
A Nonlinear Finite Element Formalism for Modelling
Flexible and Soft Manipulators

Stanislao Grazioso1 Student Member, IEEE, Valentin Sonneville3,
Giuseppe Di Gironimo1, Olivier Bauchau3 and Bruno Siciliano2 Fellow, IEEE

Abstract— This paper presents a nonlinear finite element
formalism for modelling the dynamics of flexible manipulators
using the special Euclidean group SE(3) framework. The
method is based on a local description of the motion variables,
and results in a singularity−free formulation which exhibits
important advantages regarding numerical implementation.
The motivation behind this work is the development of a
new class of model−based control systems which may predict
and thus avoid the deformations of a real flexible mechanism.
Finite element methods based on the geometrically exact beam
theory have been proven to be the most accurate to account
for flexibility: in this paper we highlight the key aspects of
this formulation deriving the equations of motion of a flexible
constrained manipulator and we illustrate its potential in
robotics through a simple case study, the dynamic analysis of a
two−link manipulator, simulating different model assumptions
in order to emphasize its real physical behavior as flexible
mechanism.

Index Terms— Flexible manipulators, soft robots, differential
geometry, motion formalism, nonlinear finite element, robot
simulation.

I. INTRODUCTION

Flexible manipulators refer to robot manipulators having
components with mechanical flexibility, either concentrated
at the joints or distributed along the links [1]. With respect
to classical rigid systems, flexible link manipulators have the
potential advantages of (i) greater payload−to−mass ratio;
(ii) higher operational speed; (iii) exploiting new composite
materials in designing; (iv) lower energy consumption; (v)
better manoeuvrability and transportability; (vi) safer opera-
tions due to reduced inertia [2]. These potential advantages
result in a greater complicated mathematical model of flexi-
ble arms suitable to catch all dynamic aspects of distributed
flexibility, as well as a greater complicated motion control of
the overal manipulator, since control laws, in addition to the
tasks of regulation or tracking, have also to avoid incipient
oscillations due to previous motion.
Currently, the most diffused approach to model a flexible
arm is to use the classical Euler−Bernoulli beam model and
discretize the resulting partial differential equations (PDE)
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with the assumed mode method (AMM) [3]. This strategy
is the natural extension of the rigid multibody dynamics
to the context of flexible multibody systems: small elastic
deformations are superimposed to the classical overall rigid
body motion of a floating frame attached to each flexible
body [4]. Despite its proven efficiency for control purposes
[5], this approach is limited to flexible arms rotating at
modest angular rate (so that centrifugal stiffening can be
ignored) and connected only with revolute joints, with the
assumption of light damping and linear elasticity, thus small
deflections [1].
In this paper we propose a nonlinear finite element formalism
for modelling flexible manipulators. Considering the motion
of a component as a whole, the formulations based on the
geometrically exact nonlinear beam theory are the most
general and accurate to account for flexibility [6]. Finite
element procedures provide several features of interest in
modelling multibody systems: (1) a manipulator can be
modelled with both rigid and flexible elements; (2) there are
no differences in modelling serial or parallel mechanism; (3)
all kinds of low pair and high pair joints (which can be
also passive) may be modelled for connecting bodies. The
main drawback of finite element (FE) procedures is the high
computational cost of the associated numerical methods to
solve the equations of motion of the overall system. The
current work aims at developing a mathematical formulation
for flexible manipulators which enjoys the advantages of
FE methods and provides at the same time a cost effective
computation. Using the special Euclidean group SE(3) for-
malism, it is based on a geometrically exact approach which
results in reduced non−linearities and in efficient and robust
numerical methods for integrating the equations of motion.
The main purpose of the present paper is to show a general
theoretical framework useful for modelling and simulating
flexible and rigid manipulators. This formulation has led to
the development of a very simple and modular simulator for
the dynamics of both rigid and flexible multibody systems,
which in the future will be extended with motion planning
and control capabilities.
The rest of this paper is organized as follows. In the second
part of this section we provide a brief state−of−the−art in
modelling of flexible manipulators. In Section II we present
the general approach of the finite element formulation, the
motion formalism. In Section III we derive the equations of
motion of a constrained flexible manipulator. Section IV is
related to the benchmark test. Section V concludes the paper
and discusses future developments.



A. Related work

Since Book presented his pioneering work [3], a lot of
work has been done in the context of flexible manipulators.
Wasfy and Noor [7] proposed a comprehensive review of the
existing modelling formulations in the more general context
of flexible multibody systems. Their classification is based
on the frame wherein the flexibility and the large amplitude
motions are referred: floating frame of reference (FFR), coro-
tational frame (CF), inertial frame (IF). De Luca and Book
[1] proposed a classification of modelling techniques for
flexible link arms based on the approach for discretizing the
elements: lumped−element, finite−element, assumed mode
and transfer matrix models. Theodore and Ghosal in [8]
compared the assumed mode models with the finite elements
models.
Starting from the pioneer works of Simo and Vu−Quoc [9],
[10], several nonlinear beam models are available in the
literature, see e.g. [11], [12]. Here, we refer to the beam
model developed by Sonneville et. al in [13], as it offers
appealing properties towards the reduction of computational
cost needed to accomodate non−linear finite element in
control applications.

II. THE MOTION FORMALISM

The presented formulation, used for in the context of
multibody systems in [14], is based upon nodal absolute
variables for the description of large amplitude motions of
the bodies and kinematic joint relative variables for the
connection between bodies. These variables are represented
by material frames, which belong to the Special Euclidean
Lie Group SE(3) and can be expressed as 4 x 4 homogeneous
transformation matrices H as follows

H =

[
R x

01×3 1

]
(1)

where R is a 3 × 3 rotation matrix and x is a 3 × 1
vector. For the absolute variables, the rotation matrix and
the position vector describe the orientation and position of
the node with respect to the inertial frame, while for the
relative variables they represent the relative rotation and the
relative displacement inside the joint.
The kinematics of a general multibody system is provided
by successive frame transformations: a frame is attached
to each rigid body or to the cross−section of each beam
element (a rigid body is represented by a unique node at
its mass center whereas a flexible body is represented by a
finite set of nodes). Moreover, further nodes are introduced
to allow the description of boundary conditions or to specify
a kinematic joint between two bodies. Figure 1 shows,
within this formalism, the geometric description of a general
manipulator including both rigid and flexible links.

III. EQUATIONS OF MOTION

In this section we obtain the equations of motion (EoM)
of a free rigid body, a beam element (in its continuum and
discretized form) and a constrained flexible manipulator. A
section is dedicated to the kinematics of joints.
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Fig. 1. General description of a robotic manipulator: HI are nodal frames,
HJ,I are relative transformations and (HI) are optional frames, used to
specify boundary conditions or kinematic joints.

A. Rigid body

The kinematics of rigid bodies is described using frames,
elements of the special Euclidean group SE(3): each rigid
body is represented by a material frame located at its
center of gravity (HI). In this context we use left invari-
ant vector fields to express the derivatives, which involve
material−frame elements, that are introduced as follows

d(HI) = HI h̃I =

[
RI xI

01×3 1

][
h̃I,Ω hI,U
01×3 1

]
(2)

where hI = [hT
I,U hT

I,Ω]
T is a six−dimensional vector. ˜(·) is a

linear operator which maps a six−dimensional vector into a
4×4 matrix as in Eq. 2 (for the Lie algebra, see [15]). The
two part 3× 1 vectors (hI,U ) and (hI,Ω) are related to the
position and the rotation part, respectively. Here, h̃I,Ω is the
skew−symmetric matrix formed by the three components of
hI,Ω as

h̃I,Ω =

 0 −hI,Ω3 hI,Ω2
hI,Ω3 0 −hI,Ω1
−hI,Ω2 hI,Ω1 0

 (3)

As an alternative, it is possible to consider the derivatives
as d(HI) = h̃IHI , with hI representing the derivatives in the
inertial frame [16]. However, the left invariant approach leads
to intrinsic EoM which, as we will see in Sec. III-E, offer
computational advantages. A particular case of derivative is
an arbitrary variation, which is expressed as

δHI = Hδ̃hI (4)

If we consider derivatives in SE(3) with respect to time (the
time derivative of (·) will be indicated in the following as
˙(·)), the kinematics of a rigid body can be expressed as

Ḣ = Hṽ (5)



with v = [vT
U vT

Ω
]T is the six−dimensional vector of material

frame velocities.
Hamilton’s principle, in the case of a free rigid body without
external forces, takes the form of

δ

(∫ t f

ti
K(v)dt

)
= 0 (6)

where K(v) = 1
2 vT Mv is the kinetic energy and M is the

6× 6 mass matrix of the rigid body, which is expressed in
the material frame and therefore constant. The equilibrium
equations are given by

Mv̇− v̂T Mv = 06×1 (7)

where the ˆ(·) operator maps a 6×1 vector into a 6×6 matrix
as

v̂I =

[
ṽI,Ω ṽI,U
03×3 ṽI,Ω

]
(8)

Note that EoM, i.e. ( 7) together with ( 5), are expressed in
the local frame attached to the rigid body. Eq. 7 are called
intrinsic since they do not depend on the position and ori-
entation of the rigid body with respect to the inertial frame,
namely they are invariant with respect to a superimposed
Euclidean transformation.

B. Geometrically exact beam

A beam can be seen as a cross−section field along a
reference curve. In this context we refer to the geometri-
cally exact nonlinear beam element developed in [13]. This
beam element accounts for shear and torsion deformations
remaining within the context of small strains.

Continuous formulation: The kinematics of the beam is
described by

H(α, t) =
[

R(α, t) x(α, t)
01×3 1

]
(9)

where α refers to the spatial coordinate along the beam
reference curve. Introducing left invariant vectors fields, the
velocity and the deformation field along the beam can be
defined as

∂H(α, t)
∂ t

= Ḣ(α, t) = H(α, t)ṽ(α, t) (10)

∂H(α, t)
∂α

= H′(α, t) = H(α, t)f̃(α, t) (11)

where f̃(α, t) is a material frame deformation gradient. It
can be split into two parts as follows

f(α, t) = f0(α)+ εεε(α, t) (12)

In this formula, f0 refers to the values of gradient in the
reference configuration, while εεε are the six deformation
measures of the beam. In order to derive the EoM for a
beam element, Hamilton’s principle states that

δ

(∫ t f

ti
(K(v)−Vint(εεε))dt

)
= 0 (13)

where K(vvv) = 1
2
∫

L vT Mvdα and Vint(εεε) =
1
2
∫

L εεεT Kεεε dα are
respectively the kinetic energy and the strain internal energy
along the beam of length L. M and K are respectively the

mass matrix and stiffness matrix of the cross-sections. K
is a 6× 6 matrix relating the 6 cross−section resultants
(forces and moments) and the deformations. In the abscence
of external forces, the equilibrium equations for a beam are
given by

Mv̇− v̂T Mv+Kεεε
′− f̂T Kε = 06×1 (14)

v′− ε̇εε− v̂f = 06×1 (15)

Eqs. 10, 11, 14 and 15 constitute the EoM for the geomet-
rically nonlinear beam element in the strong form. These
equations are intrinsic, resulting in a second−order non-
linearity only.

Discretized formulation: The continuous beam is here
discretized with two nodes, A and B, placed at the beginning
and at the end of the element, each one providing six degrees
of freedom. The kinematics of the beam involves the two
nodal transformation matrices

HA =

[
RA xA

01×3 1

]
HB =

[
RB xB

01×3 1

]
(16)

The spatial discretization along the reference curve of the
beam is introduced by means of the following SE(3) consis-
tent interpolation field

H(α) = HAexpSE(3)

(
α

L
d̃
)

(17)

where α ∈ [0,L] assumes the extreme values in the two
nodes, and d, referred to the relative configuration vector,
is a six-dimensional vector defined as d̃ = logSE(3)(H

−1
A HB).

Geometrically, the interpolation field is represented by an he-
lix. In the absence of external forces, the spatial discretization
leads to the following EoM

ḢA = HAṽA (18)
ḢB = HBṽB (19)

ML(d)v̇AB +CL(d,vAB)vAB +
1
L

P(d)T KL
εεε = 012×1 (20)

where εεε = (d−d0)/L is the discretized strain vector, vAB =
[vT

A vT
B ]

T is the vector of velocities, ML and KL are the mass
and the stiffness matrix of the element, CL(d,vAB)vAB is a
term accounting for the gyroscopic forces. The discretization
process preserves the intrinsic nature of the equations and
leads to low order non-linearities.

C. Kinematic joint

In the SE(3) formalism, the relashionship between two
nodes A and B which are connected by a kinematic joint I
can be expressed as

HB = HAHJ,I (21)

where HJ,I is a transformation matrix that describes the
relative motion between the two nodes due to joint I. The
restricted relative motions leave kI < 6 degrees of freedom to
the joint, and accordingly, the transformation matrices HJ,I
belong to a subset of SE(3) [17]. As for the nodal frames,
the derivative of HJ,I can be expressed as

d(HJ,I) = HJ,IÃIh j,I (22)



TABLE I
MATRIX A FOR THE LOW−PAIR JOINTS.

Joint Rigid Constraint Revolute Prismatic Screw (pitch p) Cylindrical Planar Spherical

A
[

03x1
03x1

] [
03x1

n

] [
n

03x1

] [
pn
n

] [
03x1 n

n 03x1

] [
n1 n2

03x1 03x1

] [
03x1 03x1 03x1
n1 n2 n3

]
Dimension − 1 1 1 2 2 3

Lie Subgroup − SO(2) ℜ Hp SO(2) xℜ ℜ2 SO(3)

where h j,I is a kI×1 vector representing the relative degrees
of freedom. AI is a 6× kI matrix representing the relative
motions inside the joint. For low pair joints (see TABLE I),
AI is constant. Note that the high pair joints can be obtained
as combinations of low pair joints.

D. Constrained flexible manipulators

According to Hamilton’s principle and following a La-
grange multiplier method, the actual trajectory of a system
between two time instants ti and t f is such that the variation
of the augmented action integral is time−invariant provided
that the initial and final configurations are fixed, i.e.:

δ

(∫ t f

ti
(K(H,v)−Vint(H)−Vext(H)−λ

T
φ(H))dt

)
= 0 (23)

where:

• K(H,v) is the kinetic energy of the overall system;
• Vint(H) is the potential energy due to internal forces;
• Vext(H) is the potential energy due to external forces;
• λ are the Lagrange multipliers associated with the

kinematic constraints φ(H) = 0.

Considering a general manipulator with M nodal frames
and m kinematics joints, with k = k1 + · · ·+ km degrees
of freedom of all joints, the general EoM of a flexible
constrained manipulator are provided by the following three
set of second−order differential−algebraic equations (DAE).
Eq. 24 are the kinematic compatibility equations, Eq. 25 are
the equilibrium equations, Eq. 26 are the kinematic constraint
equations to take into account the presence of joints.

Ḣ = Hṽ (24)
gine(H,v, v̇)+gint(H)+(φ q(H)A)T

λ −gext(H) = 0(6M+k)×1 (25)

φ(H) = 06m×1 (26)

In the following, each of these equations will be analyzed.
a) Kinematics: The kinematics of the flexible manip-

ulator is expressed by a unified matrix notation to treat at
the same time the nodal variables and the kinematic joints.
The actual configuration of the system is properly described
using the following (6M+6m) × (6M+6m) block diagonal
matrix

H = diag(H1, . . . ,HM,HJ,1, . . . ,HJ,m) (27)

wherein HI , I = 1, . . . ,M are the body−attached frames,
referred as nodal frames, and HJ,I , I = 1, . . . ,m are the
matrices representing the relative transformations due to
joints. Combining the velocities of each frame into v, we
have

ṽ = diag(ṽ1, . . . , ṽM, Ã1v j,1, . . . , Ãmv j,m) (28)

b) Dynamics: The equilibrium equations are obtained
applying the variation calculus on the Hamilton’s principle
in Eq. 23. In the resulting dynamic equilibrium equations
25, gine, gint and gext are respectively the inertia, the internal
and the external forces, while φq is the contraint gradient
explained in the next paragraph. Note that the inertia forces
here include also the gyroscopic forces.

c) Constraint equations: In order to account for the
presence of joints in the Hamilton’s principle, a constraint
equation vector φ(H) = [φ1 . . .φm]

T is introduced where, for
each joint I, six constraints are given by

φ(HA,HB,HJ,I) = vectSE(3)(HA,HB,HJ,I) = 06×1 (29)

with the vectorial map defined as

vectSE(3)(H) =

[
x
ψψψ

]
(30)

with ψ̃ψψ = (R−RT )/2. The vectorial map introduces sys-
tematically six constraints for a kinematic joint or a rigid
constraint: it imposes that the relative displacements and ro-
tations contained in HJ,I are exactly the relative configuration
between nodes A and B. The constraint contribution to the
EoM in Eq. 25 involves the constraint gradient φq, defined
from the directional derivative of the constraints, i.e.,

δ (φ) = Dφ · Ãδh = φqAδh (31)

where, defining A = diag(I6×6,I6×6,AI) and δh =[
δhT

A δhT
B δhT

j,I
]T ,

φqA =
[
AdH−1

J,I
− I6×6 AI

]
(32)

in which Ad is the adjoint representation given by

AdH−1
J,I

=

[
RT

J,I −RT
J,I x̃J,I

03×3 RT
J,I

]
(33)

The constraint gradient at equilibrium only depends on the
relative configuration, and not on the overall motion of
frames A and B. This means that the non−linearity of the
formulation is only caused by local motions.

E. Time integration method

In order to solve the equations of motion in Eqs. 24,
25 and 26 a time integration method is needed. Brüls in
[18] proposed a version of the generalized−α scheme: this
method has a proven second−order convergence rate. The
integration method relies on the following equations, which
are the discretized form of the EoM 24, 25 and 26:



Hn+1 = Hnexp(n) (34)
gine(Hn+1,vn+1, v̇n+1)+gint(Hn+1)

+AT
φ

T
q (Hn+1)λ −gext(Hn+1) = 0(6M+k)×1 (35)

φ(Hn+1) = 06m×1 (36)

and on the time integration formulas:

n = hvn +(0.5−β )h2an +βh2an+1 (37)
vn+1 = vn +(1− γ)han + γhan+1 (38)

an+1 =
1

(1−αm)
((1−α f )v̇n+1 +α f v̇n−αman) (39)

where n is the time step and h the time step size and
the numerical parameter are defined in terms of a singular
parameter, ρ ∈ [0,1], which controls the numerical damping

αm =
2ρ−1
ρ +1

; α f =
ρ

ρ +1
; γ =

3−ρ

2(ρ +1)
; β =

1
(ρ +1)2 . (40)

The exponential map appearing in Eq. 34 for a multibody
system is defined as follows

exp(n) = diag(expSE(3)(n1), . . . ,expSE(3)(nM),

expSE(3)(nJ,1), . . . ,expSE(3)(nJ,m)) (41)

where nI is a six−dimensional vector of motion increment.
Thus, the time integration method is such that only the
incremental motion between n and n + 1 is parametrized,
which does not introduce any non-lineaity in the discretized
equilibrium and constraint equations, as opposed to methods
relying on a global parametrization of the rotations variables.
The discretized EoM (34)−(36) are nonlinear, and are solved
at each time step by a Newton iterative procedure. Denoting
a finite variation due to Newton procedure as ∆(·), the
linearization of the equations leads to the following linear
problem [

∆r
∆φ

]
= ST

[
∆nn+1
∆λn+1

]
(42)

where Eq. 35 is denoted as r = 0 and

ST =

[
1−αm

βh2(1−α f )
M+ γ

βh CT +KT T φ T
q

φ ∗q T 0

]
(43)

is the iteration matrix, M,CT ,KT are the mass, damping
and stiffness tangent matrices obtained by linearizing Eq.
35 with respect to v, v̇ and n, T is the tangent operator
of the exponential map. As a consequence of the present
framework, the nonlinearities are much lower than standard
finite element formulations and the cost of Newton iterative
procedure, which is usually the most expensive part of a
finite element solver, will be accordingly much lower.

IV. BENCHMARK TEST

A two−link manipulator is considered as a case study.
To show how it is important to take into account the real
behavior of the manipulators even in a simple case, we
propose four differents models, referred in the following as:
RR (both rigid links), RF (first rigid, second flexible), FR
(first flexible, second rigid) and FF (both flexible links).

1 2'
2''

1' 1''
0

(1') (1'')

(01')

(1''2') di

de

cross section

Fig. 2. The two−link manipulator in the rigid-flexible configuration

Figure 2 describes the geometry of the RF model within
this formalism. The other models are obtained similarly.

A. Description of the model

In the following we describe only the RF model. The rigid
body is described by node 1 defined in its mass center, the
flexible body by two nodes 2’ and 2” defined in its extremity.
The nodes 1’ and 1” are introduced to describe respectively
the kinematic joints (01’) and (1”2’) and are both connected
with the node 1 by means of rigid constraints (1’) and (1”).
The node 0 is a fixed node, i.e. clamped, meaning that this
manipulator is fixed.

B. Simulations

In the simulation case, the first revolute joint (01’) de-
scribes a circonference in the plane xy in 2π s. During this
time, the motion of the overall mechanism is observed. The
length of each arm is l = 1.5 m, the cross section is a
circular ring with di = 2.7×10−2 m and de = 3×10−2 m,
the material is aluminium alloy 6061. These parameters
have been chosen to highlight the flexible behavior of the
manipulator in this configuration. The arms are along the
x−direction in the initial straight configuration. The system is
subjected to gravity in the z−direction. The simulations have
been performed with h = 1×10−3 , 1×10−2 and 1×10−1 s.
The simulations plot, in the inertial reference frame and for
each model (RR, RF, FR, FF) the three components of
displacements of the last node of the manipulator, in the
case h = 1×10−2 s (Figure 3). This benchmark test has
been chosen since only the models with flexibility shows a
non−zero displacement along the z−direction. In particular,
Figure 3(c) shows displacements in the order of 10−1 m for
the FF model: this behavior may be attenuated using different
cross−sections. As we expected, the flexible systems present
a slight delay in response, and the displacements with respect
to the other models are similar only at the beginning.
TABLE II reports the computational time required for
solving the EoM associated with the different models
on a Intel ® Core™ i7-4910MQ CPU (quad-core 2.50
GHz, Turbo 3.50 GHz), 32 Gb RAM 1600MHz DDR3L,
NVIDIA®Quadro®K2100M w/2GB GDDR5 VGA ma-
chine, running Ubuntu 14 64 bits. Even if for the rigid case
the FE method, due to constraints, will be always slower than
minimal coordinate formulations, the computational time for
the flexible case is promising, expecially for more refined
models (FF2,5,10 refer to model with 2,5,10 beam elements
for each arm).
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Fig. 3. Displacements of the tip−position (node 2”) of the manipulator in the inertial frame for the four different models, in the case h = 1×10−2 s.

TABLE II
COMPUTATIONAL TIME FOR SOLVING THE DIFFERENT MODELS.

h [s] RR RF FR FF FF2 FF5 FF10

10−3 149.12 175.96 167.47 156.09 169.05 176.11 198.41

10−2 14.26 15.64 15.71 15.46 17.18 19.04 21.86

10−1 1.75 1.65 1.57 1.76 1.87 1.96 2.30

V. CONCLUSIONS

A nonlinear finite element formalism based on the geomet-
rically exact beam theory is presented to model the dynamics
of flexible manipulators. The FE beam element on which
it is based exhibits important features in the perspective
to use finite elements within the control loop. The method
allows simulating serial and parallel robots with both rigid
and flexible arms, which can be connected with all kind of
joints. The procedure for modelling a mechanism, within the
simulator in developing, results straightforward. In order to
validate this simulator for the dynamic analysis of flexible
manipulators, we presented a two−link mechanism subject
to a certain motion.
The availability of efficient and physical−based simulators
is particularly important in designing manipulators for appli-
cations in challenging environments such as space or reactor
vessels where the production’s costs of the prototypes is
still high. The next step in the research of the authors is
to optimize the simulations, exploiting parallel and GPU
computing in order to reduce the computational time. After,
the simulator will be provided of planning and control
capabilities, developing a new class of model−based control
systems within this framework.
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