
JACOBIAN-BASED ALGORITHMS:
A BRIDGE BETWEEN KINEMATICS
AND CONTROL

The PRISMA Lab
www.prisma.unina.it

Bruno Siciliano
Dipartimento di Ingegneria dell’Informazione e Ingegneria Elettrica
Università di Salerno
Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
bsiciliano@unisa.it

Lorenzo Sciavicco
Dipartimento di Informatica e Automazione
Università di Roma Tre
Via della Vasca Navale 79, 00146 Roma, Italy
sciavicco@dia.uniroma3.it

Stefano Chiaverini
Dipartimento di Automazione, Elettromagnetismo,

Ingegneria dell’Informazione e Matematica Industriale
Università di Cassino
Via G. Di Biasio 43, 03043 Cassino (FR), Italy
chiaverini@unicas.it

Pasquale Chiacchio, Luigi Villani
Dipartimento di Informatica e Sistemistica
Università di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy
pasquale.chiacchio|luigi.villani@unina.it

Fabrizio Caccavale
Dipartimento di Ingegneria e Fisica dell’Ambiente
Università della Basilicata
Contrada Macchia Romana, 85100 Potenza, Italy
caccavale@unibas.it

Abstract Whenever it comes to the point of controlling complex robotic systems,
all goes back to fundamental kinematic issues which should be thor-
oughly mastered to design effective control systems. This has been the
experience of many scholars working in the field whose research has been
influenced, directly or indirectly, by the seminal work of bright design-
ers and kinematicians like Professor Bernard Roth. The present paper
aims at surveying a body of literature on Jacobian-based algorithms
developed by the PRISMA Lab, e.g. a group of researchers with control
background who have constantly found inspiration in the fascinating
world of kinematics.

Keywords: Robot manipulators, kinematics, Jacobian, kinematic control, serial ma-
nipulators, redundant manipulators, parallel manipulators, cooperative
multiarm systems, underwater vehicle-manipulator systems, spacecraft-
manipulator systems, flexible manipulators

1. Kinematic Control
No doubt, the Jacobian is the most important tool for characterizing

articulated mechanical systems, such as robot manipulators. It is use-
ful for finding singular configuration, analyzing redundancy, developing
inverse kinematics algorithms, describing the statics, deriving dynamic
equations of motion and, last but not least, designing control schemes.

Robot kinematic control consists of solving the motion control prob-
lem into two stages, i.e. the desired end-effector trajectory is trans-
formed via inverse kinematics into the corresponding joint trajectories,
which then constitute the reference inputs to some joint space control
scheme [Siciliano, 1990a]. This approach differs from operational space
control [Khatib, 1987] in the sense that manipulator kinematics is han-
dled outside the control loop thus allowing the problem of kinematic
singularities and/or redundancy to be solved separately from the mo-
tion control problem. The key point of kinematic control is the solution
to the inverse kinematics problem.

In all general terms, the kinematics of a robotic systems is expressed
in terms of a nonlinear relationship between the vector q of configuration
variables and the vector x of task variables, i.e.

x = k(q). (1)

Well-assessed methods exist to calculate the function k in a closed form
[Bottema and Roth, 1979]. On the other hand, finding solutions to (1)
has attracted a wide number of kinematicians who have spent con-
siderable efforts on investigating the existence of admissible solutions,
e.g. [Pieper and Roth, 1969] and, in the affirmative case, computing all
possible solutions [Raghavan and Roth, 1995].

An effective numerical approach to solve (1) can be pursued by re-
sorting to the differential mapping

ẋ = JA(q)q̇, (2)

where JA(q) = ∂k/∂q is the robot analytical Jacobian. The term “an-
alytical” merely reflects the analytical derivation of the Jacobian, as
opposed to the “geometric” Jacobian which would relate configuration
velocities to task velocities [Sciavicco and Siciliano, 2000]; this issue is
dealt with in further detail in the next section.

The main advantage of (2) over (1) is its linearity in the configuration
velocities. This allows solving the differential kinematics by a suitable
inversion of the Jacobian matrix to compute [Whitney, 1969]

q̇ = J−1
A (q)ẋ, (3)

which then can be integrated over time to give q. Of course, if JA

is square matrix, a simple inverse suffices; yet, if JA is not full-rank,
numerical robustness could be achieved by resorting to a damped least-
squares inverse [Chiaverini et al , 1994], where the damping factor can
be suitably tuned as a function of proximity to singularities, e.g. on the
basis of the estimates of the smallest singular values of the Jacobian
matrix [Chiaverini, 1993].

On the other hand, if the Jacobian is a non-square matrix, then a
suitable right pseudo-inverse can be adopted, i.e.

q̇ = J
†
A(q)ẋ. (4)

From an algorithmic viewpoint, it is advisable to introduce a feedback
correction term aimed at eliminating any numerical drift of the solution,
i.e.

q̇ = J
†
A(q)(ẋd + Ke), (5)

where e = xd − x is the error between the desired and the actual set of
task variables, and K is a suitable positive definite matrix gain. The re-
sulting scheme of the Jacobian inverse kinematics algorithm is illustrated
in Fig. 1. This scheme solves the so-called kinematic control problem,
i.e. to find suitable joint trajectories q(t) corresponding to a desired task
trajectory xd(t).

An effective alternative to the above algorithm based on (5) can
be adopted by resorting to a Jacobian transpose in lieu of its inverse,
i.e. [Sciavicco and Siciliano, 1986]

q̇ = JT
A (q)Ke, (6)

Figure 1. The Jacobian Inverse Kinematics Algorithm

which can be proved to guarantee limited tracking errors and null steady-
state errors [Chiacchio and Siciliano, 1989]. The resulting scheme is il-
lustrated in Fig. 2.

Figure 2. The Jacobian Transpose Kinematics Algorithm

The Jacobian-based algorithms hereby formulated can be used to solve
a number of kinematic control problems, as illustrated in the following
sections; namely, for serial manipulators, redundant manipulators, par-
allel manipulators, cooperative multiarm systems, underwater vehicle-
manipulator systems, spacecraft-manipulator systems, and flexible ma-
nipulators.

2. Serial Manipulators
The kinematics of a serial open-chain manipulator can be described

in the form (1) where q is the set of joint variables, and xe is the set of
end-effector variables

xe =
[

pe

ϕe

]
, (7)

where pe denotes the end-effector position and ϕe denotes a minimal
representation of orientation in terms of three Euler angles, with respect
to some base frame (Fig. 3).

Notice that the vector xe is defined in the task space, i.e. in which the
robot task is specified. The dimension of this space is at most m = 6,
since 3 coordinates specify position and 3 coordinates specify orientation.
Nevertheless, depending on the geometry of the task, a reduced number
of task space variables may be specified; for instance, for a planar robot
it is m = 3, since two coordinates specify position and one coordinate
specifies orientation.

Figure 3. A Serial Manipulator

This representation of position and orientation allows the description
of the end-effector task in terms of a number of inherently independent
parameters. Nevertheless, the computation of Euler angles from the
joint variables goes through the computation of the end-effector frame
rotation matrix

Re = [ne se ae] (8)

and, as such, it suffers from the so-called representation singularities.
These clearly appear in the mapping between the time derivatives of the
Euler angles and the end-effector angular velocity, i.e.

ωe = T (ϕe)ϕ̇e, (9)

where T (ϕe) depends on the particular choice of Euler angles.
In particular, the angular velocity ωe is related to the time derivative

of the rotation matrix as

Ṙe = S(ωe)Re, (10)

where S(·) is the matrix operator performing the cross product between
two (3× 1) vectors.

Therefore, the differential kinematics equation for a serial manipulator
is established in the form

v =
[

ṗe

ωe

]
= J(q)q̇, (11)

where J(q) is the geometric Jacobian. The computation of this matrix
usually follows a geometric procedure that is based on computing the
contributions of each joint velocity to the linear and angular end-effector
velocities [Whitney, 1972].

It can be easily recognized that the geometric Jacobian in general
differs from the analytical Jacobian. Concerning their use, the geometric
Jacobian is adopted when physical quantities are of interest while the
analytical Jacobian is adopted when task space quantities are of interest.
It is always possible to pass from one Jacobian to the other, except at a
representation singularity.

The algorithm based on (4) for a serial manipulator constitutes an in-
verse kinematics algorithm which makes use of the analytical Jacobian.
More insight about the implications of different end-effector orientation
descriptions can be gained by separating the position from the orienta-
tion components. Using the geometric Jacobian in lieu of the analytical
Jacobian, the solution can be rewritten as

q̇ = J†(q)v (12)

with
v =

[
vp

vo

]
, (13)

where vp, vo represent two resolved velocities that shall be chosen so as
to ensure tracking of the desired end-effector motion.

For what concerns position, the choice is rather straightforward, i.e.

vp = ṗd + Kpep, (14)

where the position error

ep = pd − pe(q) (15)

between the desired and actual end-effector positions has been defined.
On the other hand, for what concerns the orientation error, some

considerations are in order depending on the type of description adopted.
If Euler angles are adopted, the resolved angular velocity in (13) is
chosen as

vo = T (ϕe)(ϕ̇d + Koeo,Eul), (16)

where
eo,Eul = ϕd − ϕe(q) (17)

is the orientation error.
In order to overcome the drawback of representation singularities

in (16), an algorithm based on an alternative Euler angles description
can be conceived [Caccavale et al , 1998] which makes use of the rotation
matrix describing the mutual orientation between the desired and the
actual end-effector frame, i.e.

eRd = RT
e (q)Rd. (18)

Differentiating (18) with respect to time and accounting for (10) gives

eṘd = S(eωde)eRd, (19)

where ωde = ωd − ωe(q) is the end-effector angular velocity error.
Let ϕde denote the set of Euler angles that can be extracted from eRd.

Then, in view of (9) and (10), the angular velocity eωde in (19) is related
to the time derivative of ϕde as

eωde = T (ϕde)ϕ̇de. (20)

At this point, the resolved angular velocity in (13) can be chosen as

vo = ωd + ReT (ϕde)Koeo,EulAlt (21)

with
eo,EulAlt = ϕde. (22)

The clear advantage of the alternative over the classical Euler angles
algorithm based on (16) is that, by adopting a representation ϕde for
which T (0) is nonsingular, representation singularities occur only for
large orientation errors. In other words, the ill-conditioning of matrix T

is not influenced by the desired or actual end-effector orientation but
only by the orientation error. In this respect, the choice of a particular
Euler angles description among the twelve possible should be carefully
made, i.e. in the sense of avoiding a representation singularity.

In order to overcome the problem of representation singularities, an in-
verse kinematics algorithm based on the angle/axis description of orien-
tation can be devised. From (18), the rotation ϑde and the unit vector rde

can be extracted using well-known formulæ. Then, the orientation error
can be defined as

eo,AnAx = sin ϑderde. (23)

Notice that (23) gives a unique solution for −π/2 < ϑde < π/2, but this
interval is not limiting for a convergent inverse kinematics algorithm. It
can be shown that a computational expression of the orientation error
in (23) is given by [Sciavicco and Siciliano, 2000]

eo,AnAx =
1
2

(
S(ne(q))nd + S(se(q))sd + S(ae(q))ad

)
, (24)

where the triplet of unit vectors has been used for both the desired and
the actual end-effector rotation matrix. Note that the above limitation
on ϑde sets the conditions nT

e nd ≥ 0, sT
e sd ≥ 0, aT

e ad ≥ 0.
Differentiation of (24) with respect to time gives

ėo,AnAx = LTωd − Lωe (25)

with
L = −1

2

(
S(nd)S(ne) + S(sd)S(se) + S(ad)S(ae)

)
. (26)

At this point, the resolved angular velocity in (13) can be chosen as

vo = L−1(LTωd + Koeo,AnAx). (27)

Another inverse kinematics algorithm is based on the unit quaternion
description of orientation, so as to overcome the above limitation on
the angle/axis description. Let Qd = {ηd, εd} and Qe = {ηe, εe} repre-
sent the unit quaternions associated with Rd and Re, respectively. The
mutual orientation can be expressed in terms of the unit quaternion
Qde = {ηde, εde} where

ηde = ηe(q)ηd + εT
e (q)εd

(28)
εde = ηe(q)εd − ηdεe(q)− S(εd)εe(q).

It can be recognized that Qde = {1,0} if and only if Re and Rd are
aligned, and thus it is sufficient to consider εde to express an end-effector
orientation error, i.e. [Chiaverini and Siciliano, 1999a]

eo,Quat = εde. (29)

Notice that the explicit computation of ηe(q) and εe(q) is not possi-
ble, but it requires the intermediate computation of the rotation matrix
Re(q) that is available from the manipulator direct kinematics; then,
the unit quaternion can be extracted using well-known formulæ, e.g.

[Shepperd, 1978]. At this point, the resolved angular velocity in (13)
can be chosen as

vo = ωd + Koeo,Quat, (30)

which can be shown to ensure null tracking errors.
As a final remark, the above kinematic control schemes can be easily

extended to the second order, i.e. solving the joint motion at the ac-
celeration level instead of velocity level. This may be advantageous for
model-based dynamic control in the joint space [Caccavale et al , 1997].

3. Redundant Manipulators
Whenever a manipulator possesses more joint variables than the num-

ber of task variables, it is said to be kinematically redundant .
If it is desired to exploit redundant degrees of freedom, solution (5)

can be generalized to

q̇ = J
†
A(q) (ẋd + Ke) +

(
I − J

†
A(q)JA(q)

)
q̇0, (31)

where the matrix (I −J†J) is a projector of the joint vector q̇0 onto the
null space of J [Chiacchio et al , 1991].

This result is of fundamental importance for redundancy resolution,
since solution (31) evidences the possibility of choosing the vector q̇0 so
as to exploit the redundant degrees of freedom. In fact, the contribution
of q̇0 is to generate null space motions of the structure that do not con-
tribute to the end-effector motion but allow the manipulator to reach
configurations which are more dexterous for the execution of the given
task [Siciliano, 1990b]. In case of numerical problems in the neighbor-
hood of singularities, the pseudoinverse can be replaced with a suitable
damped least-squares inverse [Chiaverini, 1997].

An effective way to choosing q̇0 can be derived by combining the
Jacobian pseudoinverse solution with the Jacobian transpose solution
as illustrated below. This is carried out in the framework of the so-
called augmented task space approach to exploit redundancy in robotic
systems [Sciavicco and Siciliano, 1988]. The idea is to introduce an ad-
ditional constraint task by specifying a vector xC as a function of the
joint variables, i.e.

xC = kC(q), (32)

so as to constrain at most all the available redundant degrees of free-
dom. The constraint task vector xC can be chosen by embedding scalar
objective functions, e.g. to improve dexterity, avoid obstacles, etc.

Differentiating (32) with respect to time gives

ẋC = JC(q)q̇, (33)

where JC(q) = ∂kC/∂q is the constraint Jacobian. The result is an
augmented differential kinematics equation given by (2) and (33), based
on a Jacobian matrix

J ′ =
[

JA

JC

]
. (34)

When a constraint task is specified independently of the end-effector
task, there is no guarantee that the matrix J ′ remains full-rank along
the entire task path; singularities of J ′ are termed artificial singularities
and it can be shown that those are given by singularities of the matrix
JC(I − J

†
AJA).

The above discussion suggests that, when solving for joint velocities,
a task priority strategy is advisable so as to avoid conflicting situations
between the end-effector task and the constraint task [Nakamura et al ,
1987]. Substituting (31) into (33) gives

ẋC = JC(q)J†A(q)(ẋd + Ke) + JC(q)
(
I − J

†
A(q)JA(q)

)
q̇0 (35)

which could be solved for q̇0 provided that artificial singularities are
avoided. Observing that equality (35) can be achieved only for the com-
ponents of ẋC belonging to the range space of JC , it is sufficient to
consider the equation

J
†
C(q)ẋC = J

†
A(q)(ẋd + Ke) +

(
I − J

†
A(q)JA(q)

)
q̇0 (36)

that can be solved for q̇0 giving

q̇0 =
(
I − J

†
A(q)JA(q)

)†(
J
†
C(q)ẋC − J

†
A(q)(ẋd + Ke)

)
. (37)

By recalling that (I − J
†
AJA)† = (I − J

†
AJA), solution (37) reduces to

the simple form [Chiaverini, 1997]

q̇0 =
(
I − J

†
A(q)JA(q)

)
J
†
C(q)ẋC . (38)

Folding (38) back into (31) and exploiting the idempotence of (I−J
†
AJA)

gives

q̇ = J
†
A(q)(ẋd + Ke) +

(
I − J

†
A(q)JA(q)

)
J
†
C(q)(ẋCd + KCeC) (39)

with eC = xCd − xC , being xCd the desired value of the constraint
task, and KC is a positive definite matrix. The operator (I − J

†
AJA)

projects the secondary velocity contribution q̇0 on the null space of JA,
guaranteeing correct execution of the primary end-effector task while

the secondary constraint task is correctly executed as long as it does
not interfere with the end-effector task. Obviously, if desired, the order
of priority can be switched, e.g. in an obstacle avoidance task when an
obstacle comes to be along the end-effector path.

In the case when JC becomes singular, a damped least-squares inverse
of JC in lieu of the pseudoinverse in (38) can be used. Otherwise, by
recalling the Jacobian transpose solution for the end-effector task (6), the
null space joint velocity vector can be conveniently chosen as [Chiacchio
et al , 1991]

q̇0 = JT
C (q)KC(xCd − xC). (40)

which allows the algorithm to work at a singularity of JC and even at an
artificial singularity. A tracking error arises for the constraint task but,
observing that the desired constraint task is often constant over time
(ẋCd = 0), it can be concluded that the solution based on (40) performs
equally well at steady state.

4. Parallel Manipulators
In the latest years, a novel type of closed-chain manipulators have

been receiving quite a deal of attention; namely, the parallel manipu-
lators [Merlet, 2000] which are constituted by a fixed base and a mo-
bile base, connected by a number of independent kinematic chains.
This allows obtaining high structural stiffness and performing high-
speed motions, e.g. the Delta robot and the Hexa robot. One drawback
with respect to open-chain manipulators, though, is a typically reduced
workspace.

A particular family of parallel manipulators is characterized by hav-
ing a radial link connected to the end effector of variable length. To
this family belongs the industrial robot Tricept in Fig. 4. It is a six-
degree-of-freedom (dof) robot manipulator comprising a three-dof par-
allel structure and a spherical wrist.

Let p denote the position of the origin of the frame attached to the
mobile base. The inverse differential kinematics can be written as

q̇ = J−1(p)v, (41)

where q is the vector of joint variables and v is the linear velocity vector.
The geometric Jacobian inverse J−1 can be calculated from the inverse
kinematics function, which is available via simple geometry.

On the other hand, the direct kinematics problem for a parallel robot
consists of finding the vector of position coordinates p as a function of
the vector of joint variables q. Typically, such a problem does not admit
closed-form solutions and numerical algorithms should be used.

Figure 4. The Tricept Parallel Manipulator

Therefore, an effective solution to such kind of kinematic control prob-
lem for a parallel manipulator can be devised by transposing the above
Jacobian-based algorithm, i.e. [Siciliano, 1999a]

v = J(p)(q̇d + Ke), (42)

where e = qd − q denotes the error between qd and the computed joint
variables q. The resulting scheme is illustrated in Fig. 5.

An alternative and computationally more efficient solution can be
devised which avoids the inversion of the inverse geometric Jacobian to
compute J in (42). In fact, the choice

v = J−T(p)Ke (43)

is based on the transpose of the inverse geometric Jacobian, and can be
proved to guarantee limited tracking errors and null steady-state errors.
The resulting scheme is illustrated in Fig. 6.

5. Cooperative Multiarm Systems
Various robotic applications require the adoption of multiarm systems

in lieu of single robot manipulators. These include, for instance, manip-
ulation of heavy or non-rigid objects and mating of mechanical pieces.

d
q

q
d

e v p
K J (p)

q ()

Figure 5. The Jacobian Kinematics Algorithm for Parallel Manipulators

q
d

e v p
K J (p)

q ()

-T

Figure 6. The Inverse-Jacobian Transpose Kinematics Algorithm for Parallel Ma-
nipulators

In all such cases the multiple robots should operate in a cooperative fash-
ion so as to synchronize the relative motions, avoid undesired collisions,
maintain the grasp between the arms and the object, etc.

Without loss of generality, consider a system of two cooperative ma-
nipulators. For each manipulator (i = 1, 2), let pi and Ri respectively
denote the end-effector position vector and rotation matrix which are
referred to a common base frame.

The absolute position of the system can be defined as the origin of the
absolute frame (a) which can be expressed as a function of the positions
of the two end effectors. One simple choice is

pa =
1
2
(p1 + p2). (44)

Then, the rotation matrix giving the absolute orientation can be defined
as

Ra = R1R1k12
(ϑ12/2), (45)

where 1k12 and ϑ12 are respectively the unit vector and the angle that
realize the rotation described by 1R2, i.e. the orientation of frame 2 with
respect to frame 1. Therefore, the above choice corresponds to make a

rotation about axis 1k12 by an angle which is half the angle needed to
align R2 with R1.

The absolute position and orientation describe the task in terms of
the composition of the position and orientation of the single manipu-
lators. It is clear that there exist infinite end-effector configurations
giving the same absolute position and orientation. Therefore, in order
to fully describe a coordinated motion, the position and orientation of
one manipulator relative to the other is also of concern.

The relative position between the two end effectors can be defined as

pr = p2 − p1. (46)

The relative orientation between the two end effectors can be defined
with reference to the end-effector frame of either manipulator —say the
first one— in terms of the rotation matrix

1Rr = 1R2. (47)

The position and orientation of the various frames is illustrated in
Figure 7.

���

� �

� �

� �

� �
� �

� �

� �

�

�

�

�

� �

� �

�	�

�	

�

�

�

�

� �
�

� �

� �

�

Figure 7. Absolute and Relative Frames in a Dual-Arm System

Notice that, in order too be independent of the absolute motion of
the system, it is more convenient to specify the relative position with
reference to the absolute frame, i.e. apr. The relationship between apr

and pr is given by
pr = Ra

apr. (48)

A distinguished feature of the proposed formulation is that coordi-
nated motion of the system is achieved without necessarily assuming
that the two manipulators are kinematically constrained through the
presence of an object between the two end effectors. Nevertheless, if the
two end effectors hold a common object, general manipulation tasks can
be described by the above formulation. For instance, if the task is to
move a tightly grasped object without deforming it, a trajectory has to
be assigned to pa and Ra while apr and 1Rr have to be kept constant.
Yet, if the task is to stretch, bend or shear the object, suitable trajecto-
ries have to be specified for the relative variables too. Cases of non-tight
grasp can be handled as well [Chiacchio et al , 1996].

Having established a task formulation for the direct kinematics of the
two-manipulator system, it is useful to derive also the differential kine-
matics relating the coordinated (absolute and relative) velocities to the
corresponding velocities of the two manipulators. This is of interest not
only for characterizing the velocity mappings, similar to task formula-
tions using the grasp matrix, but also for solving the inverse kinematics
of the two-manipulator system as well as for handling the presence of
redundant degrees of freedom in the system.

The absolute linear velocity of the system is obtained as the time
derivative of (44), i.e.

ṗa =
1
2
(ṗ1 + ṗ2). (49)

Differentiating (45) with respect to time and using (10) yields

ωa =
1
2
(ω1 + ω2). (50)

The relative linear velocity of the system is obtained as the time deriva-
tive of (46), which in view of (48) gives

ṗr = Ra
aṗr + S(ωa)pr (51)

with ωa as in (50). Finally, differentiating (47) with respect to time and
using (10) yields

ωr = ω2 − ω1 (52)

which has been expressed in the base frame.
The differential kinematics of each manipulator is described by

[
ṗi

ωi

]
= Ji(qi)q̇i i = 1, 2, (53)

with obvious meaning of the quantities.

At this point, combining (49),(50) and taking into account (53) yields
[

ṗa

ωa

]
= Ja(q1, q2)

[
q̇1

q̇2

]
, (54)

where the absolute Jacobian is defined as

Ja = [1
2J1

1
2J2] . (55)

Further, combining (51),(52) and taking into account (53) yields
[

ṗr

ωr

]
= Jr(q1, q2)

[
q̇1

q̇2

]
, (56)

where the relative Jacobian is defined as

Jr = [−J1 J2] . (57)

The algorithm based on (12) can be keenly applied to solve the inverse
kinematics for the two-manipulator system at issue. To this purpose, it
is sufficient to define the joint variable vector as

q =
[

q1

q2

]
, (58)

and the Jacobian as

J =
[

Ja

Jr

]
, (59)

where Ja, Jr are given as in (55) and (57), respectively.
The resolved velocity v in (12) can be chosen as

v =
[

vad + Kaea

vrd + Krer

]
. (60)

The absolute velocity term is given by

vad =
[

ṗad

ωad

]
, (61)

where ṗad and ωad are respectively the desired absolute linear and an-
gular velocities specified by the user in the base frame. The relative
velocity term is given by

vrd =
[

Ra
aṗrd + S(ωa)Ra

aprd

ωrd

]
, (62)

where aṗrd is the desired relative linear velocity specified by the user in
the object frame and 1ωrd is the desired relative angular velocity specified
by the user in the end-effector frame of the first manipulator. Notice that
the expression of the translational part of the relative velocity presents
an additional term which is a consequence of having assigned the relative
position with reference to the absolute frame.

Finally, the absolute error term in (60) has a position and an orien-
tation component and is given by

ea =

[
pad − pa

1
2

(
S(na)nad + S(sa)sad + S(aa)aad

)
]

, (63)

where pad is the desired absolute position specified by the user in the
base frame, pa is the actual absolute position that can be computed as
in (44), nad, sad, aad are the column vectors of the rotation matrix Rad

giving the desired absolute orientation specified by the user in the base
frame, and na, sa, aa are the column vectors of the rotation matrix Ra

in (45).
The relative error is given by

er =

[
Ra

aprd − pr

1
2R1

(
S(1nr)1nrd + S(1sr)1srd + S(1ar)1ard

)
]

. (64)

The rotation Ra is aimed at expressing the desired relative position aprd,
assigned by the user in the absolute frame, in the base frame; in this
way, the specification of the desired relative position between the two
end effectors is not affected by the absolute frame orientation. Further
in (64) notice that: pr can be computed as in (46); 1nrd,

1srd,
1ard are the

column vectors of the rotation matrix 1Rrd giving the desired relative
orientation specified by the user in the end-effector frame of the first
manipulator; 1nr,

1sr,
1ar are the column vectors of the rotation matrix

1Rr in (47); and the rotation R1 is aimed at expressing the orientation
error in the base frame.

6. Underwater Vehicle–Manipulator Systems
Execution of underwater manipulation tasks requires the use of a

robot manipulator mounted onboard a vehicle actuated by thrusters;
for that, an Underwater Vehicle–Manipulator System (UVMS) is always
kinematically redundant due to the dof’s provided by the vehicle itself
besides those provided by the robot arm. This naturally poses a redun-
dancy resolution problem for motion coordination between the vehicle
and the manipulator, whose solution can significantly increase efficiency
of the system.

As a matter of fact, while it is obvious that gross motion of the UVMS
must be provided by vehicle movements and fine motion of the end effec-
tor is best accomplished by the sole manipulator motion, reconfiguration
of the whole system is required when the manipulator would be asked to
work at the boundaries of its workspace or close to a kinematic singular-
ity. The reconfiguration of the UVMS must suitably trade off the need of
saving energy and keeping the control bandwidth high (that would call
for motion of the manipulator) against the need of ensuring high manip-
ulability for the robot arm (that would require continuous adjustment
of the vehicle position and orientation).

The above redundancy resolution problem can be dealt with in the
framework of task-priority Jacobian-based inverse kinematics algorithms
as follows [Antonelli and Chiaverini, 2003a].

The vehicle is completely described by its position and orientation
with respect to a base frame (frame b) that is assumed to be earth-fixed
and inertial. Define the vector xv = [pT

v ϕT
v]T, where pv is the vector

of vehicle position coordinates and ϕv is the vector of vehicle Roll-Pitch-
Yaw Euler-angle coordinates, both quantities defined with reference to
the base frame.

It is useful to define the vehicle’s velocity in a frame attached to
the vehicle (frame v); let vxv = [vṗT

v
vωT

v]T, where vṗv is the linear
velocity of the vehicle with respect to the base frame and vωv is the
angular velocity of the vehicle, both quantities defined with reference to
frame v.

The above velocity vectors satisfy the following equations:
vṗv = vR ṗv (65)
vω = T (φv)ϕ̇v, (66)

where vR is the rotation matrix from frame b to frame v, and T is a
suitable transformation matrix as in (9).

At this point, define q = [q1 · · · qn]T as the vector of joint posi-
tions, n being the number of joints. By introducing the vector ζ =
[vṗT

v
vωT

v q̇T]T it is possible to rewrite the relation between the above
velocities in compact form, i.e.

ζ =

vR O O

O T O

O O I

[
ẋv

q̇

]
= JS

[
ẋv

q̇

]
, (67)

where JS is the system Jacobian, while I and O respectively denote
identity and null matrices of appropriate dimensions.

Since the task to be executed requires position/orientation control of
the manipulator’s end effector, it is necessary to consider the end-effector

posture xe = [pT
e ϕT

e]T, where pe is the end-effector position and ϕe is
the end-effector orientation (Euler angles), both quantities defined with
reference to the base frame. Notice that the vector pe is a function of the
system configuration, i.e. pe(xv, q), while the vector ϕe does only depend
on the vehicle orientation, i.e. ϕe(ϕv, q). The relationship between the
end-effector posture and the system configuration can be expressed by
the following nonlinear kinematic equation

xe = k(xv, q). (68)

The time derivatives of the end-effector position and orientation are
related to the actual end-effector velocities via relations analogous to (65)
and (66); namely,

eṗe = eR ṗe (69)
eωe = T (ϕe)ϕ̇e, (70)

where eR is the rotation matrix from the base frame to the end-effector
frame (see Figure 8) and T is the matrix associated to the use of the
Euler angles of the end-effector frame.

���� �

� �

���� �

���
�	�

��� � �
�	

��
�

Figure 8. Sketch of a UVMS with Relevant Frames

The end-effector velocities in the base frame are related to the system
velocities by a suitable Jacobian matrix, i.e.

ve =
[

ṗe

Re
eωe

]
= J(xv, q)ζ. (71)

Notice that the Jacobian has been derived with respect to the angular
velocity of the end effector expressed in the base frame. This is done
in order to allow implementation of an inverse kinematics algorithm in
terms of quaternions as described in the following.

The objective of kinematic control for a UVMS is to find suitable vehi-
cle/joint trajectories xv(t), q(t) that correspond to a desired end-effector
trajectory xed(t). The outputs of the inverse kinematics algorithm pro-
vide the reference values to the control law of the UVMS. This control
law will be in charge of computing the driving forces aimed at track-
ing the reference trajectory for the system while counteracting dynamic
effects, external disturbances, and modeling errors.

Equation (71) maps the (6+n)-dimensional vehicle/joint velocities
into the m-dimensional end-effector task velocities, where the typical
case (6+n) ≥ m will be considered. Notice that, in case of UVMS, the
Jacobian has always full rank due to the mobility of the vehicle, i.e. a
rigid body with 6 dof’s. However, movement of the vehicle has to be
avoided when unnecessary.

Considering as primary task the end-effector position/orientation, the
Jacobian-based inverse kinematics algorithm (39) becomes [Antonelli
and Chiaverini, 1998]:

ζr = J†(xv, q) (ved + Ke) (72)

+
(
I − J†(xv, q)J(xv, q)

)
J
†
C(xv, q) (ẋCd + KCeC) ,

where the constraint task is to be defined later, while e and eC are
suitable expressions of the errors.

As for the vector components related to the position variables, the
error is simply given by the difference between the desired and the actual
values. By using the quaternion attitude representation for the error
components related to the orientation variables, the vector e turns out
to be [Chiaverini and Siciliano, 1999a]:

e =
[

ped − pe

ηεd − ηdε− S(εd)ε

]
, (73)

where Qd = {ηd, εd} and Q = {η, ε} are the desired and actual attitudes
expressed by quaternions, respectively.

Because of the different inertia characteristics of the vehicle and of
the manipulator, it would be preferable to perform fast motions of small
amplitude by means of the manipulator while leaving the vehicle with
the task of executing slow gross motions. This might be achieved by
adopting a weighted pseudoinverse

J
†
W = W−1JT

(
JW−1JT

)−1
, (74)

with the (6+n)× (6+n) matrix

W−1(β) =
[
(1− β)I O

O βI

]
, (75)

where β is a weighting factor belonging to the interval [0, 1] such that
β = 0 corresponds to sole vehicle motion and β = 1 to sole manipulator
motion.

During task execution, setting a constant value of β would mean to
fix the motion distribution between the vehicle and the manipulator.
Nevertheless, the use of a fixed weighting factor inside the interval [0, 1]
has a drawback: it causes motion of the manipulator also if the desired
end-effector posture is out of reach; on the other hand, it causes motion
of the vehicle also if the manipulator alone could perform the task.

Another problem is the necessity to handle a large number of variables;
UVMS’s, in fact, are complex systems and several variables must be
monitored during the motion, e.g. the manipulator manipulability, the
joint range limits to avoid mechanical breaks, the vehicle roll and pitch
angles for correct tuning of the proximity sensors, the yaw angle to
exploit the vehicle shape in presence of ocean current, etc. As it can be
easily understood, it is quite difficult to handle all these terms without
a kinematic control approach. Nevertheless, the existing techniques do
not allow finding a flexible and reliable solution.

To overcome this drawback a fuzzy theory approach can be considered
at two different levels. First, it is desired to manage the distribution of
motion between the vehicle and the manipulator; second, it is possible
to consider multiple secondary tasks that are activated only when the
corresponding variable is outside (inside) a desired range. This can be
done using different weighting factors adjusted on-line by a fuzzy infer-
ence system [Antonelli and Chiaverini, 2003a; Antonelli and Chiaverini,
2003b]. In detail, the crisp outputs are the scalar β in (75) and a vector
of coefficients αi that are used in the task priority equation as follows

ζ = J
†
W (ved + Ke) +

(
I − J

†
WJW

) (∑

i

αiJ
†
CiwCi

)
, (76)

where wCi are suitably defined constraint task variables and JCi are the
associated Jacobians. Both β and αi’s are tuned according to the state
of the system and to given behavioral rules. The inputs of the fuzzy
inference system depend on the variables of interest in the specific mis-
sion. As an example, the end-effector error, the ocean current measure,
the system’s dexterity, as well as the force sensor readings, can be easily
taken into account by setting up a suitable set of fuzzy rules.

To avoid the exponential growth of the fuzzy rules to be implemented
as the number of tasks is increased, the secondary tasks are suitably
organized in a hierarchy. Also, the rules have to guarantee that only
one αi is high at a time so as to avoid conflict between the secondary
tasks.

7. Spacecraft–Manipulator Systems
Entrusting extravehicular activities to a mechanical robot manipula-

tor rather than to an astronaut is foreseen to reduce the danger of space
servicing jobs.

Consider a system composed by an n-dof manipulator with rigid links
mounted on a rigid body spacecraft , free-floating in a zero-gravity en-
vironment. In the following, q will denote the (n × 1) vector of joint
variables. The vector ps represents the position of a spacecraft-fixed co-
ordinate frame (s) with respect to an inertial reference frame; Rs is the
rotation matrix expressing the spacecraft attitude, i.e. the orientation of
the spacecraft frame with respect to the inertial frame. Let also pe and
Re express, respectively, the position and orientation of the end-effector
frame with respect to the same inertial reference frame.

The kinematic equation relating the joint and spacecraft variables to
the end-effector position can be written as

pe = ps + Rs
spes(q), (77)

where spes is the position of the end-effector frame relative to the space-
craft frame; the end-effector orientation can be described by the rotation
matrix

Re = Rs
sRe(q), (78)

where sRe = RT
s Re is the rotation matrix expressing the relative orien-

tation between the end-effector frame and the spacecraft frame. Notice
that spes(q) and sRe(q) represent the usual direct kinematics equations
of a ground-fixed manipulator with respect to its base frame (see Fig-
ure 9).

In view of solving the inverse kinematics for such a system, it is
convenient to consider differential kinematics in lieu of (77),(78). Let
ve = [ṗT

e ωT
e]T be the vector of generalized end-effector velocity, where

ṗe and ωe denote the linear and angular velocity, respectively. Let sJes be
the manipulator geometric Jacobian relating the joint velocities q̇ to the
end-effector velocity relative to the spacecraft frame sves = [sṗT

es
sωT

es]T,
where sωes = RT

s (ωe − ωs). Let also vs = [ṗT
s ωT

s]T be the vector of
generalized spacecraft velocity. Then, by differentiating (77) and (78),

�

�

�

�

���

� �

���

� �

� �

� �

���

� �

	 �

	 �

	 � �

��� � � � � � ���������

� ��� ����� � ���

� �

� �

� � �

Figure 9. Sketch of a Spacecraft–Manipulator System with Relevant Frames

it follows
ve = Js(q, Rs)vs + Rs

sJes(q)q̇, (79)

with

Js =
[

I −S(Rs
spes)

O I

]
. (80)

Since the spacecraft position is of no concern, ṗs can be eliminated
from (79). This can be achieved by exploiting the geometrical definition
of the mass center of the system pG

pG

∑

i

mi =
∑

i

miri, (81)

where mi is the mass of the ith rigid body in the system and ri represents
the position of its center of mass with respect to the inertial reference
frame. Hence, by following the guidelines in [Umetani and Yoshida,
1989] and assuming null initial velocity for the system’s center of mass,
the following expression can be derived from (79) and (81)

ve = J̄s(q, Rs)ωs + J̄e(q, Rs)q̇, (82)

where the matrices J̄s and J̄e depend on the Jacobian matrices Js and
sJes in (79), the masses mi and the position vectors ri.

It is assumed that no external forces or torques act on the center of
mass of the system. Thus, there are no devices intended to change space-
craft attitude, e.g. reaction wheels or thrusters. In this case, momentum
conservation dictates that

∑

i

miṙi = 0 (83)

for the translational momentum and
∑

i

(Miωi + miri × ṙi) = 0, (84)

where ωi is the angular velocity of the ith body in the system and Mi is
the inertia matrix around its center of mass. It has been assumed that
the initial momentum of the free-floating system is null, without loss of
generality.

The quantities ri, ṙi, ωi and Mi are referred to the inertial frame, and
it is not difficult to compute their expressions as a function of Rs and
q [Nakamura and Mukherjee, 1991]. Substituting such expressions into
eqs. (83),(84), momentum conservation can be compactly expressed as

Msωs + Meq̇ = 0, (85)

where Ms is a (3× 3) matrix related to the spacecraft inertia and Me is
a (3× n) matrix related to the manipulator inertia.

Equations (82) and (85) are fundamental for analyzing the motion
of the system composed by the robotic manipulator mounted on the
free-floating spacecraft. Since Msωs represents the spacecraft rotational
momentum, Ms is a non-singular matrix; then, solving (85) for ωs and
substituting in (82) allows eliminating the dependence on the spacecraft
attitude changes, i.e.

ve = JGq̇ (86)

where the matrix
JG = J̄e − J̄sM

−1
s Me (87)

is termed the generalized Jacobian for the spacecraft/manipulator sys-
tem [Umetani and Yoshida, 1989].

The attractive feature of (86) is its formal analogy with the well-known
differential kinematics equation for ground-fixed manipulators. The ma-
nipulator Jacobian J̄e is modified by the presence of a term accounting
for the relative inertial weight between the spacecraft and the manipu-
lator. The larger the spacecraft inertia, the smaller the reaction caused

by the manipulator motion; in the limit of a very massive spacecraft,
the generalized Jacobian will tend to the manipulator Jacobian.

The algorithm based on (12) can be keenly applied to solve the inverse
kinematics for the free-floating manipulator system at issue with JG in
lieu of J .

With reference to the use of the unit quaternion for the orientation
error, the resolved velocity can be chosen as

v =
[

ṗd + Kpep

ωd + Koεde

]
. (88)

In the framework of inverse kinematics algorithms, it is important
to recognize the presence of redundant degrees of freedom in the system
with respect to the required task. As pointed out in [Nenchev et al , 1992],
three cases of redundancy can be distinguished in connection with the
number of degrees of mobility (joint variables) n versus the number of
dof’s characterizing the assigned task (task space variables) ms + me,
where ms and me refer to the spacecraft and manipulator task, respec-
tively. If n < ms + me, the manipulator can be redundant with re-
spect either to the spacecraft task (n > ms) or to the end-effector task
(n > me), but redundancy will not allow specifying a coordinated task
for the spacecraft and the end-effector. If n = ms + me, the available
dof’s can be exploited to coordinate the motion of the spacecraft with
that of the end-effector. If n > ms + me, it is possible to introduce
additional constraints to be satisfied along with spacecraft/manipulator
motion coordination. In the following it is assumed that n ≥ ms + me.

Of course, the number of dof’s n becomes larger than ms + me either
by increasing the number of joints or by relaxing some task variables.
Hence, the Jacobian matrix to be considered in (86) may be obtained by
eliminating some rows of JG corresponding to the relaxed task variables,
i.e. its dimensions become (me×n) with me ≤ 6 and n ≥ 6. This implies
that suitable strategies have to be pursued to manage both the presence
of a non-square Jacobian matrix and the redundant dof’s in the inverse
kinematics algorithms previously defined.

One possibility would be to apply the Jacobian transpose algorithm
to the robotic system described by (86). With this solution, however,
the resulting spacecraft attitude varies as the manipulator end-effector
moves along the trajectory. It is then advisable to exploit the redundant
dof’s n−me ≥ ms to impose a desired time evolution of spacecraft atti-
tude Rsd

. This is a typical case of augmented task space for redundant
manipulators.

Since a conflict may arise between the end-effector and the constraint
(spacecraft) task, an order of priority should be assigned. By revisiting

the solution algorithm for redundant manipulators in (39), the joint
velocity solution can be computed as [Caccavale and Siciliano, 2001]

q̇ = J
†
Gv + (I − J

†
GJG)JT

C KCeC , (89)

where eC is the error for the constraint task and JC is the associated
Jacobian.

If n−me = ms, then the error relative to the constraint task can be
computed in terms of the vector part of the unit quaternion {ηsds, εsds},
representing the orientation displacement between the desired and the
actual spacecraft frame: eC = εsds; the corresponding Jacobian matrix
can be derived from (85)

JC = −M−1
s Me. (90)

In this case, manipulator redundancy is exploited to reach the desired
spacecraft attitude Rsd

while tracking the desired end-effector trajec-
tory. On the other hand, if n −me > ms, then the constraint task can
encompass also an additional constraint, such as mechanical joint range,
obstacle avoidance etc.

With solution (89), the constraint task is not guaranteed to be sat-
isfied along the whole motion execution. Therefore, for those applica-
tions where the constraint task is judged to be more important than
the end-effector task, the order of priority can be switched with obvious
transposition of subscripts in (89).

An interesting case is that when it is desired to keep the spacecraft at-
titude constant during manipulator motion (ωsd

= 0), e.g. not disturbing
the orientation of some antenna for communication between spacecraft
and earth. According to the above technique, the joint velocity solution
can be computed as

q̇ = J
†
CKCeC + (I − J

†
CJC)JT

GKP ede (91)

with ede = [eT
p εT

de]T.
If no other constraint is imposed and n−me = ms, then JC is given

as in (90); it is assumed that JC is non-singular, otherwise a transpose
should be employed. By using the expression for JG given in (87), one
can write

JG = J̄e + J̄sJC ; (92)

then computing the matrix JG(I − J
†
CJC) leads to

JG(I − J
†
CJC) = J̄e(I −M †

eMe), (93)

which coincides with the so-called fixed-attitude-restricted (FAR) Jaco-
bian introduced in [Nenchev et al , 1990].

As a consequence, solution (91) provides end-effector trajectories not
changing spacecraft attitude which are computed via the transpose of
the fixed-attitude-restricted Jacobian and then can be simplified into

q̇ = J
†
CKCeC + (I −M †

eMe)J̄T
e KP ede. (94)

8. Flexible manipulators
In order to improve the performance of typically bulky industrial

robots, one of the current trends is to adopt lightweight materials in
the construction of manipulators. These are believed to offer a number
of advantages such as smaller energy consumption, higher payload–to–
arm weight ratio and faster movements [Book, 1993].

From a modeling standpoint, the scenario is complicated by the pres-
ence of additional deflection variables, compared to the case of rigid
manipulators where the joint variables suffice to describe the system
configuration.

Without loss of generality, consider a planar n-link flexible manipula-
tor with revolute joints are considered which are subject only to bending
deformations in the plane of motion, i.e. torsional effects are neglected.
A sketch of a two-link arm is shown in Fig. 10 with coordinate frame
assignment. The rigid motion is described by the joint angles ϑi, while
wi(xi) denotes the transversal deflection of link i at xi, 0 ≤ xi ≤ `i,
being `i the link length.

Figure 10. A Planar Two-Link Flexible Manipulator

Let ipi(xi) = [xi wi(xi)]T be the position of a point along the de-
flected link i with respect to frame (Xi, Yi) and pi be the position of the
same point in the base frame. Also let iri+1 = ipi(`i) be the position of

the origin of frame (Xi+1, Yi+1) with respect to frame (Xi, Yi), and ri+1

its position in the base frame.
The joint (rigid) rotation matrix Ri and the rotation matrix Ei of the

(flexible) link at the end point are, respectively,

Ri =
[
cosϑi − sinϑi

sinϑi cosϑi

]
(95)

and
Ei =

[
1 −w′ie

w′ie 1

]
, (96)

where w′ie = (∂wi/∂xi)|xi=`i , and the small deflection approximation
arctanw′ie ' w′ie has been made. Hence the above absolute position
vectors can be expressed as

pi = ri + Wi
ipi (97)

and
ri+1 = ri + Wi

iri+1, (98)

where Wi is the global transformation matrix from the base frame to
(Xi, Yi) given by the recursive equation

Wi = Wi−1Ei−1Ri = Ŵi−1Ri, (99)

with
Ŵ0 = I. (100)

On the basis of the above relations, the kinematics of any point along
the manipulator is completely specified as a function of joint and link
deflection.

A finite-dimensional model (of order mi) of link flexibility can be
obtained by the assumed modes technique. By exploiting separability in
time and space of solutions to the Euler-Bernoulli equation for flexible
beams

(EI)i
∂4wi(xi, t)

∂x4
i

+ ρi
∂2wi(xi, t)

∂t2
= 0, (101)

for i = 1, . . . , n where ρi is the uniform density and (EI)i is the constant
flexural rigidity of link i, the link deflection can be expressed as

wi(xi, t) =
mi∑

j=1

φij(xi)δij(t), (102)

where δij(t) are the time-varying variables associated with the assumed
spatial mode shapes φij(xi) of link i. The mode shapes have to satisfy

proper boundary conditions at the base (clamped) and at the end of
each link (mass).

In view of (102), a direct kinematics equation can be derived express-
ing the position p of the manipulator tip point as a function of the joint
variable vector θ = [ϑ1 . . . ϑn]T and the deflection variable vector
δ = [δ11 . . . δ1m1 . . . δn1 . . . δnmn]T, i.e.

p = k(θ, δ). (103)

For later use in the inverse kinematics scheme, also the differential
kinematics is needed. The absolute linear velocity of a manipulator
point is

ṗi = ṙi + Ẇi
ipi + Wi

iṗi, (104)

with iṙi+1 = iṗi(`i). Since the links are assumed inextensible (ẋi = 0),
then iṗi(xi) = [0 ẇi(xi)]T. The computation of (104) takes advantage
of the recursion

Ẇi = ˙̂
W i−1Ri + Ŵi−1Ṙi (105)

with
˙̂

W i = ẆiEi + WiĖi. (106)

Also, note that
Ṙi = SRiϑ̇i, Ėi = Sẇ′ie (107)

with
S =

[
0 −1
1 0

]
. (108)

In view of (102), it is not difficult to show that the tip velocity can be
expressed as

ṗ = Jϑ(θ, δ)θ̇ + Jδ(θ, δ)δ̇. (109)

In a static situation the deflections are seen to satisfy the equa-
tion [De Luca and Siciliano, 1993]

gδ(θ) + Kδ = 0, (110)

where gδ is the gravity vector in the flexible dynamic equations that is
only a function of θ and K is the link stiffness matrix

K = diag(k11, . . . , k1m1 , . . . , kn1, . . . , knmn) (111)

with

kij =
∫ `i

0
(EI)iφ

2
ij(xi)dxi. (112)

From (110) the deflection variables can be computed as

δ = −K−1gδ(θ). (113)

For later use in the inverse kinematics scheme, differentiating (113) with
respect to time gives

δ̇ = −K−1Jg(θ)θ̇, (114)

where Jg = dg/dθ. Plugging (113) into (109) yields

ṗ = Jp(θ, δ)θ̇, (115)

where
Jp = Jϑ − JδK

−1Jg (116)

is the overall Jacobian matrix relating joint velocity to tip velocity. No-
tice that the Jacobian in (116) is obtained by modifying the rigid-body
Jacobian Jϑ with a term that accounts for the deflections induced by
gravity.

The kinematic control problem for a flexible manipulator can be for-
mulated as follows: Given a desired constant tip position pd, find the
corresponding joint variables and deflection variables that place the arm
tip under gravity at the given position.

The attractive feature of the differential kinematics equation (115) is
its formal analogy with the differential kinematics equation for a rigid
manipulator. Therefore any Jacobian-based inverse kinematics scheme
can be adopted in principle, e.g. applying the algorithm based on (6)
gives [Siciliano, 1999b]

θ̇ = JT
p (θ, δ)Kpep (117)

with ep = pd − p.
The approach can be easily extended to the case of a flexible manip-

ulator in contact with a compliant surface [Siciliano and Villani, 2001].

Acknowledgements
The research work surveyed here wants to be a tribute to Bernard

Roth. The authors have been greatly inspired not only by his publica-
tions in the field but more importantly by several discussions and private
communications with him. Thanks a lot, Bernie, for showing us the way
many times throughout the past twenty years!

References
Antonelli, G., Chiaverini, S. (1998), Task-priority redundancy resolution for under-

water vehicle-manipulator systems, Proceedings of the 1998 IEEE International
Conference on Robotics and Automation , Leuven, B, pp. 768–773.

Antonelli, G., Chiaverini, S. (2003a), Fuzzy redundancy resolution and motion coor-
dination for underwater vehicle-manipulator systems, IEEE Transactions on Fuzzy
Systems, vol. 11, pp. 109–120.

Antonelli, G., Chiaverini, S. (2003b), A fuzzy approach to redundancy resolution for
underwater vehicle-manipulator systems, Control Engineering Practice, vol. 11,
pp. 445–452.

Book, W.J. (1993), Controlled motion in an elastic world, ASME Journal of Dynamic
Systems, Measurement, and Control , vol. 115, pp. 252–261.

Bottema, O., Roth, B. (1979), Theoretical Kinematics , North Holland, Amsterdam,
The Netherlands.

Caccavale, F., Chiaverini, S., Siciliano, B. (1997), Second-order kinematic control
of robot manipulators with Jacobian damped least-squares inverse: Theory and
experiments, IEEE/ASME Transactions on Mechatronics , vol. 2, pp. 188–194.

Caccavale, F., Natale, C., Siciliano, B., Villani, L. (1998), Resolved-acceleration con-
trol of robot manipulators: A critical review with experiment, Robotica, vol. 16,
pp. 565–573.

Caccavale, F., Siciliano, B. (2001), Kinematic control of redundant free-floating robotic
systems, Advanced Robotics, vol. 15, pp. 429–448.

Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B. (1991), Closed-loop inverse
kinematics schemes for constrained redundant manipulators with task space aug-
mentation and task priority strategy, International Journal of Robotics Research ,
vol. 10, pp. 410–425.

Chiacchio, P., Chiaverini, S., Siciliano, B. (1996), Direct and inverse kinematics for
coordinated motion tasks of a two-manipulator system, ASME Journal of Dynamic
Systems, Measurement, and Control , vol. 118, pp. 691–697.

Chiacchio, P., Siciliano, B. (1989), A closed-loop Jacobian transpose scheme for solv-
ing the inverse kinematics of nonredundant and redundant wrists, Journal of
Robotic Systems, vol. 6, pp. 601–630.

Chiaverini, S. (1993), Estimate of the two smallest singular values of the Jacobian
matrix: application to damped least-squares inverse kinematics, Journal of Robotic
Systems, vol. 10, pp. 991–1008.

Chiaverini, S. (1997), Singularity-robust task-priority redundancy resolution for real-
time kinematic control of robot manipulators, IEEE Transactions on Robotics and
Automation, vol. 13, pp. 398–410.

Chiaverini, S., Siciliano, B. (1999), The unit quaternion: A useful tool for inverse
kinematics of robot manipulators, Systems Analysis, Modelling and Simulation ,
vol. 35, pp. 45–60.

Chiaverini, S., Siciliano, B., Egeland, O. (1994), Review of the damped least-squares
inverse kinematics with experiments on an industrial robot manipulator, IEEE
Transactions on Control Systems Technology , vol. 2, pp. 123–134.

De Luca, A., Siciliano, B. (1993), Regulation of flexible arms under gravity, IEEE
Trans. on Robotics and Automation, vol. 9, pp. 463–467.

Khatib, O. (1987), A unified approach for motion and force control of robot manipu-
lators: The operational space formulation, IEEE Journal of Robotics and Automa-
tion, vol. 3, pp. 43–53.

Merlet, J.-P. (2000), Parallel Robots, Kluwer, Dordrecht, The Netherlands.

Nakamura, Y., Hanafusa, H., Yoshikawa, T. (1987), Task-priority based redundancy
control of robot manipulators, International Journal of Robotics Research , vol. 6,
no. 2, pp. 3–15.

Nakamura, Y., Mukherjee, R. (1991), Nonholonomic path planning of space robots via
bi-directional appraoch, IEEE Transanctions on Robotics and Automation , vol. 7,
pp. 500–514.

Nenchev, D., Yoshida, K., Umetani, Y. (1990), Analysis, design and control of free-
flying space robots using fixed-attitude-restricted Jacobian matrix, in Robotics Re-
search – 5th International Symposium , Miura, H., Arimoto, S. (Eds.), MIT Press,
Cambridge, MA, pp. 251–258.

Nenchev, D., Umetani, Y., Yoshida, K. (1992), Analysis of a redundant free-flying
spacecraft/manipulator system, IEEE Transactions on Robotics and Automation ,
vol. 8, pp. 1–6.

Pieper, D., Roth, B. (1969), The kinematics of manipulators under computer con-
trol, Proceedings of the Second International Congress on Theory of Machines and
Mechanisms, Zakopane, Poland, vol. 2, pp. 159–169.

Raghavan, M., Roth, B. (1995), Solving polynomial systems for the kinematics anal-
ysis and synthesis of mechanisms and robot manipulators, Transactions of the
ASME, Special 50th Anniversary Design Issue, vol. 117, pp. 71–79.

Sciavicco, L., Siciliano, B. (1986), Coordinate transformation: A solution algorithm
for one class of robots, IEEE Transactions on Systems, Man, and Cybernetics ,
vol. 16, pp. 550–559.

Sciavicco, L., Siciliano, B. (1988), A solution algorithm to the inverse kinematic prob-
lem for redundant manipulators, IEEE Journal of Robotics and Automation , vol. 4,
pp. 403–410.

Sciavicco, L., Siciliano, B. (2000), Modelling and Control of Robot Manipulators , 2nd
Edition, Springer-Verlag, London, UK.

Shepperd, S.W. (1978), Quaternion from rotation matrix, AIAA J. of Guidance and
Control , vol. 1, pp. 223–224.

Siciliano, B. (1990a), Kinematic control of redundant robot manipulators: A tutorial,
Journal of Intelligent and Robotic Systems , vol. 3, pp. 201–212.

Siciliano, B. (1990b), A closed-loop inverse kinematic scheme for on-line joint-based
robot control, Robotica, vol. 8, pp. 231–243.

Siciliano, B. (1999a), The Tricept robot: Inverse kinematics, manipulability analysis
and closed-loop direct kinematics algorithm, Robotica, vol. 17, pp. 437–445.

Siciliano, B. (1999b), Closed-loop inverse kinematics algorithms for constrained flexi-
ble manipulators under gravity, Journal of Robotic Systems , vol. 16, pp. 353–362.

Siciliano, B., Villani, L. (2001), An inverse kinematics algorithm for interaction control
of a flexible arm with a compliant surface, Control Engineering Practice, vol. 9,
pp. 191–198.

Umetani, Y., Yoshida, K. (1989), Resolved motion rate control of space manipulators
with generalized Jacobian matrix, IEEE Transactions on Robotics and Automa-
tion, vol. 5, pp. 303–314.

Whitney, D.E. (1969), Resolved motion rate control of manipulators and human pros-
theses, IEEE Transactions on Man-Machine Systems , vol. 10, pp. 47–53.

Whitney, D.E. (1972), The mathematics of coordinated control of prosthetic arms and
manipulators, ASME J. of Dynamic Systems, Measurement, and Control , vol. 94,
pp. 303–309.

