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ABSTRACT

The parallel decomposition of robot Newton-Euler
inverse dynamics recursive computation for real-time
computed torque based dynamic controllers is discussed
in this paper. A suitable task decomposition of the equa-
tions is derived which allows parallel execution on a mes-
sage passing computer system. A remarkable reduction
of the sampling rate is achieved if multiple processors
are employed. An implementation of the algorithm on
Transputers is presented to validate the analysis.

INTRODUCTION .

It is well-known that in order to improve perfor-
mance of current industrial robots, there is a need of re-
placing conventional PID independent joint controllers
with computed torque based dynamic controllers [1].
These make use of real-time computation of the robot
dynamic model, i.e. the so-called inverse dynamics,
namely, given the time history of the joint displace-
ments, velocities and accelerations, compute the time
history of the joint torques to be applied by the actu-
ators in order to follow the specified trajectories. In
fact, the inverse dynamics approach is very effective for
control purposes, since it allows to compensate for the
highly coupled and nonlinear robot dynamics which play
a dominant role at higher operational speeds.

For advanced real-time sensor-based applications,
the inverse dynamics must be computed at sampling
rates as fast as 300 Hs or higher, 50 as not to excite the
resonant frequencies of the mechanical structure (10-
30 Hs) [2]. This has stimulated a great deal of research
to seeking for computationally efficient algorithms, the
most effective of which is the Newton-Euler (NE) algo-
rithm based on forward-recursive equations propagating
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velocities and accelerations from the base to the end-
effector and backward-recursive equations propagating
forces from the end-effector to each joint (3.

Efforts have been devoted to taking advantage
of particular computation architectures and/or paral-
lel computations. A number of solutions have been
proposed which employ special-purpose processing el-
ements (4] or Digital Signal Processors (DSPs) [5).

On the other hand, the possibility of resorting to
parallel architectures based on general-purpose multiple
processors has been investigated, e.g. in [6] with shared
memory. In spite of an apparently reduced computa-
tional efficiency, there seem to be several advantages,
such as higher modularity, scalability*of the hardware
parallelism, availability of high-level language compilers,
integrability in hierarchical intelligent control systems,
which may in turn cause appreciable cost reductions.
These advantages become even more evident in message
passing architectures (7], which then deserve further in-
vestigation.

The issue addressed in this work is how and up
to what extent the inverse dynamics computation prob-
lem could be decomposed in order to achieve favourable
cost /performance ratios on message passing machines
based on general-purpose processing elements. The ac-
tual hardware considered consists of Transputers which
provide high processing power combined with easiness
of connection through high speed serial links.

A task decomposition is considered which is based
on the parallelism inherently present in the NE formu-
lation. This refers to the particular structure of the NE
formulation and corresponds to the sequence of steps in
the recursive computation and the matrix/vector opera-
tions appearing in each mathematical equation, respec-

tively [8].



The above decomposition leads to a pipeline struc-
ture which allows the use of a simple model to dis-
tribute the computational load among multiple proces-
sors. Moreover, time overlapping is realised between
forward and backward computation chains, thus exploit-
ing a further level of parallelism. These devices together
yield a considerable increase in the sampling rates which
largely satisfy the typical requirements stated above.

Analytical results are given which are confirmed by
experimental measures for a practical Transputer imple-
mentation. The results encourage application of these
architectures to more complex computation problems in
robotics.

TASK DECOMPOSITION

The NE equations of motion for an articulated ma-
nipulator are a set of com putationally efficient forward
and backward equations. The farmer propagate veloci-
ties and accelerations from the base to the end-effector,
while the latter propagate forces from the end-effector
to each joint. A task decomposition of the equations is
derived in the following for the case of n revolute joints,
without loss of generality (8].

Forward equations: i = 1,2,.. "

(I/t') wq =n.::_1(w.’..1+.l09..']
(2/1') Vet = wi—1 X Bob;
(3/5) @i = R{™ @iy + 306; + vecy;)
(4/5)  veey; =Ri"v,_,
(5/‘) vecsy, = ﬁ!.' X Ps
(6/5) veeq = w; x (w; x Pi)
(7/{) Vi = vecy; + vecs; + vecy,
(S/i] vecg, = d;.- X 8;
(9/1') Vetg, = w; X (w.‘ X l.-)
(IO/i) 8; = vecy,; + vecg; + V;

Backward equations: s =n,n—1,...,1

(11/1') veey; = Lu;

(12/‘) Vet = w; X l.-w;

(13/) £ =R*'f,; +mya,

(14/)  veeoi = p; x £,

(15/1) vVecCio = R::“(n.-“ <+ 'VeCy.')

(18/5)  veersi = (p; + &) x mya;

(17/5)  n; = vecs; + vecy; + vee o + vec,
(18/£) n= B,T(R::'l!o)
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In the above equations appear the scalar variables de-
fined independently of the particular coordinate frame:
6;: displacement of joint s,
6:: velocity of joint s,
0;: acceleration of joint s,
m;: mass of link s,
1;: torque at joint 3,
the (3 x 1) vector variables all defined with respect to
the base frame:

w;: angular velocity of link s,

w;: angular acceleration of link s,

Pi: origin of frame ¢,

v;: linear velocity of link s,

v;: linear acceleration of link 1,

8;: location of center of mass of link 1,
a;: linear acceleration of center of mass of link 1,
f.: force exerted on link ¢ by link ¢ — 1,

n;: moment exerted on link s by link ¢ — 1,

and the (3 x 3) matrix variables:
L: inertia about center of mass of link ¢ with re-
spect to base frame,
R;™": rotation transforming any vector from frame
to frame s — 1.
Also, the following initial conditions hold:
B0 = (0 01 )T,
wo= wg =0,
Vo = g%y,

g = 9.8062m /83,

To implement the algorithm, it is assumed that the
desired position, velocity, and acceleration for each joint
are generated at each sample by a suitable trajectory
generator. Also, the actual position and velocity are
measured by suitable sensors. The trigonometric func-
tions of the joint displacements are readily computed,
e.g. a table look-up technique, to be used in the compu-
tation of the rotation matrices.

MESSAGE PASSING ARCHITECTURES

We consider here how and to what extent the in-
verse dynamics problem can be decomposed for parallel
execution on a message passing computer system |[7).

Message passing parallel architectures are Multiple
Instructions Multiple Data (MIMD) machines, charac-
terised by the lack of shared memory, among the Pro-
cessing Elements (PEs) forming the system. Coopera-
tion between PEs is achieved through the exchange of
messages among the processors acroes a communication
subsystem. Message passing systems can be therefore
thought of as networks of general purpose microproces-
sors, each working on a local private memory.




In the following, we will consider the case of direct
networks, i.c. message passing systems whose process-
ing elements are connected by point-to-point high speed
channels, according to a proper topology (7). This class
of systems is particularly interesting, for they can be
set up by basic components integrated on a single VLSI
chip and containing both processing and communication
facilities. Hence, networks of different sise can be eas-
ily assembled giving rise to highly scalable concurrent
systems.

An example of such systems are Transputer-based
networks. Since our target architecture is a network of
Transputers, we will discuss in more detail the features
of direct message passing systems with reference to this
specific hardware component. Nevertheless, most of our
considerations can be easily applied to other systems,
based on different hardware, provided that they retain
all the essential features outlined in this section.

A Transputer [9] is a microprocessor which has, on
the same chip, the CPU, a limited amount of memory
and a number of communication links which provide a
point-to-point bidirectional connection between Trans-
puters. External memory can‘be added up to 4 Gbytes.
The CPU architecture has been especially designed to
be programmed in most high level languages and special
support is provided, at the hardware level, for efficient
multiprogramming and communication.

Internal parallelism is allowed between the CPU
and the communication links, which can access the
memory in DMA. In the version of the chip we have
used (T800), it is included also a 64-bit floating point
unit capable of a peak of 1.5 Mflope (single precision).
The speed of the links is about 2 Mbyte/s.

Even though the Transputer can be programmed in
assembly language, its architecture has been designed
to be programmed in Occam [10], a concurrent lan-
guage based on the Communicating Sequential Pro-
cesses (CSPs) computational model [11]. Several high
level languages, such as Fortran, Pascal and C, provided
with libraries for managing concurrency, are also avail-
able. We have used the Paralle] Fortran 2.0 by 3L Ltd.
to write the software used to perform the measures pre-
sented below.

Incidentally, we wish to point out a relevant differ-
ence between message passing systems, such as Trans-
puter networks, and shared memory multiprocessors,
used so far to exploit parallelism in the computations
requested by the inverse dynamics, e.g. [5-6]. In message
Ppassing systems, inter-processor communications have a
higher cost than in memory shared architectures. In
fact, in the latter, the access to data produced by an-
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other processor requires only the examination of a flag
signalling the data are ready, whereas in message pass-
ing systems more time has to be spent in transferring
data through serial links between the processors.

PARALLEL DECOMPOSITION

The formulation of the NE equations given in the
preceding section contains inherent parallelism among
the computations to be performed. Several authors
agree in leaving out the parallelism existing at the ba-
sic arithmetic operation level, for it implies excessive
hardware requirements. Instead, the matrix/vector op-
erations occurring in the above equations are usually
considered suitable as basic units for carrying out the
scheduling of a set of subtasks for parallel execution on
the target machine.

In [6], the Stanford manipulator is considered as an
example, and a set of 88 subtasks is obtained. Given the
assumed execution time for each subtask and the prece-
dence relations among them, a scheduling is determined
for execution on a shared memory multiprocessor. The
approach was successful and a fairly good agreement .
between theoretical scheduling and implementation re-
sults was found. In fact, the assumption that subtask
execution times are independent on the task scheduling
is largely verified because shared memory is used in the
multiprocessor implementation.

The same approach cannot be followed for schedul-
ing on a direct network of Transputers, because of the
higher cost of communications between tasks. Two fac-
tors should be taken into account in the determination
of the optimal scheduling:

1) subtask execution times would increase if previous
or next subtasks (or both) were allocated on differ-
ent processors because of the time needed to start
input and output operations between processors;

2) communication delays between subtasks allocated
on different processors cannot be neglected any
more in the evaluation of total completion time.

This prevented us from using simple scheduling al-
gorithms, and a more sophisticated model would be
needed. We therefore decided to resort to a different
approach that allowed commiunication overhead to be
properly accounted for without considerably increasing
the complexity of the model.

We chose to take advantage only of the parallelism
inherent to the recursive nature of the above NE for-
mulation. To explain it better, consider, for instance,
stepe 3 and 5 in the recursive equations. Even though
step-5/i must follow in time step 3/1, the former can
be performed in parallel with step 3/(s + 1). The same




argument can be applied to any pair of steps z and y,
provided that step y/s does not depend on step z/(s+1).
This is true for all the steps belonging to the forward
chain, as well as for all the steps belonging to the back-
ward chain. In other words, the two chains can be easily
pipelined, so that a part of computation can be over-
lapped in time.

This kind of decomposition allows the use of a sim-
ple model for determining how many matrix/vector op-
erations have to be assigned to each processor to attain
the desired speed-up. We will see in the next section
how it is also easy to evaluate the efficiency obtained.

A serious drawback of this approach is that we re-
nounce to exploit further parallelism inherent to the NE
formulation. For instance, the potential ability to com-
pute in parallel stepe 1/s a1 J 3/i cannot be exploited
any more. Moreover, for typical value of n (e.g. 6),
the speed-up attainable through this approach is lim-
ited and even scarcer is the efficiency. Nevertheless,
even though we have not carried out the evaluation of
the optimal scheduling, it is likely that the greater cost
in communications implies that a smaller degree of in-
herent parallelism can be effectively exploited.

Interestingly, the particular application nature of
inverse dynamics computation gives rise to a further
- opportunity of exploiting parallelism. In fact, the in-
verse dynamics have to be repeated to update the in-
puts to actuators in order to follow the desired trajec-
tories. Hence, the computation of the joint torques to
be applied at time T + AT might be started when the
computation of torques at time T is not finished yet.

To actually exploit this further level of parallelism,
we organised the distributed computation as follows:

a) The processes corresponding to forward and back-
ward chains, though sequential in time, are allo-
cated on different groups of processors.

b) Communications between forward and backward
chains are implemented using high priority chan-
nel drivers, able to carry out communication asyn-
chronously with respect to normal processing activ-
ity.

c) Backward chain calculations at time T are over-
lapped in time to forward chain calculations at time
T + AT (Fig. 1).

d) According to this strategy, the overall sampling rate
(i.e. the rate to which joint torques are updated) is
the minimum between the sampling rates of the two
chains.

As it will be clear later, this greatly increases the pro-
cessor utilisation factor and the overall sampling rate —
also called throughput in the following — of the system.

backward
forward ﬁ

time

e execution attime T
execution at time T+ AT

——« communications attime T
———+ communications at time T+ AT

Fig. 1. Time overlap of forward and backward chains.

PERFORMANCE EVALUATION

If forward and backward computations are both im-
plemented as a pipeline of processes running on distinct
processors, the total completion time and the through-
put can be easily expressed in terms of the amount of
operations, the speed of the hardware and the number
of processors used.

In Fig. 2 a typical pipeline is shown. Each circle
represents a process — a stage of the pipeline — running
on a different processor. Each stage executes a cycle
containing three basic steps: input of data from previous
stage, processing of data, output of data to the next
stage. The first stage produces n groups of data which
cause the next stages to perform n cyaes. The overall
computation terminates when the last stage has in turn
executed n cycles and produced its final output.

n desired
trajectories Y
\

v
N stages (processors)

n joint
torques

Fig. 2. Structure of the pipeline.

In the general case, the total completion time of
a pipeline like the one shown in Fig. 1 is given by the
formula:

(N - 1)(Dt. +T. + kt) + n(Dt. + T.) (1)
and the throughput by the formula:

n(Dt. + T.) (2)
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where:

D: number of basic operations to be performed in each
stage of the pipeline to produce output data from
the input ones,

t,: elementary time required to perform one basic op-
eration,

T.: time required to start input and output operations
in each stage,

kL: time required to pass ¢ elementary data produced
by a stage to the next stage of the pipeline,

n: sumber of cycles performed by each stage of the
pipeline to produce all the data required (i.e. the
number of joiats in our case),

N: number of stages (i.e. processors) composing the
pipeline.

Formulas (1) and (2) hold if all the stages of the pipeline
are given approximately the same amount of calcula-
tions. Under this assumption, if C is the total number
of basic operations to be performed per joint, we have

D=C/N. )

Now, C depends only on the NE formulation given above
and can be easily estimated if the grain of what we called
basic operation is established. In what follows, we as-
sume the double precision floating point operation as
the basic operation. Substituting (3) in (1), we have
the total completion time expressed only in terms of N,
n and a number of values corresponding to architectural
parameters that can be easily measured. Therefore, it is
possible to solve the problem of dimensioning the hard-
ware (e.g. find the value of N that maximises the speed-
up). :

Another assumption underlying the formulas given
above is that, after it has been started, inter-stage com-
munication can proceed in parallel with the CPUs of the
communicating processors. Once more, this behaviour
is achievable on the Transputer if a dedicated process
is used to drive the two communication links involved
(input and output).

The measured values for the parameters contained
in (1) are given in Tab. 1. These values have then been
employed to compute the values reported in Tabs. 2
and 3. The formula actually used is not (1), but a
somewhat more sophisticated version which takes into
account the effects produced by some simplifications in
the NE formulation (e.g. the forward chain can be ac-
tually computed onmly for joint 2 to n because of the
constant initial conditions).

Symbol Value
te 1.81 us
T. 54 us
k 1.72 Mbyte/s
L 72 byte

Tab. 1. Architectural parameters.

Number of Execution Sampling
processors® time (ms)** rate (Hs)**
1 2.100 (2.100) 476 (476)

3 (2+1) 2.039 1111
4 (3+1) 1.957 (1.990) 1111 (1098)
5 (3+2) 1.746 1428
6 (4+2) 1.753 1428

* in parentheses the distribution between forward and back-
ward chains
** in parentheses the value actually measured

Tab. 2. Pipelined computation of inverse dynamics.

# Processors* n=26 n=12 n=18
3 (2+1) 1111 544 352
4 (3+1) 1111 555 370
5 (3+2) 1428 704 456
6 (4+2) 1428 721 481

* in parentheses the distribution between forward and back-
ward chains

Tab. 3. Sampling rates (Hs) for different sise problems.

The analytic results show a good agreement with
the experimental data measured on a network of four
Transputers. The difference (a few percentage units)
can be due essentially to the unavoidably non-perfect
load balancing among the different stages of the pipeline,
and to the difficulty of accurately modelling the context
switching of processes in each Transputer. We have also
verified that little modifications to the amount of com-
putations in a given stage or to the amount of data to
be exchanged between stages has a negligible impact on
total completion time and overall sampling rate. This
further strengthens the validity of the data reported in
the tables.

As for the actual performance attained by the im-
plementation described above, the tables show that the
speed-up achievable is limited and so is the efficiency,
also for larger dimension problems. On the contrary,




the throughput is remarkably increased and the paral-
lelism actually exploited is sufficient to guarantee a sam-
pling rate matching the requirements stated in (6], even
for problems with dimension larger than 18. Substitut-
ing (3) in (2) shows that sampling rate can be further
increased by adding other processors and decreasing the
amount of calculations per stage. However, this cannot
be done indefinitely because, besides a given mumber
of processors, the total completion time increases and
the delay between the input (desired trajectory) and the
output (joint torques) may become unacceptable.

CONCLUSIONS

The use of general purpose message passing sys-
tems for the computation of inverse dynamics has been
explored. A simple pipelined decomposition of the NE
formulation has been used ana the performance achiev-
able on a Transputer network investigated, both ana-
lytically and experimentally. The tests carried out have
shown satisfactory performance which favourably com-
praes with the typical requirements for real-time inverse
dynamics robot control. However, the speed-up attain-
able is limited and so is the efficiency. The main reasons
for this are the fairly small dimension of the problem for
normal value of n, and the high performance reached by
execution on a single Transputer with respect to previ-
ous results [6]. In fact, we have measured the speed-
up with respect to a purely sequential version of the
algorithm, cleared of all the software and communica-
tion overhead [12]. Nonetheless, results have revealed
that a remarkable improvement in throughput can be
obtained.

Moreover, the approach followed seems to have a
number of advantages with respect to cost/performance
ratio. On one hand, general purpose processors can be
employed and their number scaled according to the per-
formance to be obtained. On the other hand, high level
languages can be used to write the software needed with
a few calls to already available subroutines to manage
concurrency. The implementation is therefore highly
modifiable, and a few changes are necessary if further
processors are added, or simplifications in the calcula-
tions can be introduced, to take into account the actual
physical structure of the robot.

The power of the processors can be also exploited to
reduce the costs of other components of the controller, or
to achieve acceptable performance in larger sise inverse
dynamics problems, such as highly redundant robots or
cooperating multi-arm systems. .

We are currently engaged in deeply studying the
use of message passing systems in robot applications.
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We intend to apply more sophisticated techniques [13] to
the problem of optimal scheduling of inverse dynamics,
in order to better assess the performance achieved in the
pipelined approach. Moreover, we are trying to study
how other components of the robot comtroller can be
implemented on architectures similar to those described
above,
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