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INTRODUCTION

Cooperative robot manipulator systems are receiving an increasing interest in the re-
search community in view of their potential over ordinary single robot manipulators.
The goal is to achieve coordinated motion of the two robots so that a commonly held
object can be effectively manipulated.

The task formulation plays an important role in the kinematics description of this
kind of systems. Previous cooperative task descriptions [1,2] have the inconvenience
that the interpretation of task variables is not always straightforward, especially for
what concerns orientation in spatial manipulators.

Following our earlier results for planar manipulators [3], a cooperative task de-
scription has recently been proposed for spatial manipulators [4] that allows the user
to specify the motion in terms of meaningful absolute and relative variables in a clear
fashion.

In this work a cooperative system of two spatial manipulators is considered where
one of them is allowed a sliding contact with the object. Parallel research efforts for the
case of rolling contacts are reported in [5,6].

Motion coordination is achieved by adopting a closed-loop inverse kinematics
scheme [7] which allows computation of joint trajectories corresponding to given task
trajectories. Redundancy resolution is performed in view of the extra degrees of freedom
available from the sliding contact.

A system of two PUMA 560 robot manipulators is taken to develop numerical case
studies aimned at showing the effectiveness of the approach.

REVIEW OF COOPERATIVE TASK FORMULATION

The typical task of a cooperative two-arm system is to manipulate a common object.
This demands for a task description in terms of absolute variables describing the motion
of the object and relative variables describing the mutual location between the end ef-
fectors which in turn characterize the object grasp. Both absolute and relative variables
include position and orientation.

In [4] an cffective user-oriented task formulation was established which unambigu-
ously defines the cooperative task for spatial manipulators as well as allows the user to
give a direct specification of the task in terms of meaningful variables.
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The absolute position and orientation are defined by attaching a suitable frame
to the object and relating its origin position vector p, and rotation matrix R, to the
position and orientation of the two manipulators’ end effectors, i.e.

Pa = %(Pl + p2) R, = R, R}.—;,('ﬂlz/QJ ) (1)

where p;, p, are the end-effectors’ position vectors, R,, R, are the end-effectors’
rotation matrices; these can be conveniently expressed as a function of the Joint variable
vectors ¢; and ¢;. Also in (1) ki, and 9,5 are respectively the unit vector and the angle
realizing the rotation described by Rj; then the actual rotation is by half the angle

needed to align R, with R,. The relative position and orientation are defined as

Pr=p2 —p R1=ng- (2)

All the above quantities are referred to a common base frame,
The differential kinematics corresponding to (1),(2) are found to be

Pa = 3(P1 + p2) Pr=p2-p
w.,:%(w1+w2} u::wg-w;

(3)

which simply express the linear and angular velocities in the cooperative task space as
a function of the differential kinematics of the single manipulators.

SLIDING CONTACT

The foregoing task formulation can be directly applied to specify tasks for a tightly
grasped object by assigning suitable values to the absolute and relative variables.

To embed the possibility of handling a sliding contact in either of the two manipula-
tors, a virtual end effector can be introduced by adding an adequate number of fictitious
Joints at the actual end effector. The sliding contact is realized if the orientation of the
actual and virtual end effectors coincide while their positions differ according to the
geometry of the sliding surface.

It can be recognized that a sliding contact requires at most two degrees of freedom.
In the case of a planar surface, two virtual prismatic joints are added at the end effector
with their axes realizing two degrees of freedom along the surface; of course, the two
axes must not be aligned. The result is an augmented kinematics expressing the location
of the virtual end effector.

In the case of a curved surface, sliding contact still requires at most two degrees
of freedom. However, three virtual prismatic joints have to be introduced at the end
effector with a geometric constraint 50 as to realize two independent degrees of freedom
along the surface.

Consider a system of two cooperative 6-degree-of-freedom manipulators. For each
manipulator, let ¢; indicate the (6x 1) vectors of joint variables. The geometric Jacobian
Ji(gi) is the (6 x 6) matrix relating the joint velocity vectors gi to the lincar and angular
end-effector velocities in the base frame as

[pl] = Ja(QJ)él 1= 11 2, (4}

Wi
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Let s denote the (2 x 1) vector of the additional joint variables. Without loss of
generality, manipulator 2 is assumed to make the sliding contact; this implies that p,
becomes a function of both g, and ¢s. Hence the virtual end effector still makes a tight
grasp with the object and the foregoing task formulation can be retained.

The task space differential kinematics associated to (3) become:

. @
Pa | _ .
2] =2 | (%)
qs
for the absolute part where
Ja(q1,92,95) = [ 301 (q1) 1J2(q2,95)], (6)
and
. |
[”:] =J. | ¢ (7)
r és
for the relative part where
Jr(leqQOS}:[_Jl(QIJ J?(QquS]]- (8)

INVERSE KINEMATICS WITH REDUNDANCY RESOLUTION

The task formulation of the previous section constitutes the basis for a kinematic control
problem, that is finding the joint variable tra jectories corresponding to given trajectories
for the absolute and relative task variables; these trajectories will be the reference inputs
to some joint space control scheme.

Define ¢ = [qf ¢ gs]T and J = [JT JTIT. The following closcd-loop
inverse kinematics scheme with redundancy resolution, originally proposed for single
arms (7], can be adopted:

. de T

q=J(q)vs+ Ke)+ (I - JTI), ( a(:)) (9)
where K is a positive definite diagonal matrix, e = [eT e ]T is the task space error,
va = [v], oT,|T is the desired feedforward velocity, ¢ is a constraint function of the

joint variables that is optimized locally in the null space of J and k. is a signed constant.
In detail, the absolute error is

_ Pad — Pa
e = %(na X Mad + 8 X Sad + A, xaad)] (10)

where pog is the desired absolute position specified by the user in the base frame, p, is
the actual absolute position that can be computed as in (1), ngy, 8,4, @aq are the column
vectors of the rotation matrix R,y giving the desired absolute orientation specified by
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the user in the base frame, and n,, s, @4 are the column vectors of the rotation matrix
R, in (1). The relative error is given by

Rap:d — Pr (11)

€r = |1, 1 1 1 1 1 .
s(npxnl,+ sl xs!, +al X a.y)

The rotation R, is aimed at expressing the desired relative position Pr4. assigned by
the user in the object frame, in the base frame; in this way, if an error occurs on the
object frame orientation this does not affect the specification of the desired relative
position between the two end-effectors. Further in (11), pr can be computed as in (2),
nl,, 814, al, are the column vectors of the rotation matrix R}, giving the desired relative
oricntation specified by the user in the end-effector frame of the first manipulator, and
n;,s},a} are the column vectors of the rotation matrix R} in (2). The absolute velocity
term is given by

Vad = [i);rd "";rd]T (12)

where paq and w,q are respectively the desired absolute linear and angular velocities
specified by the user in the base frame. The relative velocity term is given by

va = | HaPratt @o x Ruply (13)
e
where p?, is the desired relative linear veloci ty specified by the user in the object frame
and w!, is the desired relative angular velocity specified by the user in the end-effector
frame of the first manipulator. Notice that the expression of the translational part of the
relative velocity presents an additional term which is a consequence of having assigned

the relative position in the object frame.

NUMERICAL CASE STUDIES

A system of two cooperative PUMA 560 robot manipulators has been considered to

work out numerical case studies. The base of manipulator 1 is located at (0, —0.1501, 0)

and the initial configuration places the end effector at P1=[04 0 05]T; a constant

rotation matrix has been used so that R, = I. The base of manipulator 2 is located at

(1,0.1501,0) and the initial configuration places the end effector at p, = (0.6 0 0.5]F

with R, = I. Manipulator 2 is allowed to make a sliding contact with the object.
Using (1),(2), the initial values for the task variables are computed:

Pa=[05 0 05]" R,=I p,=[02 0 0" R =1

A sketch of the initial configuration is depicted in Fig. 1. For clarity of illustration, the
dimensions of the object have been enlarged.
The task is to move the object to the absolute location

cosm/4 —~sinm/4 0
Pa=[05 0 D.T]T R, = |sinn/4 cosw/4 0
0 0 1
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A rectlinear path is assigned from the initial to the final position, whereas an angular
motion about a fixed axis in space is assigned to pass from the initial to the final
orientation. Smooth trajectories are imposed using 5th-order interpolating polynomials
with null initial and final velocities and accelerations, and a time duration of 1 s.

As for the relative variables, it is opportune to define the task with reference to
the absolute frame. The task is to keep p? and R! constant; note the simplicity of task
specification when it is referred to the absolute frame.

The closed-loop inverse kinematics scheme based on (9), at first without the null
space term, has been implemented in MATLAB at 1 ms sampling time; the gain matrix
has been chosen as K = block diag{5001s,10001s}. The resulting final system configu-
ration is also shown in Fig. 1. As can be recognized, the object is taken to the desired
final position whereas the final orientation of end effector 2 accounts for the sliding
contact. The time history of the norm of position and orientation components of both
absolute and relative errors (Fig. 2) confirm the good tracking capabilities of the inverse
kinematics scheme.

Another numerical case study has been worked out where the kinematic redundancy
introduced by the sliding contact is exploited to minimize the constraint ¢ = 0.5(g; 1 (¢)—
92,1(0))?, i.e. to keep the base revolute joint of manipulator 2 constant. The initial
configuration is the same as before (Fig. 1) and the same task has been assigned for
the absolute and relative variables, Further, in the discrete-time implementation of (9)
it has been chosen kc = 3000. The final configuration in Fig. 3 shows the correct
execution of the task while the base revolute Jjoint of manipulator 2 is remarkably kept
close to the initial value as shown by the time history of the constraint value.

CONCLUSIONS

An inverse kinematics scheme for a system of two spatial manipulators holding a com-
mon object with a sliding contact has been presented. The scheme is based on a co-
operative task formulation that allows the user to give a straightforward description of
coordinated motions in terms of absolute and relative variables. Two numerical case
studies have demonstrated the good performance of the scheme also when the redvndant
degrees of freedom introduced by the sliding contact are effectively exploited.
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Fig. 1 — Initial (left) and final (right) configurations.
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Fig. 2 Time lustory of norm of position and orientation errors: a—absolute: r—relative.
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Fig. 3 Final conliguration and time history of constraint value in case of redundancy resolution.



