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Abstract: A new technique for real-time estimation of the pose of a moving object
using a video camera is presented. A Binary Space Partition (BSP) tree is adopted to
represent the object geometry and efficient selection techniques are developed to find
an optimal set of feature points of the object to be used for feature extraction. The
extended Kalman filter is used to estimate the pose of the object directly from the
image measurements. The performance of the proposed approach is experimentally
tested in the case of an object moving in the visible space of one fixed camera.
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1. INTRODUCTION

The use of visual sensors may have high impact
in applications where it is required to measure
the pose (position and orientation) and the vi-
sual features of objects moving in unstructured
environments. In robotics, the measurements pro-
vided by video cameras can be directly used to
perform closed-loop position control of the robot
end effector, usually denoted as visual servoing
control (Hutchinson et al., 1996).
A strict requirement in visual servoing applica-
tions is that the information extracted from vi-
sual measurements must be available at control
sampling rate. Therefore, computationally effi-
cient visual tracking techniques must be adopted.
Moreover, noise and disturbances affecting visual
measurements may produce large estimation er-
rors. The adoption of the extended Kalman filter
for pose estimation represents a good trade-off
between computational load and estimation ac-
curacy (Lee and Kay, 1990; Lippiello et al., 2001).
The object pose can be estimated by recognizing
some geometric features of the object, such edges
and corners, from a camera image. In particular,
the extraction of a suitable number of corners
(feature points) allows the object pose to be com-
puted using a simple point CAD model (Wilson,

1996). In principle, the accuracy of the estimate
increases with the number of the available feature
points, at the expense of the computation time.
However, when Kalman filter is adopted, it has
been shown that the best achievable accuracy
obtained using all the available points is quite the
same as that obtained using a number of five or
six feature points, if properly chosen (Wang and
Wilson, 1992). Selection algorithms have been de-
veloped to find the optimal feature points (Janabi-
Sharifi and Wilson, 1997). It should be pointed
out, however, that the complexity of the selection
algorithms grows at factorial rate. Hence, when
the number of feature points is large, it is crucial
to perform a pre-selection of the points, e.g., by
eliminating those that are occluded with respect
to the camera.
In this paper, the extended Kalman filter is
adopted for real-time pose estimation. In order
to reduce computational time, a new pre-selection
algorithm of the feature points is proposed, based
on the selection of all the points that are visible to
the camera at a given sample time. This algorithm
exhibits a complexity which grows linearly, thanks
to the use of Binary Space Partitioning (BSP)
tree for object geometric representation (Drum-
mond and Cipolla, 1999). After the pre-selection,
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Fig. 1. Reference frames for the camera and the
object using the pinhole model.

a dynamic windowing algorithm and an optimal
point selection algorithm are adopted to find the
windows of the image plane to be processed and
input to the Kalman filter. The effectiveness of the
proposed approach is tested in experimental case
studies where the position and orientation of an
object carried by a robot manipulator is tracked
using one fixed camera.

2. EXTENDED KALMAN FILTER

Consider a video camera fixed with respect to a
base coordinate frame O–xyz (see Fig. 1). Let
Oc–xcyczc be the camera frame, with the zc-axis
aligned to the optical axis and the origin in the
optical center. In the following, a superscript will
be used to denote the reference frame of a variable,
when different from the base frame.
The sensor plane is parallel to the xcyc-plane
at a distance -fc

e along the zc-axis, where f c
e is

the effective focal length of the camera lens. The
image plane is parallel to the xcyc-plane at a
distance fc

e along the zc-axis. The intersection of
the optical axis with the image plane defines the
principal optic point O′

c, which is the origin of the
image frame O′c–ucvc whose axes uc and vc are
taken parallel to the axes xc and yc, respectively.
The position of the origin and the rotation matrix
of the camera frame with respect to the base frame
are denoted by oc and Rc respectively. These
quantities are constant because the camera is fixed
to the workspace, and can be computed through
a suitable calibration procedure.
The position and orientation of the object with
respect to the base frame can be specified by
defining a frame Oo–xoyozo attached to the object
and considering the coordinate vector of the ori-
gin oo = [ xo yo zo ]T and the rotation matrix
Ro(ϕo), where ϕo = [ φo αo ψo ]T is the vector
of the Roll, Pitch and Yaw angles. The compo-
nents of the vectors oo and ϕo are the six unknown
quantities to be estimated.
Consider m feature points on the object. It can be
shown (see Lippiello et al., 2001) that the position
of the j-th feature point in the camera frame can
be computed as

pc
j = RT

c (oo − oc + Ro(ϕo)p
o
j), (1)

where po
j is the position vector of the j-th feature

point with respect to the object frame. This vector
is constant and is assumed to be known form the
object CAD model.
By folding the m equations (1) into the perspec-
tive transformation of the camera, a system of 2m
nonlinear equations is achieved. These equations
depend on the measurements of the m feature
points in the image plane of the camera, while
the six components of the vectors oo and ϕo are
the unknown variables.
To solve these equation in real time, the extended
Kalman filter is adopted, which provides a recur-
sive solution.
In order to write the Kalman filter equations, a
discrete time dynamic model of the object motion
has to be considered. Assuming that the object
velocity is constant over one sample period T , the
model can be written in the form

wk = Awk−1 + γk (2)

where w = [ xo ẋo yo ẏo zo żo φo φ̇o αo α̇o ψo ψ̇o ]T

is the state vector, γ is the dynamic modeling
error, and A is a (12× 12) block diagonal matrix

A = diag
{[

1 T
0 1

]
, · · · ,

[
1 T
0 1

]}
.

The output equation of Kalman filter is chosen as

ζk = g(wk) + νk (3)

with

g(wk) =
[

xc
1

zc
1

yc
1

zc
1

. . .
xc

m

zc
m

yc
m

zc
m

]
(4)

where the coordinates of the feature points pc
j are

computed from the state vector wk via (1). In the
above equation, νk is the measurement noise and
the ζk is the vector of the normalized coordinates
of the m feature points in the image plane.
Since the output model is nonlinear in the sys-
tem state, it is required to linearize the output
equations about the current state estimate at each
sample time, considering the so-called extended
Kalman filter. The recursive form of the filter
equations is reported in (Lippiello et al., 2001).

3. PRE-SELECTION ALGORITHM

The accuracy of the estimate provided by the
Kalman filter depends on the number of the avail-
able feature points. Inclusion of extra points will
improve the estimation accuracy but will increase
the computational cost. In order to increase the ef-
ficiency of the selection algorithms, it is advisable
to perform a pre-selection of the points that are
visible to the camera at a given sample time. The



pre-selection technique proposed in this paper is
based on Binary Space Partitioning (BSP) trees.
A BSP tree is a data structure representing
a recursive and hierarchical partition of a n-
dimensional space into convex subspaces. It can
be adopted to represent the 3D geometry of an
object, as reported in (Paterson and Yao, 1990).
In order to build the tree, each object has to be
modelled as a set of planar polygons; this means
that the curved surfaces have to be approximated.
Each polygon is characterized by a set of feature
points (the vertices of the polygon) and by the
vector normal to the plane leaving from the ob-
ject. For each node of the tree, a partition plane,
characterized by its normal vector and a point, is
chosen according to a specific criterion; the node
is defined as the set containing the partition plane
and all the polygons lying on it.
Each node is the root of two subtrees: the front
subtree corresponding to the subset of all the
polygons lying entirely on the front side of the
partition plane (i.e. the side corresponding to the
half-space containing the normal vector), and the
back subtree corresponding to the subset of all
the polygons lying entirely on the back side of the
partition plane.
The construction procedure can be applied recur-
sively to the two subsets by choosing, for each
node, a new partition plane among those corre-
sponding to the polygons contained in that sub-
tree. The construction ends when all the polygons
are placed in a node of the tree.
Further details on BSP trees and an example of
construction can be found in (Lippiello et al.,
2002a).
Once a BSP tree representation of an object is
available, it is possible to select the feature points
of the objects visible from a given camera posi-
tion and orientation, by implementing a suitable
visit algorithm of the tree. The algorithm can be
applied recursively to all the nodes of the tree,
starting from the root node as showed in Fig. 2.
When the algorithm processes a node, the current
set of projections of the visible feature points on
the image plane is updated by adding all the
projections of the feature points of the polygons
of the current node and eliminating all the projec-
tions of the feature points that are hidden by the
projections of the polygons of the current node.
If a polygon is hidden from the camera (i.e., the
angle between the normal vector to the poly-
gon and the camera z-axis is not in the interval
]− π/2, π/2[ or the polygon is behind the camera),
the corresponding points are not added to the set.
At the end of the visit, the current set will contain
all the feature points visible from the camera,
while all the hidden points will be discarded.
Notice that the visit algorithm updates the set
by ordering the polygons with respect to the
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Fig. 2. Recursive visit algorithm of the BSP tree
for the selection of visible feature points.

camera point of view from the background to the
foreground.

4. SELECTION ALGORITHM

The pre-selection technique recognizes all the fea-
ture points that are visible from the camera. How-
ever, this does not ensure that all the visible points
are “well” localizable, i.e., their positions can be
effectively measured with a given accuracy.
A windowing test is adopted to select the pro-
jections of the feature points that can be well
localized. In particular, only the points that can
be centered into suitable rectangular windows of
the image plane are considered for the next step
of selection, while the points that are out of the
field of view of the camera, and the points that
are too close each other or to the boundaries of
the image plane, are discarded.
The number of the well localizable feature points
may be larger than the optimal number of points
(five or six) ensuring the best pose estimation
accuracy (Wang and Wilson, 1992). The optimal-
ity of a given set of feature points can be val-
ued through the composition of suitably selected
quality indexes into an optimal cost function. The
quality indexes must be able to provide accuracy,
robustness and to minimize the oscillations in the
pose estimation variables. To achieve this goal it is
necessary to ensure an optimal spatial distribution
of the projections of the feature points on the
image plan and to avoid chattering events between
different optimal subsets of feature points chosen
during the object motion.



A first quality index is the measure of spatial
distribution of the predicted projections on the
image planes of a subset of n selected points:

Qs =
1
n

n∑

k=1

min
j ∈ {1, . . . , n}

j 6= k

∥∥pj − pk

∥∥ .

A second quality index is the measure of angular
distribution of the predicted projections on the
image plane of a subset of n selected points:

Qa = 1−
n∑

k=1

∣∣∣∣
αk

2π
− 1

n

∣∣∣∣

where αk is the angle between the vector pk+1 −
pC and the vector pk − pC , being pC the central
gravity point of the whole subset of feature points,
and the n points of the subset are considered in a
counter-clockwise ordered sequence with respect
to pC , with pn+1 = p1.
To avoid chattering phenomena, a quality index
introducing hysteresis effects on the change of the
optimal combination of points is considered:

Qh = 1 + ε

with ε > 0 if the actual combination is equal to
the previous one, ε = 0 otherwise.
The proposed indexes are only some of the pos-
sible choices, but guarantee satisfactory perfor-
mance when used with the pre-selection method
and the windowing test presented in this paper.
Other examples of quality indexes are proposed,
e.g., in (Janabi-Sharifi and Wilson, 1997).
The cost function is a simple product of the
quality indexes, but must be evaluated for all the
possible combinations of the visible points on n
positions. In order to determine the optimal set at
each sample time, the initial optimal combination
of points is first evaluated off-line. Then, only
the combinations that modify at most one point
with respect to the current optimal combination
are tested on-line, thus achieving a considerable
reduction of processing time.

5. ESTIMATION PROCEDURE

A functional chart of the estimation procedure is
reported in Fig. 3. It is assumed that a BSP tree
representation of the object is built off-line from
the CAD model. A Kalman filter is used to esti-
mate the corresponding pose with respect to the
base frame at the next sample time. The feature
points selection and windows placing operation
can be detailed as follows.
• Step 1: The visit algorithm described in the

previous Section is applied to the BSP tree
of the object to find the set of all the feature
points that are visible from the camera.

• Step 2: The resulting set of visible points is
input to the algorithm for the selection of the
optimal feature points.

CAD models

BSP tree build
(off line)

Pre-selection
Windowing

Optimal selection

Features
extraction

Vision and
camera system

Kalman filter Object Pose

Fig. 3. Functional chart of the estimation proce-
dure.

Fig. 4. Robot COMAU SMART3-S and camera
SONY 8500CE.

• Step 3: The location of the optimal feature
points in the image plane at the next sam-
ple time is computed from the object pose
estimation provided by the Kalman filter.

• Step 4: A dynamic windowing algorithm
selects the parts of the image plane to be
input to the feature extraction algorithm.

A this point, all the image windows of the optimal
selected points are elaborated using a feature
extraction algorithm. The computed coordinates
of the points in the image plane are input to the
Kalman filter which provides the estimate of the
actual object pose and the pose at the next sample
time used into the steps 1 and 3.
The procedure described above can be extended
to the case of multiple objects moving among
obstacles of known geometry (Lippiello et al.,
2002b).

6. EXPERIMENTS

The experimental set-up is composed by a PC
with Pentium IV 1.7GHz processor equipped with
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Fig. 5. Object trajectory in the first experiment.
Left: Position trajectory. Right: Orientation
trajectory.

a MATROX Genesis board, a SONY 8500CE
B/W camera, and a COMAU SMART3-S robot.
The MATROX board is used as frame grabber
and for a partial image processing (e.g., windows
extraction from the image). The PC host is also
used to realize the whole BSP structure man-
agement, the pre-selection algorithm, the win-
dows processing, the selection algorithm and the
Kalman filtering. Some steps of image processing
have been parallelized on the MATROX board
and on the PC, so as to reduce computational
time. The robot is used to move an object in
the visual space of the camera; thus the object
position and orientation with respect to the base
frame of the robot can be computed from joint
position measurements via the direct kinematic
equation. The camera resolution is 576×763 pixels
and the nominal focal length of the lens is 16 mm.
The sampling time used for estimation is limited
by the camera frame rate, which is about 26 fps.
No particular illumination equipment has been
used.
The image features are the corners of the object,
which can be extracted with high robustness in
various environmental conditions. The feature ex-
traction algorithm is based on Canny’s method
for edge detection and on a simple custom imple-
mentation of a corner detector. The object used
in the experiment has 40 vertices, which are all
used as feature point. In Fig. 4 is shown the robot
carrying the object.
Two different experiments have been realized.
The first experiment reflects a favorable situation
where the object moves in the visible space of the
camera and most of the feature points that are
visible at the initial time remain visible during
all the motion. The second experiment reflects an
unfortunate situation where the set of the visible
points is very variable, and a large part of the
object goes out of the visible space of the camera
during the motion.
The time history of the trajectory used for the first
experiment is represented in Fig. 5. The maximum

0 10 20 30 40 50
−0.02

−0.01

0

0.01

0.02

time [sec]

[m
]

0 10 20 30 40 50
−10

−5

0

5

10

time [sec]

[d
eg

]

x y 

z 

roll pitch 

yaw 

Fig. 6. Estimation errors in the first experiment.
Top: Position errors. Bottom: Orientation
errors.
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Fig. 8. Object trajectory in the second experi-
ment. Left: Position trajectory. Right: Ori-
entation trajectory.

linear velocity is about 3 cm/s and the maximum
angular velocity is about 3 deg/s.
The time history of the estimation errors is shown
in Fig. 6. As it was expected, the errors for some
motion components are larger than others because
only 2D information is available in a single camera
system.
In Fig. 7 the output of the whole selection al-
gorithm is reported. For each of the 40 feature
points, two horizontal lines are considered: a point
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Fig. 9. Estimation errors in the second experi-
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Fig. 10. Visible and selected points for the second
experiment.

of the bottom line indicates that the feature point
was classified as visible by the pre-selection algo-
rithm at a particular sample time; a point of the
top line indicates that the visible feature point was
chosen by the selection algorithm. Notice that 8
feature points are selected at each sample time,
in order to guarantee at least five or six mea-
surements in the case of fault of the extraction
algorithm for some of the points. Also, some fea-
ture points are hidden during all the motion, while
others are only visible over some time intervals.
Finally, no chattering phenomena are present.
The time history of the trajectory used for the
second experiment is represented in Fig. 8. The
maximum linear velocity is about 2 cm/s and the
maximum angular velocity is about 7 deg/s.
The time history of the estimation error is shown
in Fig. 9. It can be observed that the error remains
low but is greater than the estimation error of the
previous experiment. This is due to the increased
velocity of the feature points and to the fact that
from about t = 30 s to t = 60 s the object moves
so that it is partially out of the visible space of
the camera; also, it rotates in such a way that a
side remains almost parallel to the image plane.
This condition penalizes the estimation accuracy
and explains why the magnitude of the estimation

error components is greater than in the previous
experiment. The corresponding output of the pre-
selection and selection algorithms are reported in
Fig. 10. It should be pointed out that the pre-
selection and selection algorithm are able to pro-
vide the optimal set of points independently from
the operating condition, although slight chatter-
ing phenomena appear in some situation where
the elements in the set of localizable points is
rapidly changing.

7. CONCLUSION

The estimation of the pose of a moving object
from visual measurements was considered. The
extended Kalman filter was used to recursively
compute an estimate of the motion variables from
the measurements of the position of suitable fea-
ture points of the object. The efficiency of the
algorithm was improved by adopting a technique
of pre-selection of the visible feature points at each
sample time based on a Binary Space Partition
tree representing the object geometry. The exper-
iments have shown the effectiveness of the algo-
rithm and have confirmed its practical feasibility.
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