i -‘,-‘

h A T e
. - . B e ——
L = - - = . il .
g
- e L T
L -.I.".""-",‘-' ) - . + e
4 e Mt bbbty ==

Dynamic Manipulability Ellipsoid for Cooperating Robots
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ABSTRACT

A new definition of dynamic manipulability ellipsoid for a system composed of multiple
arms holding a rigid object is provided in this paper. This.is obtained by constructing
the mapping of object acceleration onto joint driving torques, via the proper kinematic
- and dynamic equations characterizing the system. In a number of case studies, the
inertial properties of cooperating robot systems are illustrated by the above ellipsoid.

INTRODUCTION

Manipulability measures have been widely recognized as an effective quantitative means
for analysis, design and control of advanced robot manipulator systems. In the case
of a single robot, for instance, the manipulability can be interpreted as the ability of
arbitrarily changing the position and orientation of the robot’s end-effector for a given
arm posture. Alternatively, a manipulator can be reconfigured to the most favourable
configuration to execute an assigned task, by taking advantage of the above measure.

Kinematic and dynamic manipulability measures have been introduced for single
arms. Kinematic manipulability measures [1] are based on the kineto-static mappings
which relate joint velocities to end-effector velocities, through the manipulator Ja-
cobian, and dually end-effector forces to joint torques, through the transpose of the
Jacobian. The concepts of velocity and force ellipsoids have been established as a
comprehensive tool to characterize the robot manipulability. Isotropy design criteria
and singularity avoidance are some examples where manipulability ellipsoids are of
great help. On the other hand, dynamic manipulability measures [2,3] take the arm
dynamics into account and then are based on the relationship between joint actuator
torques and end-effector accelerations, through the manipulator Jacobian and inertia.

In view of the increasing interest in cooperative robot manipulation, we believe
that the determination of suitable manipulability measures for multiple arm systems
is of crucial importance to evaluate the advantages offered by cooperation. The direct
extension of the wellknown results for a single arm is not allowed because of the
mechanical constraints imposed by the closed-chain system constituted by the robots
and the manipulated object.

Recently, we have introduced force and velocity (static) manipulability ellipsoids
for multiple arm system [4,5] based on a global task space description of external and
‘internal forces as well as of absolute and relative velocities at the object level [6].
The present work is aimed to provide a new definition of dynamic manipulability
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ellipsoid for cooperating robots which is derived by expressing the joint driving forces
of the multiple arms as a function of the object acceleration. This allows a complete
characterization of the inertial properties of the system. The effects of the configuration
of each single manipulator onto the cooperative system dynamic ellipsoid are evidenced
and a number of case studies are developed for planar type robots.

MODELLING OF MULTIPLE SINGLE ROBOTS

In order to obtain a description of the kinematics and dynamics of a system comprised
of multiple robots holding a rigid object, it is necessary to aggregate the kinematics
and dynamics of the single robots in a suitable form.

Kinematics

Consider a number of K manipulators; let g; € R*' be the joint vector for each
manipulator. The joint vector g € R can be defined as

q=| : (1)

where N = Y% | n; is the dimension of the extended joint space.

Then, let us denote by m the dimension of the common task space of interest.
Let v; € R™ and J;(q;) € R™*"¢ respectively be the end-effector velocity vector and
relative Jacobian matrix for each manipulator. The differential kinematic equation
mapping the joint velocity vector § onto the end-effector velocity vector v € RM,

Vi
=lE @
Vx

can be established as v = Jq, where

J = diag(J, ... Ix) )

.is the extended Jacobian matrix, being M = Km the dimension of the contact task

space. The above equation v = J§ can be differentiated to obtain accelerations, i.e.

a=J(q)i+3(q,4)4 ()

where a is the extended vector of end-effector accelerations.
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Dynamics

In accordance to what developed above, let 7;,c;,8 € R"* respectively be the
vectors of joint driving torques, Coriolis/centrifugal forces, and gravitational forces for
each manipulator. Also, let M; € R™ be the inertia matrix, and b; € R™ the vector
of end-effector contact forces. The dynamic equation into the extended joint space can

be derived as
r = M(q)4 + ¢(q,4) +&(q) + I"(a)b ()

where the vectors r,¢,g € R¥ are

T c, g
r= E ) c= s E= N
Tx Cx gx

the matrix M € RV *¥ is

(6)

M = diag(M, ... Mg ); (M

()

In the following, the dependence of various terms on the joint configuration will
be often omitted for notation compactness.

and the vector h € R¥ is

®)

MODELLING OF COOPERATING ROBOT SYSTEM

If the robots are assumed as tightly grasping the rigid object, the relation between
the end-effector contact forces and the resulting force on the object can be established
following the formulation proposed in [6] for dual robot systems, and later generalized
in [5] for multiple robots. The object dynamics must then be incorporated to relate
external forces to object accelerations.

Force and acceleration composition

Let then h, € R™ denote the vector of external forces applied at the center of
mass of the object, where m is the dimension of the object task space. The force
composition equation is obtained as

h, = Wl; ©)

where W € R™*¥ is the grasp matrix given by
(10)

W=[wl W;].

The grasp sub-matrices W; € R™*™,i=1,...,K are
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where I and O respectively denote identity and null matrices of appropriate dimensions,
and R; are the matrices performing the vector product r; xf; = R, f; with r, illustrated
in Fig. 1 (; indicates the pure force component of h;).

At this point, in force of the duality between forces and velocities which follows
from the principle of virtual work in mechanics, it can be shown that

v=WTy, (12)

where v, € R™ is the vector of absolute velocities of the object. Differentiating (12)
yields the velocity composition equation in the form

a=WTa, + W7y, (13)

where a, is the vector of absolute object accelerations.
Object Dynamics
The dynamic equations of motion for the held object can be expressed in the form

M.a, tc.+8 =h. (14)

where M, € R™*™ is the object inertia matrix, and ¢c,,g.,€ R™ respectively are the
vectors of velocity dependent forces, and gravitational forces.

DYNAMIC MANIPULABILITY ELLIPSOID

The dynamic manipulability ellipsoid.for a single robot gives the magnitude of the
end-effector acceleration vector, in a certain task space direction, that can be realized
by applying joint driving torque vectors of fixed magnitude [3].

For the case of cooperating robots, therefore, it is appropriate to derive the map-
ping of the object space accelerations onto the extended joint space torques. This can
be performed by suitably combining egs. (4), (5), (9), (13) and (14). _

Similarly to [3], we regard the case when both the arms and the object are standing
still (§ = 0, v, = 0) as the fundamental one for considering the dynamic manipula-
bility; this implies that J§ = 0 in (4), ¢ = 0 in (5), W™v, = 0 in (13),and ¢, = 0
in (14). Furthermore, without loss of generality, we do not include the gravitational
forces, i.e. g = 0 in (5), and g, = 0 in (14).} In sum, we consider the following
simplified equations:

a=Jg4 (4)
r=Mg+J"h ()
a=WTa, (13’)
M.,a, = h, (14)

1 In general, itiapoasible&oupmszheabowm;ppingfw;lmmduﬁ;blu—joint torques
and object accelerations, respectively — obtained Ly subtracting the absolute values of the meglected
terms from the original variables.
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.which, together with (9), will yield the sought mapping. Indeed, solving (4') for § and
using (13') for a gives

g=Jtwra,. - (18)
On the other hand, solving (8) for h and using (14') for h, yields

h=wiM,a,. (16)

Finally, plugging (15) and (16) into (5') gives
r=A.a, (17)
where
A, =Mitwr L rwim,. (18)

As one could expect, A, is formed by the contribution of the inertias of the single
manipulators and of the object inertia. This is accomplished via a sequence of suitable
transformation matrices deriving from the basic equations (15) and (16) that map the
object acceleration onto joint accelerations and end-effector contact forces, respectively.

At this point, it can be concluded that the unit sphere in the extended joint space
Tr=1 ' (19)

maps onto the object space eilipsoid
a,ATAa, =1 (20)

which is defined as the dynamic manipulability ellipsoid for the system.

Notice that in the case of a single arm and the center of mass coincident with
the end-effector location, the result obtained in [3] is recovered. In other words, the
dynamic manipulability ellipsoid derived in (20) is a generalization of the one in [3] for
the case of multiple cooperating robot tightly grasping a rigid object.

Suitable manipulability measures can be derived by considering the volume of the
ellipsoid — this is given by the determinant of AT A, except for a constant coefficient
— and then used to detect singular configurations of the system (when the volume
becomes zero). Also, assigned an object task, e.g. mating mechanical parts, it is
possible to derive quantitative indices of the task compatibility of the system in any
joint configuration, and then exploit the eventual redundant degrees of freedom to
reconfigure the system in a more dexterous posture to execute that task.

CASE STUDIES

Two case studies have been worked out to illustrate the effectiveness of the dy-
namic ellipsoid for cooperating robots; a two-arm planar system and a three-arm planar
system. The dynamic ellipsoids of the single arms and the global dynamic ellipsoid are
presented (in the same scale) to evidence the effects of the configuration of each single
arm onto the system. A two-dimensional task space is assumed, i.e. only linear object
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accelerations are of interest. The reference frame is always located at the base of the
first arm. :

For the two-arm system, we have considered two three-degree-of-freedom equal
arms; each arm has equal links of length 0.4 m, mass 1 Kg, moment of inertia
0.03 Kg-m?, center of mass at link midpoint. The object is a disk of radius 0.15 m and
mass 0.05 Kg. In the first example of Fig. 2, the ellipsoids for the single arms indicate
the existence of preferred directions to execute linear accelerations at the end-efectors.
As one could derive from the above theory, the global ellipsoid can be interpreted as
a “rough” intersection of the two ellispoids, properly scaled by the object mass. And,
indeed, we have chosen a light object to render the volume of the ellipsoid “visible®.
The second example (Fig. 3) is aimed at analyzing the inertial performance of the
system when the two arms are in near-isotropic configurations.

For the three-arm system, we have added an arm with the same characteristics
23 the other two. The example of Fig. 4 demonstrates the effect of the ellipsoid of the
third arm onto the global ellipsoid; in particular the preferred direction evidenced by
the third ellipsoid is reflected in the global ellipsoid, in spite of the near-isotropy shown
by the ellipsoids of the two other arms.

CONCLUSIONS

The dynamic manipulability ellipsoid for cooperating robots holding a rigid object
has been defined in this paper. It describes the system capability of performing object
accelerations along given object space directions for joint torques belonging to a given
set.

The case studies presented have validated the theory and shown the inertial contri-
butions of the single arms to the global system. To the purpose, it can be noticed that,
when multiple robots cooperate, the dynamic manipulability of the system cannot im-
prove on the manipulability of the robot with the least favourable inertial configuration.
The inertial characteristics of the object further penalize the overall performance.

The dynamic manipulability ellipsoid, together with the force and velocity ellip-
soids already proposed by the authors, seem to be very useful both for the analisys of
a given multi-arm system and for the planning of optimal postures, depending on the
task to be performed.
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Fig. 1 — A multiple cooperating robot system
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Fig. 2 — Dynamic manipulability ellipsoid for the two-arm system (firsi example)
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Fig. 3 — Dynamic manipulability ellipsoid for the two-arm system (second example)
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Fig. 4 — Dynamic manipulability ellipsoid for the thres-arm system
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