the sensor device, and (i i) how to describe the status
of the flatted deformable object.

Fig. 2 Sketch of the overall process that consists of four concatenated components
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 3 Detection of the pizza dough on a white rectangular plate
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4.1 Image Processing for Sensor Data

The perception procedure for a deformable object roughly consists of two parts in
this application; one is the image processing for the camera sensor data, and the other
is the representation of the status of the pizza dough. The perception method depends
highly on the application; therefore, in this case, we analyse the stretching action
of a pizza dough using the RoDyMan robot (Fig. 3a), and the recognition procedure
naturally depends on a specific detector for the pizza dough. To reduce the difficulties
of the perception based on image sensor data, some artificial restrictions are applied:
restriction to the workspace by defining the boundary area (i.e., a plain rectangular
plate) and the usage of a particular coloured deformable object (i.e., the blue colour)
contrasted to the background colour (i.e., white colour). However, these restrictions
are not critical but can be addressed with additional image processing.

With the help of the absolute position information of at least three corner markers
in a rectangular plate and the kinematic information provided by theRoDyMan robot,
it is not difficult to induce the frame transformation between a point in a given 2D
camera image and the corresponding absolute position in the world frame [26]. In the
carried out experiments, QR codeswere placed at each corner of the rectangular plate,
and then using an image matching with SIFT [27] the corner points were detected.
Other feature detectors like the SURF [28] or the FAST [29] are also available.
In order to easier detection of the corners, AR codes and the corresponding code
detectors (i.e., ARToolkit [30]) can be used. The primary purpose of corner detection
is to remove the dough plate’s outlier and induce a transformation T from a 2D view
image to a top-down viewed 2D space.

For the initial pizza dough, assuming that the ball- or bell-shaped pizza dough
is symmetric to the vertical rotation axis, the reconstruction of the 3D shape is
obtainable with partial camera views or depth sensors [31, 32]. Suppose the pizza
dough is shallow after being pushed by a rolling pin so that the height difference is
ignorable. In that case, the transformation T can be directly applied to the detected
pizza dough as well as the plate. However, the initial pizza dough is more like a ball-
or bell-shaped than a shallow disk. We do not commit much error in seeing the pizza
dough as a 2D figure on a plate with uniform thickness: indeed, the more shallow
the thickness of the dough, the minor error it occurs regarding a cylinder shape.

An example of the image processing steps to identify the pizza dough on the
plate is given in Fig. 3b–g. With reference to the labels in the figure, the steps now
briefly described. b) The raw image data from the camera mounted on the head of the
RoDyMan robot is shown. With default information, we assume that the camera’s
view covers the whole area of the dough plate. c) There are four corner marks on the
white dough plate. After detecting the marks, the area of the dough plate is outlined
with blue lines. d) The outer area of the dough plate is removed from the image.
e) Within the dough plate, the dough clay (the green object) is detected, and the
outline is extracted through an edge detector [33], like the Canny edge detector [34].
f ) The raw 2D camera image is deformed into the orthogonal top-down view with
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Fig. 4 Feature matching on the corners of the plate through the SURF method. On the left, the
template image. On the right, the camera image. The green lines indicate the boundary of the
detected plate

predefined width and height. g) The deformed outline of the detected pizza dough is
finally obtained.

4.2 Description for a Status of a Pizza Dough

Pizza dough has various shapes. However, according to general experiences and
our experiments in making a pizza, there is no problem assuming that the pizza
dough’s shape is convex. Hence, we can define the state of the pizza dough as the
set of distances between the center of the dough and its boundary and the related
tickness

CX :
{[‖x − x0‖

h

]
∈ R

2 : x ∈ ∂S

}
. (1)

The dough center is intended as the geometric center of its shape. During the imple-
mentation, we discretized the configuration as a set of angle-equally sampled dis-
tances (seeFig. 5a) andvectorized themclock-wisely.Thehistogramof thevectorized
configuration is shown in Fig. 5b.

When the dough shape is deformed through the action of the rolling pin, the centre
position and the rotated angle of the dough are less important. Indeed, the relative
angle between the rollingpin and the pizza doughwould affect the deformation.Toget
a rotation-invariant configuration, the order of the histogram elements is rearranged
so that the longest distance vector is the first one in the set (see Fig. 5c). This method
has been frequently used in object recognition algorithms of image processing, e.g.,
SIFT [35], SURF [28], MSER [36], FAST [29], and BRISK [37].

An extended configuration space CY is introduced to include the position of the
centre and the angle between the longest distancevector (thefirst one in the rearranged
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(a) Deformable object model projected
onto the 2D space.

(b) Histogram of the distance from the de-
formable object’s centre.

(c) Rearranged histogram for the longest
one to be the first bin following by sequel
bins.

(d) Reconstructed shape from the config-
uration y.

Fig. 5 Configuration for a dough state. The red radial lines in a indicate equal-angle sampled
distance from the centre of the pizza dough shape to the boundary. Blue line is the longest distance
from the centre. The sampled distances are ordered clock-wisely

histogram) and the x-axis of the frame D

CY :

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

χ

cx
cy
θ

⎤
⎥⎥⎦ ∈ R

5 : χ ∈ Cx

⎫⎪⎪⎬
⎪⎪⎭

. (2)

It can be seen in Fig. 5d how the reconstructed shape by the extended configuration
CY is similar to the original shape. The original configuration space CX of the pizza
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Fig. 6 The configuration space CX and its extended configuration space CY

dough is a subspace of the extended configuration space CY : their relation is drawn
in Fig. 6. Through space projection, the extended configuration space CY can be
submerged into the original configuration space CX , that is, CY /I = CX where I =
{cx = 0, cy = 0, θ = 0}.

5 Construction of a Planner for Pizza Dough Stretching

Given a generic configuration space C, a initial status qI ∈ C, and a final status
qG ∈ C, the planner finds the sequence of intermediate status

qI → q1 → · · · → qn−1 → qG, (3)

to reach qG from qI , and where q1, . . . , qn−1 ∈ C. Each status is referred to as a
configuration q in a given configuration space C.

A way to find such a sequence of intermediate configurations is to associate to
each of them a cost value relative to qG . Let V (qi ) > 0 be a cost value related to the
distance from qi ∈ C to qG , then a gradient descent method might be used to find the
sequence of interemdiate configurations such that

V (qI ) ≥ V (q1) ≥ · · · ≥ V (qn−1) ≥ V (qG) = 0. (4)

A movement from one configuration to another is called a transition T . The
transition occurs directly or indirectly through an action α ∈ A, where A is the
set of admissible actions. Therefore, we can move from a configuration q ∈ C to a
configuration q ′ ∈ C as

q → q ′ = T (q, α). (5)
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The robotic systemmust execute the action α through a proper control design, taking
into account possible errors during the execution.

Concerning the pizza stretching application, the configuration of the pizza dough
is given by the sets CX and CY . The cost function V (·), the actions α ∈ A and the
transitions T to achieve the sough task are explained in the following.

5.1 Cost Value Function

In this application, the cost value function V (·) is defined as how the shape of the
pizza in the configuration q is different from the shape of the pizza in the desired
configuration qG . Hence, the more similar the shape of q is to qG , the smaller the
cost value V is.

A comparison between two 3D objects is typically made by checking the respec-
tive volumes. However, the comparison can be simplified in this application by pro-
jecting the two 3D volumes into a 2D plane. In fact, the target object has a shallow
disk, and the error between the approximated cylinder shape and the original dough
shape decreases as deformations of rolling pin actions are made.

The comparison is made by calculating the ratio of the occupied 2D area of the
current dough shape over the 2D area of the target one while ignoring the space out of
the target 2D area (see Fig. 7). The areas can be measured by counting the occupied
grid cells after discretizing the 2D plate.

The designed cost value function for this application is

V (q) = 1 − area(q)

area(qG)
, (6)

where q, qG ∈ CY are the current and the target configurations of the pizza dough
shape, respectively. The operator to compute the area is defined as

area(q) =
∑
i j

occ(q, i, j),

where i and j are the indexes of discretized 2D space, and the occupancy function
occ(q, i, j) is defined as

occ(q, i, j) =

⎧
⎪⎨
⎪⎩

1 if (i, j) ∈ A(q) ∩ A(qG)

−κ if (i, j) ∈ A(q) ∩ ¬A(qG)

0 otherwise

, (7)

where A(q) is the part of the plate occupied by the dough in the configuration q,
¬A(q) is the complement of A(q), and κ > 0 is a penalty weight. In particular, κ = 0
means that we do not care if the current shape of the pizza dough is outside the target
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Fig. 7 An comparison between the current shape (red line) and the target shape (black line)

one, while κ � 0 indicates that we strongly penalize the case in which the current
dough is outside the target one even partially. As it is built, the cost function assumes
values in the range [0, 1]. When the cost function is zero, the current dough shape
covers all the target one. In practice, we verified that it is difficult and inefficient to
cover the target shape area completely: we thus recommend saturating to zero the
cost function when its value is under 0.1, corresponding to the fact that about the
90% of the target shape area is covered.

5.2 Actions for a Deformable Object

There are a lot of possible actions to modify a pizza dough employing a rolling
pin. For simplicity, the available actions in this application are limited. First, slanted
or downing movements are prohibited. Besides, an action cannot change its angle
during the movement. Then, the distance between the rolling pin and the plate is
constant during all the movement. Finally, the rolling pin’s movement is always
done in contact with the dough.
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Following the above constraints, the action set is defined as follows

A :
{[

δ

φ

]
∈ R

2

}
, (8)

where δ > 0 is the height between the rolling pin and the table andφ ∈ [0◦, . . . , 180◦]
is the angle between the longest axis of the pizza dough and the x-axis inD. Because
the rolling pin’s forward and backward movements are not discriminated in this
application, the provided interval for φ is enough. During simulations, the action set
A consisting of a height δ and an angle φ was discretized. The number of heights
and angles used in our simulations are provided in Sect. 8.

Notably, the deformations caused by the actions defined above are relative to the
local configuration space CX and not the global configuration space CY . This means
that the deformation of the pizza after an action α ∈ A is not affected by the global
status y ∈ CY . However, it depends on χ ∈ CX and the relative angle between the
pizza dough and the rolling pin.

5.3 Transition Originated from an Action

A transition changes the status of the dough to another thanks to an action. The
transition function T : CY × A → CY can be defined as

y′ = T (y,α), (9)

where y ∈ CY is the current state of the pizza dough and y′ ∈ CY is the one obtained
after the execution of the action α ∈ A.

As previously mentioned, the deformation of the pizza dough through an action is
more related to the relative angle between the rolling pin and the longest axis rather
than the absolute pose of the pizza dough. Therefore, the Eq. (9) can be rewritten as

y′ = T (y,α)

= T (
[
xT 0T3

]T
,
[
δ φ − θ

]T
) + [

0T2 xT0 θ
]T

. (10)

The new action α′ = [
δ φ − θ

]T
is already included within A; hence, there is no

change in the size of the action setA. On the other hand, the state
[
xT 0T3

]T
might be

interpreted as adimension reduction by projection (Fig. 6). In this way, the domain
of the transition function T can be drastically reduced.

In the next section, how to generate such transitions will be explained.
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5.4 LUT Method

Even though the deformation of an object due to an action is very well simulated
through the SPH models (see Chap.3.1), the problem is the computation time for
each transition from one state to another state. The time depends on the resolution
of the deformable object model and other conditions. In the chapter, the carried-
out simulations took several minutes to hours for one transition. Considering that a
planner requires at least several dozens, thousands, or much more transitions, this
object model is not suitable for real-time or short-time planning.

LUT method is well-known for overcoming this computing-time problem. Possi-
ble transitions are calculated previously off-line, and thenonly the results are recorded
into a transition database. Working online, the planner looks for a suitable transition
in the database and uses it.

As explained in the previous Sect. 5.3, a transition T is independent from the
position and rotation angle of the current state y ∈ CY . Therefore, LUT contains only
transitions from a state χ ∈ CX at centre x0 = 02 and zero rotation angle, θ = 0, with
actions α ∈ A.

A transition space is continuous, but it is infeasible to generate and store all
possible transitions. Therefore, discretizing the transition space is necessary, which
requires storing selected transitions into a database and a method to find a proper
transition within it. The conventional method to find a proper transition is to look for
the most similar one and use it [38], or to use an interpolating method to estimate
unknown transitions from a given state χ ∈ CX with the neighbour transitions. In the
following subsections, we investigate how to find similar transitions into the database
and interpolating them.

5.4.1 Similarity

In order to find similar transitions within the database, similarity measure functions
between two states χ1,χ2 ∈ CX and between two actions α1,α2 ∈ A are needed.
We use the diagonal Mahalanobis distance simX : CX × CX → R

≥0 as a function for
the pizza dough configurations, whose definition is given below

simX (χ1,χ2) =
√

‖χ1 − χ2‖S−1
X

, (11)

where SX = diag

([
1
1

β

])
∈ R

2×2, with β > 1. We use the function simA : A ×
A → R

≥0 for the actions as

simA(α1, α2) =
√

‖α1 − α2‖
S−1
A

, (12)

http://dx.doi.org/10.1007/978-3-030-93290-9_3
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where SA = diag

([
1

γ
1
])

∈ R
2×2, with γ > 1.

5.4.2 Interpolation

Like the basic idea of SPH formation in Sect. 3.2.2, we find the neighbour transitions
within a specific distance, and then we interpolate them by substituting the transition
function T in (9) with a new transition function T : CY × A → CY as

y′ = T (y,α) =
∑

i T a(yi ,α)W (simX (χ̄ , χ̄ i ), hy)∑
i W (simX (χ̄ , χ̄ i ), hy)

(13)

and

T a(y,α) =
∑

j T (y,α j )W (simA(α,α j ), ha)∑
j W (simA(α,α j ), ha)

, (14)

where the kernel function W : R≥0 × R
+ → R

≥0 and the kernel ranges hy, ha ∈ R

have been used. The denominator of the previous expressions is used for nor-
malization purposes, similarly to the SPH formation in Sect. 3.2.2. Notice that
y = [

χ̄T 0T3
]T
.

After execution of the action by the robot, if the deformed status is the same or
similar to the expected one, then the following action will be executed sequentially.
Otherwise, a new step by the planner is required.

6 Path Generation for a Rolling Pin

One of the particular features in the proposed planning framework is the independent
planning for the tool itself. In contrast, most of the other planning frameworks inte-
grate the planning of the tool and the planning of the robot manipulator. There are
benefits and drawbacks to this planning separation. The separation makes the robot
manipulation planning manageable. At the same time, there is a need to treat the
infeasible action sequences that are a problem when the robot manipulator generates
its action sequences to follow the trajectory of the tool. In this application, the pref-
erence of simplicity of the manipulation planning makes us separate the planning for
a tool from the planning for the robot manipulator.

From the previous sections, the actions to stretch the dough towards the desired
shape are generated.A possible sequence of actions is something like: stretch forward
first, then stretch 30◦, and so on, all with specified heights from the plate. There are
two issues for generating a proper action sequence for the rolling pin: the generation
of the action itself (called primitive action) and the connection to the following action
(called connecting action).

http://dx.doi.org/10.1007/978-3-030-93290-9_3
http://dx.doi.org/10.1007/978-3-030-93290-9_3
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Fig. 8 Example of rolling-pin planning for two given actions on the dough

The primitive action is direct and intuitive. We must keep the desired height of
the rolling pin from the plate and try to act at the specified angle by passing through
the dough’s center. The connecting action is instead artificial and specific to this
application. First, two proper poses for the rolling pin are defined, namely the ready
pose and the final pose. Then, a routine is repeated, starting with a connecting action
from the initial pose to the ready pose until the generated action is completed. The
routine steps are as follows: (a) doing a connecting action from the ready pose to
the initial pose of a primitive action; (b) doing the primitive action; (c) doing a
connecting action from the final pose of the primitive action to the defined final
pose; (d) doing the connecting action from the defined final pose to the ready pose.
This routine is capable of covering all generated actions from the previous dough
planning.

There is an example of this process in Fig. 8 with two given actions from the
previous dough planning, that is, a zero degree movement and a 60◦ movement. The
generated action sequence consists of (1) a connecting action from the initial pose to
the ready pose; (2) a connecting action from the ready pose to the initial pose of the
zero-degreemovement; (3) the primitive action related to the zero-degreemovement;
(4) a connecting action from the final pose of the zero-degree action to the final pose;
(5) a connecting action from the final pose to the ready-pose; (6) a connecting action
from the ready pose to the initial pose of the 60◦ movement; (7) the primitive action
related to the 60◦ movement; (8) a connecting action from the final pose of the 60◦
movement to the final pose; (9) a connecting action from the final pose to the ready
pose. The yellow lines indicate the trajectories of two holding points of the rolling
pin while doing a primitive action.

The left figure in Fig. 9 shows the trajectory of the steps above from 1 to 5. The
right figure in Fig. 9 shows the trajectory of the steps above from 6 to 9, in which
the yellow lines and the red lines are those of the primitive and connecting actions,
respectively.
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Fig. 9 Example trajectories of two holding points of a rolling pin for a given action on the dough.
On the left, a zero-degree action. On the right, a 60◦ action.The yellow and red lines indicate the
trajectories of the primitive and the connecting actions, respectively

7 Inverse Kinematics for the RoDyMan Robot

RoDyMan is the employed robot platform that consists of a mobile base, a 2-DoFs
torso, a 2-DoFs neck, and two 7-DoFs arms. This process step aims to make the arms
grasp the rolling pin properly and solve the inverse kinematics problem to plan the
joint movements.

Many inverse kinematics algorithms are well established in the literature, as those
using the LM algorithm or the damping least-squares method [39]. The employed
method follows the closed-loop inverse kinematics algorithm with redundancy man-
agement explained in [39]. Redundancy is exploited to avoid unnatural postures of
the robot.

Figure10 shows the ready pose ofRoDyManbefore and after an action. Figure10b
shows the unnatural behaviour that can be avoided through a proper redundancy
management, as shows in Fig. 11. Details are omitted here for brevity since this
part is well established in the literature and does not bring any new insight into the
problem faced by this chapter.

8 Simulations

For simulation purposes, the employed systemconsists of an Intel®Core™ i7-6500U
CPU@2.50GHz,Memory 8.0GBwithWindows®10 x64 operating system.Weused
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Fig. 10 Ready pose of RoDyMan before and after an action

Fig. 11 Improved ready pose of RoDyMan before and after an action thanks to the redundancy
management

theMicrosoft FoundationClass (MFC) library ofMicrosoft®, theQt library,1 Boost,2

Eigen,3 and OpenCV4 for 2D graphic or OpenSceneGraph5 for 3D graphic libraries
based on C++11 programming language. Additionally, Houdini™ of SideFX®and
Blender™ were used to reconstruct the mesh from particles and for graphical ren-
dering, respectively. 3D reconstruction is done with VisualSFM6 and MeshLab.7

1 https://www.qt.io.
2 https://www.boost.org.
3 http://eigen.tuxfamily.org.
4 https://opencv.org.
5 http://www.openscenegraph.org.
6 http://ccwu.me/vsfm/.
7 http://www.meshlab.net/.

https://www.qt.io
https://www.boost.org
http://eigen.tuxfamily.org
https://opencv.org
http://www.openscenegraph.org
http://ccwu.me/vsfm/
http://www.meshlab.net/
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(a) (b)

(c) (d)

Fig. 12 Measuring of a real dough shape at initial status. a pictures with various views for real
dough; b 3D reconstruction; c matching of the reconstructed shapes with a sphere; (d,h) the final
matched shapes

8.1 Modelling of a Deformable Object

Even though a model for a deformable object like a pizza dough is designed in
Chap.3.1, the deformable object’s properties like viscosity and elasticity vary case
by case. Therefore, there is the need to tuning the model’s parameters to fit the target
object. Figure12 shows how tomeasure a real deformable object. During preliminary
experiments, a toy clay was used instead of pizza dough for convenience.

The process during the preliminary experiments has been carried out as follows.
At first, the measure of the deformable object’s surface and the reconstruction of its
shape in 3D virtual space, at the initial and deformed statuses, have been carried out.
Afterwards, an SPH-based object model is made following the reconstructed shape
of the initial and deformed object. Finally, by applying the various actions on the
SPH-based object model for the initial object, the best matching parameters for the
model are found, which generates the SPH-based object model that is close to the
reconstructed shape of the deformed object.

http://dx.doi.org/10.1007/978-3-030-93290-9_3
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(a) (b)

(c) (d)

Fig. 13 Measuring of a real dough shape at initial status. a pictures with various views for real
dough; b 3D reconstruction; c matching of the reconstructed shapes with a disk; (d,h) the final
matched shapes

The reconstruction of a deformable object in the 3D virtual space at the initial sta-
tus and the deformed status, respectively, are shown in Figs. 12 and 13. The pictures
in Fig. 12 deals with a ball shape, representing the pizza dough before any defor-
mation. The pictures in Fig. 12 show a disk shape after the deformation actuated by
the rolling pin. To measure the shape of the object, a structure from motion method
is used, which gathers some pictures (Figs. 12a and 13a) with various views and
generates a 3D model (Figs. 12b and 13b). Usually, the generated 3D model is very
rough and too complex. Hence, it needs post-processing to smooth the surface and
remove the outliers. A simpler ball mesh-model (Fig. 12c) and cylinder mesh-model
(Fig. 13c) are used to match the generated 3D model as close as possible, and the
final reconstructed 3D model (Figs. 12d and 13d) are fixed, respectively.

The process of finding the best matching parameters for the deformable object
model is shown in Fig. 14. Various deformed shapes are generated with various
parameters: among them, we must find the best matching shape and its parameter.
The matching process is done offline.
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Fig. 14 Schematic diagram for finding the parameters of the deformable object model. α is just an
example of a parameter for a SPH-based model: name and values are different depending on the
model

8.2 Pizza Dough Transition Look-up-table

The transition LUT is used to speed up the planning algorithm, which is generated
using various statuses of the pizza dough and various actions. However, it is not easy,
and it needs much time to have experiments with real pizza dough. Therefore, using
the deformable object model obtained before is more efficient than a real deformable
object.

The previous section defines the model for a deformable object and its param-
eters obtained from real experiments. We had experiments with SPH particle
radius of 1.25 · 10−3 m, a pizza dough density of 1.276 kg/m3, a solid density of
200 · 103 kg/m3, an IISPH [40] for an incompressible fluid, and a viscosity coeffi-
cient of 250 kg/ms. Base on this model, the transition LUT is made by simulating the
deformation from several configurations of the pizza dough and with various actions
on the object. In particular, the action setA consists of seven heights, from 8 · 10−3 m
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Fig. 15 SPH-based transition simulation for the pizza dough (red object) with a rolling pin (grey
object)

(a) (b) (c)

Fig. 16 LUT method. The x-axis and the y-axis indicate the angle and the height of a rolling
pin motion, respectively. The white colour means lower score, while the darker blue colour means
higher score. Red ball is the highest score action

to 20 · 10−3 m spanned each 2 · 10−3 m, and eight directions, from zero degrees to
180◦, spanned each 45◦ and considering both forward and backward motions.

A simulation is shown in Fig. 15 where the pizza dough is represented by the red
particles and the rolling pin by the green ones. An example where the pizza dough
is stretched is depicted in Figs. 16 and 17. The former shows the transition LUT for
sequential statuses of the pizza dough with height and angular table, while the latter
shows the occupancy of the pizza dough for each status.
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(a) Start shape of a dough placed in center (b) The shape after applying the highest
scored action in Fig. 9.15a

(c) The shape after applying the highest
scored action in Fig. 9.15b

(d) The shape after applying the highest
scored action in Fig. 9.15c

Fig. 17 Shapes of the current dough (red) and its target (black). The red line indicates the angle of
the first bin in the dough’s state

9 Discussion and Conclusion

This chapter explained a planning method to stretch a pizza dough with a rolling pin
actuated by a robotic system. Base on the perception chapters, the deformable object
is modelled, and the deformation information is used to plan the stretching actions
on the pizza dough to reach the desired shape. An object recognition algorithm, a
method to model deformable objects with high viscosity, the definition of the status
of the pizza dough, the definition of the actions through the rolling pin, an inverse
kinematics algorithm for the robot have been integrated to achieve the sought goal.
Experiments were carried out to identify the parameters of the pizza dough. The
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stretching actionswere planned offline thanks to a LUT database. Future experiments
will definitely validate the proposed approach.
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