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Abstract— In this paper we propose a new control method for
quadrotor autonomous landing on a visual target without linear
velocity measurements. Only onboard sensing is exploited, such
that only the images of the landing pad from a down-looking
camera, along with data from an Inertial Measurement Unit’s
gyro, are used. The control system consists of an image-based
nonlinear observer that estimates online the linear velocity
of the vehicle and a backstepping image-based controller
that generates attitude, and thrust setpoints to the quadrotor
autopilot. Both observer and controller share the same feedback
information: spherical visual features. Therefore no further
image elaboration is needed for the estimation. This, along
with the fact that only simple computations on low- and
constant-dimension arrays are involved, makes the proposed
solution computationally cheap. Real-hardware experiments on
a quadrotor are carried out to verify the validity of the proposed
control system.

I. INTRODUCTION

Being able to reach remote regions in an unconstrained

fashion, without the need of roads, and in relatively short

deployment time, Unmanned Aerial Vehicles (UAVs) are

receiving an increasing interest from the research community.

This period represents the dawn of UAVs in industry, such

that we are witnessing a continual raise of the number

of companies investing in the field. Particularly, Vertical

Take-off and Landing (VToL) UAVs feature the hovering

capability, which yields them appealing if not the unique

candidates for numerous potential applications.

After deployment in the air, a UAV needs likewise to be

capable of landing autonomously [1], for different purposes

such as maintenance and especially battery recharge. Under

GPS coverage, the transmitted 3D position can be used to

automatically control the motions of the UAV towards the

landing pad, as presented in [2]. However, GPS relies on

an external source (satellite) of information and, thus, is not

passive, is unreliable at low altitudes, suffers from signal cut,

and does not work properly in urban and cluttered areas. On

the other hand, vision is passive, provides rich information

with pixel order resolution, involves light-weight, and low-

cost hardware requiring furthermore light computational re-

sources. Modern technology furthermore affords increasing
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vision streaming rates. In addition, since it is unlikely that

the pad (exact) location is a priori known, and such a location

can furthermore change in time in case the pad is mobile,

vision becomes necessary to guide the vehicle towards it and

with enhanced precision in an autonomous fashion.

The issue of autonomous landing based on vision thus

triggered a number of research works. In [2], a visual

controller for helicopter autonomous landing is presented.

GPS is used to provide the vehicle position and velocity as

control feedback, while vision is used to locate the landing

location. In [3], an image-based visual-servoing technique

is proposed for autonomous landing of fixed-wing UAVs.

The linear velocity of the craft needs, similarly, to be

known. In [4], elevated horizontal sites (providing vantage

points) for landing are detected by applying homography

on the images from a down-looking onboard camera. The

vehicle is then guided to the final position by fusing visual

SLAM (VSLAM), sonar altimeter, and IMU. Similarly, in

[5], landing sites are detected after terrain reconstruction by

fusing images from a monocular camera and IMU data in

a VSLAM framework. Also based on VSLAM, in [6] the

helipad is detected and the UAV is servoed for landing. A

prior knowledge on the pad size is used to infer the relative

elevation from it. In [7] and [8], safe terrain for autonomous

landing is detected from monocular onboard camera. In [9],

a visual pad marker is designed for autonomous landing. A

combination of onboard vision, IMU, optical flow, and sonar

is employed. Work [10] presents vision-based autonomous

landing on a coded tag. In [11], a nonlinear controller is fed

with optical-flow from a down-looking camera. A survey of

UAVs autonomous landing is reported in [12].

The work we present in this paper in close to [2], except

that we do not rely on any external source, as GPS, but

exploit instead only onboard sensing. In the control system

we propose, the same image of the pad from the onboard

camera to be used for visual servoing is also used to estimate

online the linear velocity of the vehicle. The proposed

solution does not require that the environment be textured

enough, as do those based on optical flow. It only needs

that the landing pad be described by a set of visual features.

In this work, only four visual features have been used (see

Fig. 1). They consist in landmarks affixed to the landing

pad in a form of a rectangle. No prior knowledge on the

target geometry or the landmarks is leveraged. The proposed

method is thus general in the sense that the pad does not

necessitate to be engineered, since only few visual features,

like corners, describing the target will be sufficient.

The remainder of the paper is organised as follows. The



Fig. 1. Picture of the Pelican quadrotor employed in the reported
experiments. The landing pad (target) is also shown and is characterised
by four roughly-circular black landmarks. No prior knowledge on the pad
geometry or on the landmarks is used. A down-looking video camera is
attached to the bottom of the vehicle for visual servoing.

employed spherical visual feature is briefly introduced in

Sect. II. Section III presents the velocity measurements-

free control system to endow the UAV with the capability

of reaching and hovering centered on the pad, while Sec-

tion IV shows how to exploit this for autonomous landing.

Section V reports experimental validation on an ASCTEC

Pelican quadrotor, before concluding in Sect. VI.

II. VISUAL INFORMATION

Due to the fact that a quadrotor is an under-actuated

system, care needs to be taken when selecting a feedback

visual feature. In [13] it has been shown that spherical visual

features are amenable from a control design stand point.

Such features indeed preserve the passivity property and,

thus, allow designing a motion controller independently of

the angular velocity.

Let the landing pad be characterised by a set of n points,

such that Pi denotes the i-th point (see Fig. 2). In general

real environments, such points could correspond to visual

corners or markers as displayed in Figs. 1 and 3(a) for

instance. Let {Rs} be a Cartesian frame attached to the

onboard camera (see Fig. 2). Let si ∈ R
3 correspond to

the spherical projection of Pi on the normal sphere centered

on {Rs}. The unnormalised spherical centroid of the scene

can then be expressed as follows:

q =

n
∑

i=1

si, (1)

such that considering sPi = (Xi Yi Zi)
⊤ ∈ R

3 as the

3D coordinates of Pi in camera frame {Rs}, si can be

expressed as si =
sPi/|

sPi|, where |·| denotes the Euclidean

norm. Likewise, by considering pi = (xi yi)
⊤ ∈ R

2 as the

perspective projection (see Fig. 2) of Pi, the spherical feature

si can also be solely expressed in terms of pi as si =
p

i

|p
i
|

such that pi = (xi yi 1)
⊤ = (p⊤

i 1)⊤ ∈ R
3.

The spherical visual feature proposed in [13] writes as

follows:

δ = q − q∗, (2)

Image plane

pi

si

Y

Z

{Rs}
X

Pi

Fig. 2. Spherical si and perspective p
i

image coordinates of 3D point Pi.

where q and q∗ represent the actual and desired spherical

centroid, respectively; q is computed according to (1) while

q∗ is set to R
⊤ b, such that b ∈ R

3 is a known desired di-

rection of the visual feature in inertial frame {Ri}. Rotation

matrix R describes the orientation of {Rs} with respect to

{Ri}. In order to improve the conditioning induced by the

above feedback visual feature, another version is proposed

in [14] as follows:

δ1 = q∗
0
× q + λ q∗

0
q∗⊤
0

δ , (3)

where q∗
0

= q∗/|q∗| ∈ R
3 corresponds to a normalised

version of q∗, and λ ∈ R is a positive constant to be suitably

tuned.

We propose to exploit visual error δ1 as the sole feedback

for the observer presented in the sequel.

III. CONTROL SYSTEM

This section presents a nonlinear controller endowing a

quadrotor with the capability of autonomously reaching and

stabilising with respect to a visual target. Only onboard

vision along with IMU rotational data are employed by

the control system. The linear (translational) velocity of the

vehicle is estimated online with a nonlinear observer. The

stability of both the observer and the closed-loop system has

been proved with Lyapunov theory in [15]. In the sequel, we

first briefly introduce the proposed control system. Then, we

show how it will be used for landing.

Let v be the linear velocity of the vehicle with respect to a

fixed frame and expressed in the camera frame. We propose

in [15] the following nonlinear observer to estimate v:



















































v̂ = ẑ − k2o A
−1δ̃1o

˙̂z = −ω × v̂ + 1

m f − k2o G δ̃1o − ξ

δ̃1o = δ1 − δ̂1

˙̂
δ1 = −ω × δ1 −AQv̂ + k1o δ̃1o

G = k1o A
−1 − d

dt
A−1

ξ = QA⊤ δ̃1o,

(4)



where v̂ is the estimate of v and where the involved matrices

write:































Q =

n
∑

i=1

1

di
Qi ∈ R

3×3 and Qi = I3 − sis
⊤
i

A = [q∗
0]× + λ q∗

0q
∗⊤
0 ∈ R

3×3

Ȧ = A[ω]× − [ω]×A

(5)

with k1o and k2o ∈ R positive tuning gains. As for ω, it

represents the angular velocity of the vehicle expressed in

the camera frame, [·]× denotes the skew-symmetric matrix,

while di is the image depth of point Pi. Vector f ∈ R
3

corresponds to the total linear forces acting on the vehicle

and can be approximated as follows:

f = −u e3 +mgR⊤e3, (6)

where u is the value of the applied thrust, e3 = (0 0 1)⊤, m
is the total mass of the UAV, and g is the gravity acceleration.

The observer defined above is exponentially stable. Indeed,

considering the following Lyapunov storage function Vo =
1

2
|δ̃1o|

2+ 1

2
|ṽo|

2, where ṽo = v−v̂ is the estimation error on

the velocity, it has been shown in [15] that time variation V̇o

of Vo satisfies V̇o ≤ −αVo (with α > 0), thus the exponential

stability. Although the image depth is involved as a parameter

above, the control system has shown to be robust thereof.

Only a rough approximation is enough, such that the obtained

experimental results show that the system is robust to errors

up for instance to 200%.

Next, we use the obtained estimate v̂ to achieve visual

control without velocity measurements. We propose the fol-

lowing integral-backstepping image-based control law [15]:

1

m
f := ξ + c1 A

⊤

(

c1 c2 δ2 + α2 σ2

)















δ2 := δ1 −
1

c1
A−⊤ v̂ ∈ R

3

σ2 =

∫

δ2 dt,

(7)

where δ2 is a second backstepping error and σ2 is its

integral. The integral has been injected to account for the

eventuality of the presence of modeling errors in the sys-

tem. Indeed, we noticed a considerable error between the

commanded (input) and achieved thrust in the quadrotor

used in the reported experiments. Without σ2 the system

falters and destabilises even when using the precise velocity

measurements from a motion capture system.

The proposed control law relates the desired roll/pitch

attitude and thrust the UAV needs to achieve. Indeed, from

a desired value (f∗
x , f

∗
z , f

∗
z ) of f , the desired roll φ (around

X-axis), pitch θ (around Y-axis), and thrust u of the vehicle

can be extracted as follows [15]:


























θ = arcsin
(

−
1

mg
f∗
x

)

φ = arcsin
( 1

mg cθ
f∗
y

)

u = mg cθ cφ − f∗
z ,

(8)

where cx denotes cos(x).
Control law (7) ensures that δ1 converges to zero without

velocity measurements and is globally asymptotically stable,

provided that [15]:































































k1o > 0

c1 >
1

2
max

(

1
Hλmin

‖A‖F ,
1

Qλmin

‖A−⊤‖F

)

‖Q‖F

k2o >
‖A‖F‖Q‖F

Qλmin − 1

2 c1
‖A−⊤‖F ‖Q‖F

c2 > Hλmax +
2

c1

(

‖A‖F +
k2o
c1

‖A−⊤‖F

)

‖Q‖F ,

(9)

where Hλmin and Hλmax are respectively bounds of the

minimum and maximum eigenvalues of H = AQA⊤.

Notice that H inherits positive definiteness from Q. As for

‖·‖F , it denotes the Frobenius norm. It can be demonstrated

that the time variation of the following Lyapunov storage

function is definite negative [15]:

V =
1

2
|δ1|

2+
1

2
|δ2|

2+
1

2
α2 |σ2|

2+
1

2
|δ̃1o|

2+
1

2
|ṽo|

2. (10)

IV. AUTONOMOUS LANDING

We show in the present section how to exploit the above-

presented control law (7) for autonomous landing. Let δz
be the third component of δ1, introduced by (3). This

component is in fact correlated to the distance from the

observed object to the camera frame center. The higher

the distance the larger δz and the inverse is true. Since in

our configuration the camera is oriented downward, δz is

proportional to the relative altitude of the vehicle from the

target. We exploit this fact to achieve autonomous landing.

Assume the vehicle-attached down-looking camera ob-

serves a target characterised by a set of visual points (land-

marks for instance), similarly as considered in Section II.

The robotic task is that the vehicle autonomously lands on

this target without any external aid. In addition, no prior

knowledge on the target geometry or on the landmarks

is used. Our method uses only the image of the target

along with the information from the IMU’s gyro. We thus

propose to first align the vehicle with the target center

of gravity. This can be achieved by setting the first two

components of b introduced just after (2) to null value. Once

the vehicle is hovering on the target, the last component is
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Fig. 3. Experimental result with a quadrotor autonomously reaching,
stabilising, and finally landing on a visual target without linear velocity
measurements. The target, that can be seen in images (a) and (b), is
characterised by the four black dots (landmarks) surrounded with red circles.
The circles are generated and displayed by the image processing. No prior
knowledge on the target geometry nor on the landmarks is used by the
control scheme. (a) Initial image of the target captured by the onboard
camera just before visual servoing is launched. (b) Image taken at the same
instant but from an offboard camera (used only for recording). The vehicle
is then at a relative position of (2.1, 1.8, 3.1) m from the target. For the
sake of clarity the UAV is indicated with the red arrow. (c)-(d) Images taken
after the UAV achieved the first phase of the landing: hovering centered on
the target. (e)-(f) The UAV is finally at less than 30 cm above the target
after starting with an initial error of 3 m. Just after that, visual servoing is
automatically turned off and the thrust is decreased until the vehicle touches
the ground.

then continuously decreased until the vehicle is one step from

landing.

Let bc = (0 0 bcz)
⊤ ∈ R

3 be the first desired direction

of the visual features so that the vehicle would hover and

get centered on the target. The corresponding visual error

is denoted δc, as given by (2). Once the norm |δc| of δc is

under a certain threshold, which would mean that the UAV is

alighted enough with respect to the target, a new direction is

introduced for landing. Let it be bl = (0 0 blz)
⊤ ∈ R

3.

In contrast to bc, bl is varying. Its third component blz
decreases from an initial value equal to bcz , so as to yield

autonomous landing on the target center of gravity. This

phase corresponds to a roughly-vertical descent of the vehicle

down to the target. To summarise

b =

{

(0 0 bcz)
⊤ if |δ1| > ǫδ

(0 0 blz,t)
⊤ otherwise,

(11)

such that blz,t = blz,t−1 − |∆b|, with t being the time

variable. Thus, in the landing phase the third component is

decremented by |∆b| for each time step until the vehicle is

close enough to the target. Threshold ǫδ is set as a switch

between the two described phases: get the vehicle hovering

and centered on the target, and roughly-vertical final landing

motion.

V. EXPERIMENTAL RESULTS

The proposed control scheme is tested for autonomous

landing of a real flying quadrotor. The latter consists in

an ASCTEC Pelican of roughly 1.5 Kg total mass and is

endowed with an MIO-2261N-S8A1E motherboard featuring

a 1.86 GHz with 4 GB dual core processor. As for the sensor

suite, it consists of a low-cost IMU steaming at 100 Hz,

and a UI-1221LE uEYE camera equipped with fisheye lenses

and providing images with 640× 480 pixel resolution at the

cadence of 70 Hz. The proposed method is implemented in

C++ programming language on the motherboard onboard the

UAV, while the communication between the onboard mod-

ules is managed with ROS middleware software1. Ground

truth is provided by an Optitrack2 motion capture system,

which consists of twenty S250e infrared cameras covering

the vehicle operational space.

Before visual servoing is launched, the vehicle is initially

teleoperated to a place far from the target, so as to verify

the capability of the system in real conditions. This step

is realised by using the measurements of the vehicle 3D

positions provided by Optitrack in a Cartesian controller.

Figures 3(a) and 3(b) show respectively an image frame from

the onboard camera, and a snapshot image from an offboard

camera, when the vehicle reached that initial location. Next,

visual servoing is launched and the UAV is in a fully-

autonomous mode, where only the onboard images along

with IMU’s gyro data feed the control system. Control laws

(4), (7), and (11) solely control the quadrotor, by generating

desired roll/pitch attitude angles and thrust to the off-the-

shelf autopilot. The observer and control gains are manually

and empirically set as follows: c1 = 0.1, c2 = 9, λ = 2.5,

k1o = 10, K2o = 6e−2 Q∗−1
, and α2 = 0.4, where Q∗

corresponds to the value of Q at the desired configuration

(i.e. location centered on the target just before the descent

manoeuvre). In general conditions, the value of Q∗ can be

a priori known.

1http://www.ros.org
2http://www.naturalpoint.com/optitrack
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Fig. 4. Plots corresponding to Fig. 3. Figure 4(c) shows the relative position
of the onboard camera with respect to the target; more precisely, with respect
to a marker roughly centered on the latter. (b) ’x’ and ’y’ stand for roll and
pitch angles, respectively.

Corresponding experimental results are shown in Figs. 3,

4, and 5. The eight figures of Fig. 3 illustrate the dif-

ferent phases for landing. The initial location from which

the UAV starts autonomous landing is shown with both

the corresponding image frame from the onboard camera

[Fig. 3(a)] and a snapshot from an offboard recording cam-

era [Fig. 3(b)]. Figures 3(c) and 3(d) show images taken

when the UAV reached the hover configuration roughly-

centered on the target, just before the vertical descent is

undertaken. Then, the UAV starts roughly-vertical descent

motion to end up centered only 50 cm above the target, as

displayed by Figs. 3(e) and 3(f). Finally, visual servoing is

automatically switched off and the vehicle looses elevation

until it touches the ground as can be seen in Figs. 3(g) and

3(h). The evolution of the relative 3D position of the vehicle

with respect to the target’s during the whole autonomous
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Fig. 5. 3D path of the UAV (of the onboard camera, more precisely) to
autonomously land on the target, whose center is also indicated.

manoeuvre is reported in Fig. 4(c). As planned, the vehicle

first gets centered with respect to the target, such that we

can see indeed that the values of the first two coordinates

(X and Y axes, that represent the horizontal plane) of its

position converge to those of the target. This phase starts at

time 51 s and ends at time 55 s, wherein the value of the

desired direction is given by the first relationship of (11).

Note that a marker is affixed roughly-centered on the landing

pad, as can be seen in Fig. 3(e). The marker position is sensed

with Optitrack motion capture system and represents the

reference to induce the positioning error plotted in Fig. 4(c).

Afterwards, the UAV enters the second phase as it starts the

descent manoeuvre to approach and land on the target, such

that the control system automatically switches to the second

relationship of (11) to update the value of desired direction

b. We can see indeed that while the UAV keeps centered

on the landing pad, the relative altitude (Z axis) decreases

to finally hover at only less than 50 cm above the target.

This phase corresponds to time [55 - 65] s. Finally, visual

servoing is switched off and the thrust is decreased until the

vehicle touches the ground. The motion of the vehicle in

the 3D space is depicted in Fig. 5. The value of the thrust

command is plotted in Fig. 4(a) and the roll, and pitch angles

of the vehicle attitude are plotted in Fig. 4(b). Note that the

3D motion of the vehicle is smooth, though the occurence

of the above phase transitions. These results thus provide an

experimental validation and proof-of-concept of the proposed

approach based on onboard vision for autonomous landing.

Though we omitted explicitly measuring the success rate of

the proposed approach in the real hardware experiments, we

can nevertheless report that we did not record any failure of

the control system after all the different involved gains have

been tuned.

As already stated, the final phase consisting in the vertical

descent [just after the vehicle had reached the position

captured in Fig. 3(f)] is realised in an open-loop fashion, such

that the thrust is gradually decreased until the vehicle touches

the ground. This phase corresponds to a vehicle motion of

about 50 cm, from the location captured in Fig. 3(f) to that



captured in Fig. 3(h). As soon as the UAV is close enough to

the target, the latter no longer fits the camera field of view,

which subsequently leads to occlusion. That is the reason

why the visual servoing is switched off. Nevertheless, as

alternatives to the open-loop final manoeuvre adopted in this

work, we propose the following solutions:

i) A fisheye camera with large field of view or a (ultra)

wide angle camera would address the problem.

ii) If the above proposition cannot be met, then we would

propose to close the remaining dozens of centimeters

gap in an open-loop control fashion. Indeed, since

the distance to be achieved is short, and in addition

is known to be vertical, one could impose a vertical

descending and slow motion to the vehicle. The con-

trol objective would be to regulate the vehicle linear

velocity. The measures of the latter to be used for

feedback could be obtained by integrating the onboard

accelerometer data, which would be reliable enough

for so very short displacement.

iii) Finally, sonar or laser sensors could be employed to

guide the vehicle through the remaining short vertical

distance.

VI. CONCLUSIONS

In this work we have proposed and successfully vali-

dated through real-hardware experiments a control system

for precise autonomous landing of a quadrotor UAV on a

visual target in a GPS-denied environment. Only onboard

sensing has been employed: a single down-looking camera

and IMUs gyro. It is worth remarking that we did not use

the accelerometer. The control system only needs that the

landing pad be characterised by a set of visual features,

which is quite feasible in real world scenarios. It does not

require that the environment be highly textured. The control

system consists of a nonlinear observer estimating the linear

velocity of the vehicle and a backstepping nonlinear control

law to visually and automatically position the UAV with

respect to the pad, both of which use the same spherical

visual feature extracted from the pad image. It generates

desired attitude and thrust to the UAV autopilot.

The future works would be on autonomously landing on

a moving pad, and testing in the presence of external wind

perturbations.
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