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ABSTRACT

Based on a dynamic approach, a general solutlon algorithm for the inverse
kinematic problem for robotic manipulators is presented. It requires only the
computation of direct kinematics. Two-stage algorithms are then derived [or
three baslc kinematical structures in order to comply with the mechanical
constraints of each structure. Applicability of the algoritha to redundant
manlpulators with obstacle collision avoidance and limited joint range
avallabllity is finally shown.

INTRODUCTION

The crucial point in advanced control of robotic manipulators ls the
capabllity of transforming the task space coordinates into the confliguration
Space coordinates, that is sclving the Inverse Kinematic Problem. As a matter
of fact control is implemented in the joint space, identifljied by the n-
dimensional joint vector q, whereas motion is specifled in the Cartesian
Space, by means of an m-dimensional Cartesian vector %. The direct kinematic
problem allows to specify in a straightforward manner [1] the relationship
between the joint variables and the Cartesian variables as

X - ), W

where I is a continuous nonlinear function, whose structure and parameters are
known. It i3 unique, while the Inverse transformation

9= ()

is not unique and, because of complexity of (1), is hard to be expressed
analitically,

The most common approach forsolving the Inverse kinematic problem is
certainly to obtain a closed-form solution to (2), [2). Only manipulators with
2 spherical wrist, however, allow closed-form solutions. The problem becomes
more critical for kinematically redundant manipulators, Tor which the number
of degrees of freedom exceeds the six coordinates which are usually required
o specify the position and the orientation of the end effector in the
Cartesian space.

An {terative technique based on a nonlinear optimization algorithm for
s0lving (2) has been proposed in [3). Though it seems to be quite general,
belng applicable to any kinematical structure, it involves a great amount of
computation to converge to the desired solution, which makes it impractical
for tracking control purposes.

The approach 11lustrated In this paper is based on a dynamic lormulation
of the problem first proposed In [4], .and later also in [5). The main-
ddvantage of the method is that it only makes usa of direct kinematics (1).
Besldes unigueneass of the solutlon ls assured, computation time is
dl"aatlcally reduced, jolnt velocities are automatically gencrated and
occurrence of kinematic singularitlies may not represent a drawback., Even if

h—__ -




108 L. Sciavicco and B. Siciliano

the resultant algorithm is _ general and manipulator-independent, an even
smaller number of computations are required and better results are zchliev ed
if the algorithm is customized to Lhe particular kinematical structure.
Furthermore, the same dynamic concept which i{s at the basis of the method
allows the solution of the inverse kinematlc problem for redundant
manipulators in presence of obstacles in the workspace and/or with mechanical
constraints . imposed of the joint variables.

THE GENERAL SOLUTION ALGORITHM

The inverse kinematic problem is conceived as a dynamical one in order to get
a general solution algoritha which requires only the computation of direct
kinematics (1). Let §{t) be a solution of (1) relative to a given Cartesian
trajectory %(t). The following error vector e(t) can be defined between the
Carteslan trajectory and the corrcsponding one obtained from the algorithm
state variables g(t),

e(t) = x(t) = x(t). (3)

Recall that Cartesian velocities are related to joint velocities through the
Jacobian matrix J(gq) associated with the relationship’

x(t) = J(@)alt). (4)

In order to assure the convergence of g(t) to g(t), error dynamics is
involved, i.e. vla (4) (dropping the time dependence),

- J(g)a. (5)

B30

é -
With the choice
g =viT@e, Y=o+ (eT3eTwTer, a0 (6)

the dynamic system of [ig. | assures that e = 0, and then q(t) = §(t). Tn_*‘a
Issue can be recognized by considering the error Lyapunov function V = S5c e
and verifylng that lts derivative is negative delinlte in virtue of (6), [47,
[5]. The choice of @ in (6) determines the convergence rate of the closed loop
system of fig. 1. Starting with the same initial conditions q(0) = §(0) will
always guarantee good tracking accuracy, avoiding thus Lhe solution
nonuniqueness drawback concerned with those techniques which provide joint
trajectories as result of an interpolation between a lnite set of via points
[6].

As It had been anticipated, only direct kinematics is to be computed,
which drastically reduces the computational burden. In fact only one
iteration per cycle is to be done as lfar as the digital implementation of
the algorithm for trajectory tracking 15 concerned. The implementation of the
algorihtm on a single dedicated mlicroprocessor system has been realized in lab
and ls described in (7).

It should be emphasized also that the dynamical system of fig. | will
produce joint velocitles glt) at no additional cost, which is very useful for
advanced control, see model reference adaptive control (8] ror instance.

Finally it might be noted that, since no lnversion is required (r".J"}.
the algorithm may provide solutlons even in case of kinematic slngul_artl;l.es.
on condition that the trajectory in the task space is properly planned. To be
more specific, no problem will arlse il the singularity belongs to the
trajectory, whereas in case of a trajectory passing in the proximity of a
singularity, indeed, high velocities are mechanically Involved; in this case
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the convergence of the algorithm ls likely to be derated.

NONREDUNDANT MANIPULATORS

A robot QPak is naturally specilfied in terms of the end effector Cartesian
vector x* = (px.p .pz.u.Bnr) with respect to the base frame; p;'s are the
components of the end effector position vector p, anda,B,y are the Euler
angles (or roll, pitch and yaw angles) which define its orientation. In order
to obtaln a unique specification of the orientation, however, a unit approach
vector a and a unit sliding vector s can be adopted; the unit normal vector n
which usually completes the frame at the end effector is redundant since n =
sxa. The above vectors can be easily determined from the Euler angles, [9]. In
view of the preceeding, for any robot kinematical structure, (1) becomes

p=ra s=rHq a=r.iq (1)
subjected to the constraints
sfs-afa-1 sla-o ®

Similarly (4) gives

B dy@g 3 - U@y a - Ju@a (O)
Subjected to
a3 -aTa-0  sTaeaTi-o (10)

lionredundant manipulators require six degrees of freedom to identify uniquely
the position and the orientation ol the end eflfector. Typical kinematical
structures have three revolute joints (0;.05.06) at the end effector, wherecas
the first three joints (q1.q2.q3) are either all revolute, such as the PUMA
arm (10], or twe revolute and onc prismatic, such as the JPL arm [11). As far
as the last three jolnts, three basic configurations are illustrated in [ig.
2. The case a) las of particular interest since it is possible to decouple the
position of the end effector from its orientation (spherical wrist). The cascs
b) and ¢) may also occur in practical robot design. The three structures can
be conveniently characterized through the following constraints on the
Ecometric parameters of the last three joints., More specifically, the lengths
4, and the distances dn. [1], are respectively in the three cases:

a)  parallel axes: ay = ag = d5 =0 (rig. 2a),

b) two-by-two intersccting axes: ay =ag=0,dg p0(rig. 20),
¢) nonconverging axes: ay k0, ag # 0 (rig. 2el

With reference to rig. 2, the position vector p and the approach unlt vector a
are always independent of the last rotation. Hence =

P - p-dga (an

€an be assumed as position vector, and still Indlcated by p without loas of
gencrallty. Furthermore the position vector p depends on

4) the first three joint variables (q;,q2:43)
®) the first four joint varlables (Qq492:93: 040+
€) the firat five joint variables (9y,93,93:04+05)s
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puspectively in the three cases of fig. 2. ai 2 conasequence Lhae weotar of
juint vartables q in (1) can be partiticned as

T T T R

9 =19 | a4 ) (12
where g, are the joint variables which determine the position p, and g, are
the remaining Jjoint variables which, together with g, determine the
orientation s, a. Accordingly the general algorithm can be partitioned into
two stages (lirst determine . then g,} as follows in the three cases of Tig.
2, [12].

Spherical wrist
For this structure (fig, 2a) the vector g 1n (12) is partitioned into

T T
9 - (qy qp q3) gy = (8y €5 agh

-

i13)

The resulting tWo-stage inverse kinematic algorithm is

. T . Ty Ty g Te )t
Gp = Yplp gpr Yp = Gp (e (g ppp) e @p?

0 {14a)

oy = valsTE ¢ GTR o)

h Uz l;nax'ﬁéuma:’ Iiép“max”““‘lsp)il' ]N‘Iap) !’(l“‘js]]’!"'-{‘iaj B
where J, = 3f,7R34,, Jep ™ 3f5/33,: Jap * 3,585 Jsg '_ais“aﬂh' J, =91, /%2,
A(A) and ) (A) denote the maximum and the minimum eigenvalue of mair
respectively, Further details on tne derivation of (14) can pbe found in Tl

Two-by-two intersecting axes
In this case also f§, concurs Lo determine the position vector p (fis. Ze).
The partition of q in (12) gives

gy’ - (a) 9 a3 84)  8n = (95 Ee (13)

In order to obtain a unique sclution for g,, the following mechanical
constraint is to be incorporated in the first stage:
iTgu = cosdg, (19)

where ag is the constant twist angle between the [ifth and the sixth liirx, a

is given in the Cartesian space and z, is the unit vector along the fifth link
axis, whieh is determined through g. The inverse kinematic algorithm resulis
then, [143, [15],
: T T A 4 ’p 1
Sp = pldp & * Iz Se,).  vp ? UBfmax * 1 almaxi® g 17a)
a lel
éh " Yn(JaTi * JaTél- (179
FYTIRS T RS T T Ty 315 10 Ty ey Ty 3175
Y * Ul3linax N3 llmax Hﬂﬂlmax)IM“Tsp Ysp*Yap Jap’ | [MIgT g0, 050

where e,

Nonconverging axes
In this last case five degrees ol [reedom cdetermine the pesition of p
(f1g. 2¢). The partition obv iously results .

y = ©030g iTE;M(ﬂp)' and Joy = a.r.zll"rggp'
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SPT = (a4 9 a3 8y 8g)  ap = B¢ (18)

For the same reason as above, the two following constraints must be added In
order to get a unique solution for 3p:

iTzy - cosy (19a)
iTa-1. (19b)

The resulting algorithm is, [12],

J

P
. T - as A 2 AT -1
% = Ypllp g * thrﬂezll * ‘]aTE)' fp? U2lnax*12llnax) 1A |3 Y 2 | (20a)
- 5Ty

in = TsWsT®  ¥s > Ulaaxt 18] max IA WspMsp)l PIA TP (200

where it might be noted that, since a is determined in the rirat stage, the
second stage is only required to align s with § by means of 8.

REDUNDANT MANIPULATORS

A manipulator ls termed kinematically redundant if the nuaber of degreea of
freedom exceeds the number of task space coordinates. Redundancy can be
conveniently exploited to solve the inverse kinematic problem with obstacle
collision avoidance and/or limited joint range availability. In thesec cases
solutions have been proposed, based on the use of the generalized inverse,
[151-(19). It seems, however, that the amount of computation involved is still
too large lor real time control.

With reference to the general scheme of rig. 1, the two kinds of
constraints can be successfully incorporated in the dynamic approach if the
task space state vector in (1) is enlarged

Suppose first that, while the manipulator is tracking a desired trajectory
in the task space, one or more links along its kinematical structure happen to
be much too close to an obstacle in the workspace. Since the inverse kinecmatic
algorithm (6) provides joint conflguratlions which are adjacent to each other
a3 the manipulator proceeds, one or more constraints can be Introduced in
order to avoid the collislon with the obstacle.

Hore precisely, let ¢ (i=1,...,n) indicate the positlon vectors of those
points of the obstacle which are closest to each link 1, of the manipulator; a
point at minimum distance from the obstacle on each fink is automatically
individuated and let Py indicate the corresponding position vector. Both
vectors are defined with respect to the same base frame, sce [ig. 3 for a
planar example. If the distance between the two points [jd,]} where dy = p; -
€+ 1s less than a threshold distance d, therc is a daager o} a collision, and
the joint velocities which represent the control inputs to the system of [lg.
1 ahould be modified accordingly to the new situation. This can be
dccomplished as follows. Define the errors

ey = S5@% - 9, Ta),  F e 1k, (21)

where k 13 the number of active constraints. Differentiating (21) with respect
Lo time gives

®ay = = dgud (22)
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where
T
de = d in, (23)

being J,¢ the Jacobian matrix assoclated with vector p,;. Then the control (6}
can be modified into

q = 6qWTe + g Tey) (24)

which still guarantees that x + x. but also assures that led - 32; Gg 1s
a positive definite diagonal matrix.

In this way the motion of those degrces of freedom which influence the
motion of the point By is braked preventing the link 11 from approaching the
obstacle. A3 a matter of fact, a link which is candidate to a collision, in
virtue of (24), is forced to move tangentlally around the imaginary sphere of
center in ¢y and radius d.

Although (24) is the basis of the obstacle avoidance scheme proposed here,
proper decision making in charge of a higher control level is equally
important to successful operation of the algorithm. The threshold distance d,
which should include the thickness of manipulator links, must be programmed
accordingly to the sample rate at which p,; and ¢, are updated so as to get a
security gap. In addition, in order not to introduce a discontinuity, the
feedback gains of Gd should be tapered as a function of distance.

It must be remarked, however, that the computational burden of the pure
inverse Kinematic algorithm remains contained as it may be checked in (24).

Conceptually similar is the inclusion of mechanical constraints on joint
variables Into the inverse kinematic scheme (6). If the joint variables q; are
constrained between two extremal values Qjpin aNd Qqpa,. 1.0

min £ 9 £ Yimax L= Veen, ' (25)

it is poasaible to deline again a threshold d" and the errors

€qj " d* - dqi' Y= 1,..,r, 126)
where elther d § ™ 94 ~ Qmip O 94§ = Qpax ~ 9. depending on which limit is
involved. Progressing as above ylelds the nodl:'led control of type (6)

4= 6qWTe ¢ sq) ' @1

which assures that x + x and d 4 +d', the sign - applying for q;,;, and the
sign + for Q4 max’ Gq is a posit&vc definite diagonal matrix. In ths way the
Joint variables are prevented fromﬂapproaching either of the two limits.
Remarks on the adequate cholce of d' and Gq as for the case of obstacle
avoidance are in order also in this case.

Last but not least, it must be emphasized that in order to comply with all
the constraints given by (21) and (26) It must be checked that

k+r<n-n, (28)

in other words the enlargement of the error space can be made up to cuver the
degrees of redundancy avallable which are In number of n - m.

CONCLUDING REMARKS

This paper presented a3 general solution algorithm for the inverse
klnematic problem for robotic manipulators. For cach kinematically
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nonredundant structure the algorithm is conveniently partitioned into two
stages 50 a3 to better cope with the kinematlical structure.

Simulation studies dedicated to several robotic manipulators can be found
tn {71, [12]-[15] and have not been fully reported here due to lack of 3space.
Tracking errors have always resulted to be contained, on the average of 1 ma
(position) and .1* (orientation) for typical velocities of 1m/sec and 90°*/sec.
Steady-state errors are practically null due to the closed loop structure of
the dynamic system of llg. 1; this issue proves that a precise solution can be
provided by the algorithm in all those cases when computation time is not the
main concern and the purpose is just to get the set of joint variables
corresponding to a given configuration of the end effector. It must be
emphasized also that unlqueness of the solution is always assured, and a
kinematic singularity along the given trajectory does not involve any large
errors, as proved for instance by simulation results derived in [14l.

Finaldy it has been shown how the same dynamic approach can be
successfully adopted for solving the inverse kinematic problem for redundant
manipulators in presence of obstacles in the workspace and/or with mechanical
constraints imposed on the joint variables
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Fig. 2. Three basic kinematical configurations at the end effector:
a) spherical wrist, b) 2-by-2 intersectirg axes, ¢) nonconvergling axes.
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Fig. 3. Geometry of a planar manipulator snowing the boint nearest to the
obatacle.




