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Abstract: This paper deals with the problem of position-based visual servoing in
a multi-arm robotic cell equipped with a hybrid eye-in-hand/eye-to-hand multi-
camera system. The proposed approach is based on the real-time estimation of the
pose of a target object by using the extended Kalman filter. The data provided by
all the cameras are selected by a suitable algorithm on the basis of the prediction
of the object self occlusions and of the mutual occlusions caused by the robot
links and tools. Only an optimal subset of image features is considered for feature
extraction, thus ensuring high estimation accuracy with a computational cost
independent of the number of cameras. An experimental case study is presented
for the case of two industrial robots performing a vision-guided grasping task.
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occlusion prediction

1. INTRODUCTION

One of the most important features of the new
generation of industrial robots is the enhanced
sensing capability, which is based on the use of
heteroceptive sensors like force and vision.

In a multi-arm robotic cell, visual systems are
usually composed by two or more cameras that
can be rigidly attached to the robot end effec-
tors (in the so called eye-in-hand configuration)
or fixed in the workspace (in the so called eye-
to-hand configuration) (Hutchinson et al., 1996).
The first configuration guarantees good accuracy
and the ability to explore the workspace although
with a limited sight; the second one ensures a
panoramic sight of the workspace, but a lower
accuracy. Hence, the use of both configurations
at the same time (i.e., the so called hybrid con-
figuration) makes the execution of complex tasks
easier and offers higher flexibility in the presence
of a dynamic scenario.

Another important issue is related to the occur-
rence of occlusions of the object features used as

visual data. Occlusions may happen when some
parts of a workpiece are hidden with respect to
the cameras by other parts of the object itself
(self-occlusion), or when a workpiece is hidden by
a robot link or tool, or by another object (mutual
occlusion). They may cause failures to any kind
of algorithm based on the extraction of image
features. Hence, it is important to adopt suitable
strategies able to cope with this problem.

The control scheme considered in this paper can
be classified as position-based visual servoing,
because it requires the computation of position
and orientation errors defined in the Cartesian
space (Wilson et al., 1996). The main challenge
of position-based algorithms is the real-time esti-
mation of the pose of target objects from visual
measurements. This problem has been largely in-
vestigated in the computer vision literature (see,
e.g., (Chiuso et al., 2002)) as well as in the robotic
literature (see, e.g., (Wilson et al., 1996)).

Thanks to its noise and disturbance rejection ca-
pabilities, the Extended Kalman Filter (EKF) is
usually adopted to enhance the pose estimation



accuracy (Broida and Chellappa, 1986). Moreover,
Kalman filtering offers many advantages over
other estimation methods, e.g., temporal filtering,
recursive implementation, possibility of realizing a
proper statistical combination of redundant mea-
surements, ability to change the measurement set
during the operation. Also, the pose prediction
computed by the filter allows setting up a dynamic
windowing technique which may sensibly reduce
the time required for feature extraction.

These features are suitably exploited in the al-
gorithm presented here. In fact, differently form
previous approaches based on hybrid configura-
tions (see, e.g., (Flandin et al., 2000; Muis and
Ohnishi, 2004)) the pose estimation is achieved
by using all the data provided by all the cameras,
without any kind of “a priori” discrimination.

At each sampling time, a suitable selection al-
gorithm is used for the dynamic selection of an
optimal set of visual data available for pose esti-
mation, on the basis of the specific task and of
the current configuration of the workspace. Only
the selected features are grabbed to achieve the
measurements, and thus the computational time
spent for image processing is independent of the
number of cameras (Lippiello and Villani, 2003).

The computational efficiency of the selection al-
gorithm is improved thanks to the adoption of
a fast occlusion prediction algorithm purposely
designed for multi-arm robotics cells. In this way,
the occluded features can be eliminated from the
set of features candidates to be extracted by the
images. The algorithm is based on Binary Space
Partitioning (BSP) tree structures to represent
the 3D geometry of the cell. The BSP tree rep-
resentation is updated in real time on the basis of
the measurements of the robot joint positions and
of the estimated poses of the workpieces. Hence
the occlusion detection is realized through a visit
algorithm of the tree (Lippiello and Villani, 2003).

In this paper, a complete scheme for position-
based visual servoing on an industrial multi-arm
robotic cell is described. The proposed formula-
tion generalizes the results presented in the pre-
vious papers (Lippiello et al., 2005b) (concern-
ing hybrid camera configurations) and (Lippiello
et al., 2005a) (concerning occlusion detection in
multi-arm robotic cells), where more details can
be found. An experimental case study on a dual
arm industrial robotic cell is described to show
the feasibility of the proposed approach.

2. POSITION-BASED VISUAL SERVOING

A typical position-based visual servoing scheme
for industrial robots is represented in Fig. 1. This
algorithm requires the estimation of the pose of
a target object with respect to a reference frame
by using the vision system; the estimated pose is
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Fig. 1. Position-based visual servoing scheme

then fed back to a pose controller. Hence, the two
main operations to be performed are pose control
and pose estimation.

Notice that pose estimation is a computationally
demanding task, because it requires processing
of the measurements of some geometric features
extracted from the images of one or more cam-
eras. Hence, the frequency of the pose estimation
algorithm is usually higher than the frequency of
the pose control loop (greater or equal to 500 Hz in
industrial robots, to guarantee tracking accuracy
and disturbance rejection). In the best case, the
pose estimation can be performed at camera frame
rate (between 25 Hz and 60 Hz).

Pose control is performed through an inner-outer
control loop. The inner loop, which usually runs at
higher frequency, implements motion control (in-
dependent joint control or any kind of joint space
or task space control). In the outer loop, the block
named dynamic trajectory planner computes the
trajectory for the end-effector on the basis of the
current object pose and of the desired task.

The pose estimation algorithm provides the mea-
surements of the target object pose. The use of
a multi-camera system requires the adoption of
intelligent and computationally efficient strategies
for the management of highly redundant infor-
mation (a large number of object image features
from multiple points of view). This task has to be
realized with real-time constraints and thus the
extraction and interpretation of all the available
visual information is not possible.

To solve this problem, an efficient technique (de-
scribed by the scheme represented in Fig. 2) has
been developed which is able to improve the ac-
curacy and robustness of the estimation by ex-
ploiting a minimal set of significant visual data
suitably selected from the initial redundant set.

In detail, the EKF is used to compute an estimate
of the object pose on the basis of the image
features extracted from visual information. The
filter provides also a prediction of the pose of
the workpieces at the next sampling time, that
is input to the occlusion prediction algorithm, in



Feature
extraction

EKF

Optimal
selection &
Windowing

Occlusion
prediction

Cameras
Workpieces

pose estimation

Workpieces
pose prediction

Image
features

Visible image
features

Image feature
optimal subset

Fig. 2. Block scheme of the pose estimation algo-
rithm

charge of filtering out all the feature points that
are not visible at the next sampling time.

Notice that not all the visible feature points pro-
vided by the occlusion prediction algorithm are
used for feature extraction. In fact, in a multi-
camera system, the available feature points may
be highly redundant and may increase the com-
putational cost without a significant enhancement
of the estimation accuracy (Wilson et al., 1996).
Therefore, a selection algorithm is adopted to dy-
namically select an optimal set of visible points.
This algorithm is based on the minimization of
an optimal cost function based on a combina-
tion of suitable quality indexes ensuring a bal-
anced spatial distribution of the projections of
the feature points on the image plane of each
camera as well as a balanced distribution of the
features among the different cameras, considering
their different resolutions and focuses (Lippiello
and Villani, 2003). After the optimal selection,
a windowing technique is used to compute the
size and location of the windows of the image
plane to be grabbed for image processing. This
considerably reduces the computational charge of
the frame grabbing operations.

In the following, the issues concerning the EKF
and occlusion detection in a multi-arm robotic cell
with an hybrid camera system will be considered.

3. HYBRID CAMERA CONFIGURATION

Consider a system of nf video cameras fixed in the
workspace (eye-to-hand cameras) and nm video
cameras mounted on the end effector of one or
more robots (eye-in-hand cameras), with n = nf +
nm. In the following, the index c will be used
to denote the quantities referred to a frame Oc–
xcyczc attached to the camera c (eye-to-hand or
eye-in-hand), with c ∈ {1, · · · , n}. Assuming that
the projective geometry of the camera is modeled
by perspective projection, a point P of the object
with coordinates cp =

[
x y z

]T with respect to
the camera frame is projected onto the point of
the image plane with coordinates

[
X
Y

]
=

λc

z

[
x
y

]
= hp,c(cp), (1)

where λc denotes the focal length of the lens of the
camera c. Without loss of generality, the case of
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Fig. 3. Eye-in-hand/eye-to-hand cameras

a single moving object is considered. The position
and orientation of a frame attached to the object
Oo–xoyozo with respect to a base coordinate frame
O–xyz can be expressed in terms of the coordinate
vector of the origin oo =

[
xo yo zo

]T and of the
rotation matrix Ro(ϕo), where ϕo is a (q × 1)
vector corresponding to a suitable parametriza-
tion of the orientation. In the case that a minimal
representation of the orientation is adopted, e.g.,
Euler angles, it is q = 3, while it is q = 4 if
unit quaternions are used. Hence, the (m × 1)
vector xo =

[
oT

o ϕT
o

]T
defines a representation

of the object pose with respect to the base frame
in terms of m = 3 + q parameters.

The homogeneous coordinate vector p̃ =
[
pT 1

]T
of the point P with respect to the base frame can
be computed as p̃ = Ho(xo)op̃ where op̃ is the
homogeneous coordinate vector of P with respect
to the object frame and Ho is the homogeneous
transformation matrix representing the pose of
the object frame referred to the base frame:

Ho(xo) =
[
Ro(ϕo) oo

0T
3 1

]
,

where 03 is the (3× 1) null vector. Notice that, if
the object is rigid, the vector op̃ is constant and
can be computed from a CAD model of the object.

Let Hc denote the homogeneous transformation
matrix representing the pose of the camera frame
c referred to the base frame. For the eye-to-
hand cameras, the matrix Hc is constant, and
can be computed through a suitable calibration
procedure, while for the eye-in-hand cameras (see
Fig. 3) this matrix depends on the camera current
pose xc, i.e., Hc = Hc(xc), and can be computed
as Hc(xc) = Hr

rHe(rxe)eHc where Hr is the
homogeneous transformation matrix of the base
frame of the robot r carrying the camera c with
respect to the common base frame, rHe is the
homogeneous transformation matrix of the end
effector e with respect to the base frame of the
robot r, and eHc is the homogeneous transforma-



tion matrix of the camera c with respect to the
frame e of the end effector where the camera is
mounted. Notice that Hr and eHc are constant
and can be estimated through suitable calibration
procedures, while rHe depends on the current
end-effector pose rxe and may be computed using
the robot kinematic model.

Therefore, the homogeneous coordinate vector of
P with respect to the camera frame c can be
expressed as

cp̃ = cHo(xo, xc)op̃ (2)

where cHo(xo, xc) = cH−1(xc)Ho(xo). Notice
that xc is constant for eye-to-hand cameras; more-
over, the matrix cHo does not depend on xc and
xo separately but on the relative pose of the object
frame with respect to the camera frame.

The (3×1) vector cp corresponding to cp̃ in (2) is
the coordinate vector of the point P with respect
to the camera frame c. Hence, its time derivative
cṗ has the meaning of relative velocity of the point
P with respect to the camera frame c, expressed
in the frame c. This velocity can be computed as

cṗ = Λ(cp− coo)cνo,c, (3)

where coo is the vector of the coordinates of
the origin of the object frame Oo with respect
to the camera frame c, cνo,c = [cȯT

o
cωT

o,c]
T

is the velocity screw characterizing the relative
motion of the object frame with respect to the
camera frame c in terms of the relative velocity
of the origin cȯo and of the relative angular
velocity cωo,c. The matrix operator Λ(·) is defined
as Λ(·) = [I3 −S(·)], where I3 is the (3 × 3)
identity matrix and S(·) denotes the (3×3) skew-
symmetric matrix operator.

Notice that the absolute velocity screw cνo =
[cv̇T

Oo

cωT
o ]T corresponding to the absolute mo-

tion of the object frame with respect to the base
frame can be expressed as

cνo = cνo,c + Γ(coo)cνc (4)

where cνc = [cvT
Oc

cωT
c ]T is the absolute velocity

of the frame of the camera c expressed in the frame
c. The matrix operator Γ(·) is defined as

Γ(·) =
[

I3 −S(·)
O3 I3

]
,

where O3 denotes the (3× 3) null matrix.

To estimate the position and orientation of the
object by using visual data, a set of image features
must be selected, corresponding to the projection
on the image plane of some physical features
of the object. Also, the image features must be
characterized by a set of parameters computed
from the visual data. For the purpose of this work,
point features are considered; hence, the image
feature parameters are the coordinates of these
point on the image plane.

The feature parameters for the camera c can be
grouped in a vector f c = [fc,1 · · · fc,k]T , where
fc,j is a real value and k is the dimension of the
image feature parameter space. The mapping from
the position and orientation of the object to the
corresponding image feature parameter vector f c

can be computed using the projective geometry of
the camera and can be written in the form

f c = hc(cHo(xo, xc)). (5)

In the simple case of a single feature point, it is
k = 2, f c = [X Y ]T and the mapping (5) can
be easily computed by replacing the equation (2)
into the equation (1).

Usually, for visual tracking and visual servoing
applications, it is required the computation of the
differential mapping

ḟ c = Jo,c
cνo,c (6)

where the matrix Jo,c is the Jacobian mapping
the relative velocity screw of the object frame with
respect to the camera frame into the variation of
the image feature parameters. Taking into account
the velocity composition (4), the equation (6) can
be rewritten in the form

ḟ c = Jo,c
cνo − Jc

cνc (7)

where
Jc = Jo,cΓ(coo)

is the Jacobian corresponding to the contribution
of the absolute velocity screw of the camera frame,
known as interaction matrix (Espiau et al., 1996).

4. EKF

To compute an estimate of the pose vector xo of
the object with respect to the base frame using
the EKF, a discrete-time state space dynamic
model has to be considered, describing the object
motion. The state vector of the dynamic model
is chosen as w =

[
xT

o ẋT
o

]T
. The corresponding

dynamic modeling error can be considered as
an input disturbance γ described by zero mean
Gaussian noise with covariance Q. The discrete-
time dynamic model can be written as

wk = Awk−1 + γk, (8)

where A is the (2m× 2m) block matrix

A =
[

Im TsIm

Om Im

]
.

The output of the Kalman filter is the vector of the
image feature parameters measured on the image
planes of the n cameras at the time kTs

ζk =
[
ζ1,k

T . . . ζn,k
T
]T

,

where ζc,k = f c,k + νc,k, c = 1, · · · , n, being
νc,k the measurement noise of the camera c. The



measurement noise is assumed to be zero mean
Gaussian noise with covariance Πc.

Taking into account the equation (5), the output
model of the Kalman filter can be written in
the form ζk = g(wk, ck) + νk where ck =
[xT

1,k . . . xT
n,k]T , νk = [νT

1,k . . . νT
n,k]T and

g(wk, xc,k) =




g1(wk, x1,k)
...

gn(wk, xn,k)


 (9)

with gc(wk,xc,k) = hc(cHo(wk, xc,k)), c =
1, · · · , n. Notice that xc,k is the pose of the camera
frame c at time kTs; this quantity is known and
constant for eye-to-hand cameras while it can be
computed from the robot direct kinematics for
eye-in-hand cameras.

The linearized output model can be written in the
form ζk = Ckwk + νk, with

Ck =
∂g(w)

∂w

∣∣∣∣
w=wk

=
[
∂g(w)
∂xo

O

]

w=ŵk

,

where O is a null matrix. In view of (9), the
computation of Ck requires the computation of
the Jacobian matrix of gc with respect to xo. In
the case of eye-in-hand cameras, it is

ġc = ḣc =
∂hc

∂xo
ẋo +

∂hc

∂xc
ẋc. (10)

On the other hand, the time derivative of hc can
be computed also according to (7) as a function of
cνo and cνc. The velocity screws can be expressed
in the form

cνo = cL(xo)ẋo,
cνc = cL(xc)ẋc

where cL(·) is a Jacobian matrix depending on
the particular choice of coordinates for the ori-
entation (Sciavicco and Siciliano, 2000). Hence,
comparing (7) with (10), the following noticeable
equality can be found

∂gc

∂xo
=

∂hc

∂xo
= Jo,c

cL(xo),

where the Jacobian Jo,c depends on the choice
of image features for the camera c while cL(xo)
depends on the parametrization used to represent
the orientation of the object frame. Obviously, the
same result holds for eye-to-hand cameras (in this
case ẋc = 0 and cνc = 0).

For the case of a single feature point, by virtue
of Eq. (1), the following equality holds

ḟ c =
∂hp,c

∂cp
cṗ =

∂hp,c

∂cp
Λ(cp− coo)cνo,c, (11)

hence Jo,c has the expression

Jo,c =
∂hp,c

∂cp
Λ(cp− coo).

The derivation of the recursive equations of
the EKF is standard and can be found, e.g.,
in (Lippiello and Villani, 2003).
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5. OCCLUSION PREDICTION

To the purpose of the occlusion prediction al-
gorithm, the robotic cell is seen as a collection
of objects which includes the workpieces (target
objects), the robot links and tools, as well as
all the possible obstacles that may occlude the
workpieces with respect to the cameras.

At each sampling time, the algorithm provides
the prediction of the positions on the camera
image planes of all the visible feature points of the
workpieces. The inputs of the algorithm are the
robot joint measurements and the prediction of
the pose of the workpieces provided by the EKF.

The occlusion prediction algorithm can be de-
composed in two parts: geometric modelling and
occlusion prediction.

The modelling part, described in Fig. 4, is aimed
at generating on-line a BSP tree, representing the
3D geometrical model of the cell (Paterson and
Yao, 1990). To this purpose, the CAD model of all
the objects of the cell are assumed to be known.
Moreover, each object has to be represented as a
set of surfaces with respect to a reference frame
fixed to the object itself. This type of represen-
tation can be generated once off-line to facilitate
the on-line BSP tree construction.

The first step of the modelling procedure is the
computation of the poses of all the robots links
and tools using the joint position measurements
and the direct kinematics. The second step is the
computation of the pose of all the objects of the
cell, estimated using the EKFs (one EKF for each
object) with respect to the frame of the camera
c. At this point, by using the camera perspective



Fig. 5. Dual-arm industrial robotic cell.

transformation, which depends on the intrinsic
camera parameters, it is possible to compute the
projections of all the objects of the cell (each seen
as a set of surfaces) on the image plane of all
the cameras. On the basis of these data, the BSP
tree structure representing the current geometric
configuration of the cell, as it is seen by all the
cameras, can be built.

The detection of the occluded parts of the work-
pieces with respect to a given camera can be
achieved by implementing a suitable recursive
visit of the corresponding BSP tree representa-
tion. This algorithm allows recognizing all the
feature points lying on parts of the workpieces
that are not occluded with respect to the camera.
Notice that the whole occlusion detection algo-
rithm exhibits a complexity O(N), where N is
the number of surfaces of the object (Paterson
and Yao, 1990).

Details about the BSP tree construction and visit
can be found in (Lippiello and Villani, 2003).

6. EXPERIMENT

An example of visual servoing task is considered
for the dual-arm industrial robotic cell available at
PRISMA Lab (see Fig. 5. A detailed description
of the cell can be found, e.g., in (Lippiello et
al., 2005a). The two robots of the cell (named
hereafter Robot 1 and Robot 2) execute indepen-
dent tasks. Robot 1 performs a grasping task of a
moving object localized using the visual system.
For this experiment, an eye-to-hand configuration
with two cameras is adopted. Robot 2 performs a
different task and during motion it may occlude
the object with respect to the cameras. The task
assigned to Robot 1 includes the following phases:

(1) Approaching – When the target object is
localized, starting from the HOME pose,
approach the grasp pose in two steps: first
go over the target object (at 5 cm height),
and then descend on it.

(2) Grasping – Grasp the object and check the
state of the gripper;

(3) Manipulating – Return to the HOME pose
carrying the object.
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Manipulating Releasing

Fig. 6. Gripper (solid) and estimated object
(dashed) trajectories.
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Fig. 7. Visible and selected object feature points
for Camera 1 (top) and Camera 2 (bottom).

(4) Releasing – Go to the FINAL pose and
release the object.

The trajectory of the robot gripper and the esti-
mated object position (the orientation is omitted
for brevity) are shown in Fig. 6. The Approaching
phase begins after about 4 sec and ends in about
11 sec. During this phase the robot recognizes the
target object and moves over it, initially keeping a
distance of about 5 cm along the vertical direction
(z component); then the robot begins the descent
to the grasping pose. Notice that the object is
moving during this phase while the gripper motion
in the horizontal plane (x and y components)
matches the object motion. When the grasping



pose has been reached, the Grasping phase begins
and ends after about 2.5 sec. During this time
interval the pneumatic gripper is closed and a
check of the state of the gripper is performed
using the magnetic sensors. At about 17.5 sec the
Manipulating phase begins and the robot return
to the HOME pose carrying the object. At about
40 sec the robot reaches the FINAL pose and
releases the object; then, it returns to HOME
(Releasing phase).

In Fig. 7 the state of the visible and selected
object feature points during the experiment are
represented; the total number of image features
(object corners) is 16. For each point, the bottom
line indicates when it is visible, the top line in-
dicates when it is selected for feature extraction.
The maximum number of visible image features,
for both cameras, is 32, but the selection algo-
rithm, at each sampling time, chooses a subset
of 11 optimal features to be extracted. The A-
area corresponds to the occlusion caused by the
gripper during the grasping, while the B-area
corresponds to the occlusion caused by Robot 1.
Notice that the motion of Robot 1 generates a
partial occlusion (only on point remains visible)
on the Camera 2 between the Approach and the
Grasping phase. This event does not affect the
accuracy of pose estimation and allows the suc-
cessful execution of the Grasping phase. Moreover,
during the Manipulating phase, Robot 1 occludes
completely the object with respect to Camera 1.
Again, the visual tracking algorithm maintains
high accuracy, even though the estimated pose is
not used after grasping (only the joint resolver
measurements are used in the Manipulating and
Releasing phases).

7. CONCLUSION

The problem of position-based visual servoing
in a multi-arm robotic cell equipped with a hy-
brid eye-in-hand/eye-to-hand multi-camera sys-
tem was considered in this paper. The estima-
tion of the pose of the workpieces, based on the
EKF, takes advantage of a computationally fast
algorithm of the objects self occlusions and of the
mutual occlusions caused by the robot links and
tools. Experiments on a cell with two industrial
robots performing a vision-guided grasping task
have been presented, for the case of two eye-to-
hand cameras. Further experiments with an hy-
brid eye-in-hand/eye-to-hand camera system are
in progress. Some preliminary results can be found
in (Lippiello et al., 2005a).
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