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Abstract 

A systematic way of designing a robot control unit 
which presents the characteristics of simplicity of 
implementation and modularity is presented in this pa- 
per. Two strategies are adopted and compared, one in 
the joint space and the other in the task space, both 
leading to a parallel multi-processor decentralized 
system which appears very promising for real-time robot 
control. 

The Robot Control Problem 

The typical goal a robot control unit must achieve 
is to make the robot's end-effector execute prescribed 
motions/forces which are assigned in a suitable coor- 
dinate frame. These motion/force requirements are natu- 
rally given3;n.. the so-called task space, that is the 
same coordinat(? frame in which the robot and the work- 
ing environment! are described. 

On the other hand, the mechanical structure of a 
robotic manipulator consists of a chain (usually an 
open chain) of rigid bodies linked by means of articu- 
lated joints. A number of actuators develop generalized 
forces at the joints, rotational torques for revolute 
joints and axial forces for prismatic joints respec- 
tively. These forces are the control inputs at design- 
er's disposal, whereas the relative positions of the 
consecutive rigid bodies are the joint variables to be 
controlled such that the robot may execute the pre- 
scribed task. The joint variables c 
generalized coordinates for the me 
the so-called joint space, in which 
naturally developed. For the purpose of "transforming" 
the control abjective, specified in the task space, 
into a control strategy in the joint space, it is cru- 

characterize the relation between 

= fen, (1) 

where 5 is the vector of variables which describe posi- 
tion and orientation of the robot's end-effector, 2 is 
the vector of joint variables, and f is a continuous, 
nonlinear vector-valued ' function, whose structure is 
completely known, once the kinematic parameters of the 
manipulators are specified [ l ] .  

Solving equation (1) for the joint variables 9 cer- 
tainly is the key point for robot cont 
of fact, eq. (1) is solvable only for 
tor geometries, such as the usual sphe wrist con- 
figuration, for which the end-effector position is in- 
dependent of it's orientation. Pieper [ l ]  gave a suffi- 
cient condition under which a kinematic structure is 
solvable, i.e. at least three consecutive revolute axes 
must intersect in one point. Nevertheless, a structure 
that does not satisfy the above condition can be found 
to be solvable, such as the so-called elbow manipulator 
which has three consecutive parallel axes. Furthermore, 

Usually, another relation is considered together 
with the kinematic equation (1). It is form 
tained by differentiating eq. (1) with respect 
i.e. 

& = J (g) i  

where is the vector of tor velocities, 4 is 
and J(g) is the 

compute the joint velocities which correspond 
en end-effector velocity, i.e. the incremen 
sponding to the increments 6 ~ .  This p 
however, when a kinematic singularity 
trix J(q) has not full rank), i.e. when 
attains a configuration at which it ha 
bility, loosing the possibility to move 
about a certain direction in space. 

Kinematic Control 

describe the 
ulator. These 

the stage of the inverse kinematics. More specifically, 
once a trajectory x(t) is assigned to the robot's 
end-effector, a corresponding joint trajectory i(t) i s  
sought, which constitutes the reference input to the 
joint servos. In practice, the inversion of the 
kinematic equation (1) cannot be made ConJinuously, but 
only for a finite 
in the case the kinematic 
the case equation (2) is , the computational 
burden sets an upper limit sampling rate, that 
is usually around 100 Hz. ormer case, indeed, 
the inversion technique is naturally sequential (one 
joint variable at 
inverslon of the Jac 
Fig. 1 it is shown 
essary in order to 
as demanded by the 

Dynamic Control 

The above control st does not account for 
masses, inertias, backla d elasticities at a l l ,  
which modify the dynamic behavior of the structure. 
Thus, if high performance is desired in terms of high 
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operational velocities and high tracking accuracy, the 
kinematic control is kikely to fail. In that case, it 
is necessary to consider the robot nonlinear dynamic 
model which, under the assumption of rigid bodies, can 
be written as E11 

( 3 )  

where M is the generalized positive definite inertia 
matrix, is the vector of Coriolis and centrifugal 
forces, g is the vector of gravitational forces, and r 
is the vector of generalized forces developed at 
joints. 

The knowledge of the robot dynamic model (3)  is 
exploited in the so-called dynamic control. This ap- 
proach is based on the Computation of the so-called 
inverse dynamics. In other words, once tQe reference 
joint trajectories are available (i(t), i(t), i(t)), 
under the assumption of negligible disturbance forces, 
one can utilize eq. (3)  to compute the generalized 
forces 5 which are to be developed at joints in order 
to obtain the desired trajectories. Being this control 
strategy open-loop, it usually,needs a feedback loop to 
compensate for the deviations from the nominal motion 
imposed [11. In any event, the success of this strategy 
relies on the possibility of obtaining "good" estimates 
of the dynamic terms in (3)  on-line, which may be much 
too. computational demanding. In order to overcome that 
drawback, alternative control strategies have been re- 
cently proposed which are based on a partial knowledge 
of the robot dynamic model [2-41. The supporting idea 
is to design a feedforward compensator for a "reduced" 
dynamic model plus a decentralized "robust" feedback 
controller at joints so as to obtain satisfactory dy- 
namic performance. This approach will be outlined in 
the following section. 

The Proposed Solution 

It should be clear now from the discussion above 
that in order that a robot control system be effective, 
it must have the following requirements: 
1) easy to implement, without requiring a very accu- 

2) good motion/force profile tracking accuracy, in 

3) possibility of designing a decentralized control 

A solution that satisfies all the above requirements is 
illustrated by the block scheme of Fig. 2. First, a 
fast inverse kinematic computational algorithm is uti- 
lized [SI, which allows the direct computation of the 
joint trajectories corresponding to a given 
end-effector trajectory. No interpolation is needed, 
since the algorithm guarantees small tracking errors 
and fast computation time. Then, a centralized control 
is in charge to "lighten" the dynamic model to be con- 
trolled by means of robust decentralized servos at 
joints, that guarantee high dynamic performance. In the 
following the features of the inverse kinematic algo- 
rithm and of the dynamic controller are presented. 

The Inverse Kinematic Algorithm 

rate dynamic model on-line, 

spite of inertia and load variations, 

for the single degree-of-freedom's. 

It has been widely argued that, in order to provide 
the manipulator controlled in the joint space with the 
reference inputs, a coordinate transformation from the 
task space to the joint space is needed (inverse 
kinematic problem). Any inverse kinematic technique is 
to be evaluated on the basis of a trade-off between 
computation and precision requirements. It results from 
the robotics literature [ l ]  that no exact kinematic 
inversion routines exist for general kinematic struc- 
tures, but only a limited number of software packages 
specially derived for simple geometries on the basis of 
geometric intuition. This point has recently motivated 

these authors to seek alternative computational algo- 
rithms which not only compete with the existing 
closed-form solutions for solvable geometries, but 
mainly be suitably adopted for general unsolved geome- 
tries [5]. The basic block scheme of such algorithms is 
illustrated in Fig. 3.  

Let &(t) be the desired trajectory at the robot's 
end-effector (position + orientation), and let z(t) be 
the trajectory computed via the direct kinematic func- 
tion f(g). It can be shown that, by means of a proper 
choice of the positive definite matrix K, it is possi- 
ble to ensure that the tracking error is bouvded (with 
- x(0) = g(0)). and the steady-state error (I = 0) is 
null. If this holds, the algorithm solution g(t) well 
approximates the desired solution 4(t). The proof of 
algorithm convergence can be derived by the Lyapunov 
direct method for the analysis of the stability of non- 
linear systems [5-81. It is useful here to report the 
attractive features of the solution proposed: - -  

it only requires the computation of direct 
kinematic functions (f,J); this allows for sampling 
rates higher than 500 Hz for typical three-to-six 
degree-of-freedom manipulators, 
it allows for pqallel multi-processor computation, 
on condition that 9 is available on a common bus, 
it can be utilized for any kinematic structure, 
redundant or qopredundant; in particular for a re- 
dundant structbre it is possible to introduce a 
number of motion constraints in a systematic way, 
such as obstacle avoidance, limited joint range, 
and so forth [61, 
joint velocities 4 are directly generated without 
requiring any further computation, 
it avoids the drawback of multiple solutions which 
is typical of the analytical technique when inter- 
polation between two configurations with different 
aspects, say "elbow-up" and "elbow-down", is at- 
tempted; the proposed algorithm generates "adja- 
cent" joint configurations, starting from the ini- 
tial configuration, 
it allows for solutions even in case of kinematic 
singularities encountered along the trajectory;-po 
in ersion of kinematic functions is required (f. , 
J-') [5-81. 
it leads to an even simpler computational scheme in 
case of typical kinematic designs at the 
end-effector, such as "spherical wrist" [71,  
"two-by-two intersecting axes" [81 etc. ; indeed, 
the algorithm can be suitably partitioned into two 
stages, one relative to end-effector position and 
the other relative to end-effector orientation; 
if utilized off-line, it allows for the evaluation 
of the manipulator static performance, such as the 
determination of "dexterous" configurations, as 
well as the force/velocity control/actuation com- 
patibility along a given direction in the task 
space [ 9 1 ,  the tracing of the robot workspace [ l o ] ,  
and so forth. 

The Robust Decentralized Control 

Among the several dynamic control techniques pro- 
posed in the literature [ 2 , 3 ] ,  the approach which is 
based on the use of a reference model to follow seems 
one of the most attractive [111. The scheme of Fig. 4 
is considered, where A and A are two diagonal matri- 
ces which define an Oasymptoiically stable reference 
model. First, it can be recognized that the centralized 
control of the principle scheme of Fig. 2 is actually 
formed by two separate nonlinear actions, feedforward 
and feedback respectively. Then, a static compensator D 
combines the position and velocity errors, where D is 
determined through the off-line solution of the 
Lyapunov equation associated with the reference model 
1113. Finally, the decentralized control is simply giv- 
en by independent robust joint controllers. The pro- 
posed solution presents the following features: 
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it allows for parallel multi-processor computation, 
on condition that g ,  i are available on a common 
bus, 
the nonlinear compensations have the function of 
balancing the effects of time-varying inertial and 
gravitational terms, but they can be further sim- 
plified by compensating only for the dominant iner- 
tias (diagonal terms) and constant gravitational 
terms, 
the robust joint servos have the function of coun- 
teracting the effects of noncompensated dynamic 
terms (centrifugal and Coriolis terms, together 
with off-diagonal inertial terms and time-varying 
gravitational terms eventually), as well as the 
function of counteracting the effects of parametric 
uncertainties and inaccurate modeling. 

Dynamic Control in the Task Space 

The dynamic control strategy in the joint space 
presented in the previous section consists of two stag- 
es: the inverse kinematic algorithm and the robust de- 
centralized joint control. An alternative way of con- 
trolling a robot is represented by a dynamic control in 
the task space which does not apparently require any 
transformation from the task space to the joint space. 
At the basis of this approach there is the relation 
between the vector of generalized forces applied at the 
end-effector and the vector of generalized forces 
applied at joints L, through the transpose of the 
Jacobian matrix Ell, i.e. 

( 4 )  

which is "dual" of equation (2). This relation, indeed, 
is adopted also to analyze the manipulator static per- 
formance, so as anticipated at point 8) in the section 
on the inverse kinematic algorithm. 

For the purpose of designing a dynamic control in 
the task space, the vector is assumed as control in- 
put and an equivalent robot dynamic model is derived in 
the task space [12,13]. The scheme of Fig. 5 is consid- 
ered, which is formally equivalent to the scheme of 
Fig. 4 from thelcontro+ standpoint. The occurrence of 
the matrices J and J is jusrified by the necessity 
of transforming accelerations and forces in the task 
space respectively into accelerations and forces in the 
joint space, according to eqs. (2) and ( 4 ) .  Also, the 
vector f and the matrix J in the feedback loop have 
been introduced in order to reconstruct task position 
and velocity measurements from joint position and ve- 
locity measurements respectively. The features of the 
proposed solution can be summarized as follows: 

it allows for parallel multi-processor computation, 
on condition that 2, are available on a common 
bus, 
the computational burden is heavier, due to the 
more complex structure of the centralized control, 
but.no kinematic inversion is needed, 
the only nonlinear terms to be computed on-line 
with high accuracy are the direct kinematic func- 
tions f ,  J, 
the task direction robust controllers have the 
function of balancing the effects of those 
noncompensated dynamic terms, as well as the func- 
tion of counteracting the effects of parametric 
uncertainties and inaccurate modeling (similar re- 
marks about the computation accuracy of such terms 
are in order so as in the previous section), 
it is "transparent" to the problems involved in the 
kinematic inversion (singularities, redundancy, 
etc.), 
it is apparently advantageous for typical hybrid 
tasks (position + force) at the robot's 
end-effector, that is for all those cases when 
there is interaction of the end-effector with the 

workpiece, 
7) in case of a redundant manipulator, it is necessary 

to introduce a number of constraints so as to span 
the space of redundancy; the square Jacobian matrix 
of the scheme of Fig. 5 will be that matrix which 
includes the derivatives of such constraints with 
respect to the joint variables. 

Conclusions and Acknowledgements 

The problem of systematic design of robot control 
units has been the focus of this contribution. Two con- 

point is that both 

standard to design 

the implementation of the proposed control laws, as 
well as to run some physical experiments on an actual 
industrial robot. 

The support of this I is gratefully 
acknowledged. 
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Fig. 1 - The kinematic control scheme. 

P 

Pig. 2 - The proposed two-stage control scheme. 

Fig. 3 - The inverse kinematic algorithm scheme. 

Fig. 5 - The task space dynamic control schamo. 

Fig. 4 - The joint space dynamic control scheme. 
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