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Abstract. The dynamic control of industrial robots is one of the most important issues |
in today's advanced robotics research. This paper first illustrates a new control
algorithm and some relative schemes in order to guarantee perfect trajectory tracking
both in the task space, usually the Cartesian one, and in the joint space. Such
control allows joint servoing decoupling and proves so robust that practical implemen
tation is realizable without requiring on-line accurate evaluation of robot model
and load. The kinematic c¢ontrol, that is the coordinate transformation problem, is
then faced up and a very general solution algorithm which only makes use of direct

kinematics is derived.
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INTRODUCTION

The task of an industrial robot's controller con
$ists in the control of the robot's end effector
in such a way that it is able to follow a desired
motion trajectery, which is deseribed in a coordi
nate frame X which identifies the so-called Task
Oriented Space. The reference frame is usually a
Cartesian one and the state of the end effector
is described through a wrist position vector p and
a hand crientation unit vector triple s,a,n. The
mechanical structure is a series of rigid bodies
linked together by joints, on which generalized
forces act; these forces are generated by actua
tors and can be considered as control inputs,
whereas the relative position of the adjacent ri
gid bodies are the variables to be controlled so
that the mechanical structure matches a desired
configuration, Such displacements, i.e. joint va
riables, are usually taken as a generalized coordi
nate system @ which identifies the space in which
contrel actions are developed (Drive Oriented
Space). The direct relationship between the two
spaces (DOS -+ TOS) is

x = f(e@) (1)
where f is a continuous nonlinear function, whose
structure and parameters are known. It is unique,
while the inverse transformation

8 =f "(x) (2}

is not unique and, because of complexity of (1),
is hardly ever analitically known.

To control a robot means to be able to solve (2)
since, pgiven the goal trajectory in the task
Space, it is necessary to find the joint variable
values which represent the set points for the posi

nonlinear control systems; model reference

tion servos at each degree of freedom. The soluticn
of {2} is a very complicate problem and a general
solution algorithm does not exist indeed. In order
to overcome the drawback that £ (x) is not analiti
cally definable, one can consider the relationship
between velocities, that is

x = J(g)}d {3)

where J{ 8} is the Jacobian matrix, derived from
f{e}, which is almost everywhere invertible in case
of nonredundant kinematical structures. (3) can be
used to solve for the inverse velocity equation,
that is a relationship between position increments

se = 3 (e)ax . (4}

Both the above approaches, once the end effector
desired trajectory x(t) is known, allows the deter
mination of the corresponding values of generalized
variables 6{t) to be used as set points for the
Jjoint servos. In practice, however, the trajectory
is divided inte elementary paths and the coordinate
transformation is performed for a finite number of
via points (Paul, 1982); because of the computatio
nal burden required, the maximum sampling frequency
achievable is below 100 Hz. Since the joint posi
tion servos require set points which are updated
at a higher frequency, the controller is asked to
execute some kind of interpolation in the DOS.

Such a control, known as kinematic control, is very
often wused for industrial robots; in practice it
is a decoupled control of the degrees of freedom,
whose coordination acts at inverse kinematic level.
It does not account, indeed, for masses, inertias,
backlashes and elasticities which modify the ro
bot's behavior; the above technique, however, is
invalidated whenever higher performance, in terms
of operational speed and tracking accuracy, is re
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quired. In such cases one must consider the robot
dynamical model which, on the assumption of rigid
bodies, for an n-degree of freedom mechanical
structure is in the form of

M(t) = B(g)& + Cle, &) + E(8) (5)

where @ is the n-vector of joint variables, B{g}
is the generalized positive definite inertia mg
trix, C(e,§) is the vector taking into account cen
trifugal and Coriolis forces, E{s} is the vector
of gravitational forces, and M{t) is the vector
of generalized forces which act on joints.

On the other hand, with reference to the TOS, the
rabet ¢an also be described through the model (B;a
lestrino and co-workers, 1983a)

Fit) = JT'l(x)B(x)J"l(xncx(x,&mT(x)E(x) (6)

where F are the generalized forces applied te the
robot's end effector. The derivation of models (5)
and (6) is based on the assumption that rigid bo
dies are concerned; considering lumped elasticity
phenomena leads to double the number of state va
riables needed.

By the term robot dynamical control one ig re
ferred to those techniques which are used for the
control system synthesis on the basis of robot dy
namical equations. The main guidelines are: con
trol via inversion of dynamic equations, decoupled
dynamic control, and c¢ontrol via a reference mo
del, All those technigues have not been applied
so far in robot industry. The control via dynamic
inversion is based on the fact that, if the de
sired trajectory in terms of 8,8, 8 is available
as the result of a kinematic inversion procedure,
on the assumption of negligible disturbance for
ces, one can evaluate M(t) in (58), that is the ge
neralized forces to be applied to the joints in
order to obtain the trajectory itself., Since such
control technique is open loop, it generally re
quires a closed loop compensation which acts in
the neighberhood of superimposed nominal motions
(Whitney, 1969}, (Paul, 1972), (Markiewic, 1973),
(Luh and co-workers, 1980) and (Vukobratovich and
Stokic, 1982). On the other hand, with a decoupled
dynamic contrel, the typical drawbacks due to the
high nonlinear interaction degree are overcome by
recurring to suitable nonlinear position and velp_
city feedback control laws (Freund, 1977), {Lenti
ni and co-workers, 1981). Both the above tech
niques, however, require a continuous accurate
khowledge of the coefficients of the robot mathema
tical model; thus they involve a high computa
ticnal burden. The control technique which makes
use of a reference model is strictly part of the
adaptive control theory; it allows a decoupled con
trol for the degrees of freedom, without requiring
a precise knowledge of robot parameters {Dubowsky
and DesForges, 1979), (Horowitz and Tomizuka,
1983).

On the basis of the above remarks which are con
cerned with the control of industrial robots, ro
bust control laws will be formulated in the se
quel, and a general solution algorithm for the in
verse kinemati¢ problem will be lastly proposed
(Balestrino and co-workers, 1983b), (Balestrino

and co-workers, 1984), (Balestrino and co-workers,
1983c) and (Balestrino and c¢o-workers, 1985).

MODEL REFERENCE ADAPTIVE CONTROL

As it clearly emerges from what previously said,
an efficient control system for industrial robots
must have the following requirements:

i} easy implementation, without need of using on-
line an accurate robot mathematical model,

ii) a satisfactory tracking accuracy, independen
tly of lecad variations,

iii} chance of performing a deccupled contrel on
the deprees of freedom.

Among the several dynamic control technigues which
have been proposed for industrial robots, the model
reference adaptive control seems the best fitting
the above requirements., In order to avoid the on-
line solution of the linear reference model, an in
verse model technique can be adopted which, from
the knowledge of desired position, velocity and
acceleration, yields a term corresponding to a 1i
near feedforward action. The resulting control
scheme {Balestrino and co-workers, 1983a) is repor
ted in Fig. 1, where r,¥,¥ are vectors of opportune
dimensions which represent the reference position,
velocity and acceleration, y and y are the robot
input position and velocity vectors, and the vector
v is a linear combination of e and & via opportune
coefficients; F represents the robot input genera
lized forces, u_ is a linear combination of r,r,r,
and fipally K and K are specific compensating ac
tions, feedfoﬁrard ang feedback respectively.
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Fig. 1. General Adaptive Control Scheme.

Since for each kind of industrial robot the struc
tural properties concerning its mathematical model
{perfect model following conditions and positive
definiteness of generalized inertia matrix} always
hold, it is always possible to determine an adap
tive controller which ensures the trajectory trac
king with & = & = 0, even in case of high perfor
mance requirements, as far as operaticnal speed is
concerned (Dubowsky and Des Forges, 19879), {Bale
strino and co-workers, 1983a), The adaptation mech
anism must be chosen in order to guarantee the sta
bility of the control system; the resulting synthe
sis procedure makes use of hyperstability theory.
A very easy c¢ontrol law which satisfies such proper
ty is

. v .
Q(V.y.y.uM) S W(ax(lyihlyil)mzluml} (7)

where v = Dlea-Dzé with Dl and l‘.)2 diagonal matrices
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determined via Lyapunov equation solution (Bale
strine and co-workers, 1883). o and g are charac
teristic parameters of the adaptation mechanism
which can be determined through an estimate of the
maximum range of variation of robot parameters and
actions K _ and Ku. As v tends to zero, $ repre
sents a discontinuous forcing signal whose ampli
tude is modulated by the term oI + gL, and whose
frquency is infinite from a theoretical viewpeoint,
but high enough from a practical viewpoint. An adg
quate choice of feedforward and feedback actions
can act on the amplitude of such signal. As it
can be seen the adaptation mechanism is extremely
simple to implement. The adaptation, indeed, is
obtained not via parameter variations of a control
ler, determined by a self-tuning procedure, but
through a high gain in the neighborhood of v = 0
in a fixed parameter structure control system, On
the other hand, the nonlinear part of the adapta
tion mechanism tends to make the tracking error
dynamics for each degree of freedom evalve on
vi = 0; such dynamics is determined by the equa
tien

5 -1

e = D2 Dle 5 {8)
It must be outlined, moreover, that the input and
the output variables of the above scheme can re
present both the joint and the task space varia
bles; in other words the proposed technique can
be used to synthesize the control beth in the DOS
(Dubowsky and Des Ferges, 1979) and in the T0S (Ba
lestrino and co-workers, 1983a}. In the following
those two approaches are further illustrated.

DRIVE ORIENTED SPACE CONTROL

By means of the nonlinear feedforward actions pre
viously indicated, the scheme of Fig. 2 proves ade
quate in order to minimize the factors a and Bg,
which concur to determine the amplitude of the
discontinuous input. The task of the noenlinear
actions consists in counteracting gravity and iner
tia terms and decoupling, at the same time, the
degrees of freedom. The goal of the adaptive con
troller is to compensate for Coriolis terms and
counteract parameter variations and inaccurate me
deling effects. This solution is equivalent to de
fine a nominal control for the robot of the type

L B{68)8 + E(8) (9}
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Fig. 2. Adaptive Control Scheme in the DOS
with Nonlinear Compensation.
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and a compensation term, given by the adaptation
signal, which ensures the global asymptotic stabi
lity. The resulting contrel is decoupled for the
singular degrees of freedom and one controller sy
pervises all the joints; this is due both to the
presence of blocks B(9], E(8) and to the structure
jtself of the signal ¢ (the term v/[v| must be eva
luated).

On the other hand one can obtain a completely diffe
rent realization if a structure with independent
controllers for each degree of freedom is desired.
In this case it is necessary to set up K = K = 0
since, due to the diagonally dominant chagacte"} of
matrix B(8), the control signal becomes

$ = ysgnv (10)
where
v =uZl]e, [+16. |) +8Eu. . . (11)
imax imax Mimax

Since each component of the error vector v does
only depend on position and velocity of the corre
sponding joint, the decentralized, and decoupling
at the same time, structure of Fig. 3 is achieved.
A comparison with the previous solution bears evi
dence of the simplicity and modularity of the imple
mentation of the solution just presented. It must
be noted, however, that in this case the amplitude
of the discontinuous signal is constant since it
is obtained through maximization. Consequently the
choice between the two solutions must be made on
the basis of a compromise between implementation
simplicity and actuators cost.

Fig. 3. Decoupled Control Scheme in the DOS.

TASK ORIENTED SPACE CONTROL

On the basis of the robot model in the TOS (6}, the
control scheme of Fig. 4 c¢an be obtained. Alsc in
this case nonlinear actions have been introduced
in order to reduce the amplitude of the disconti
nuous input signal generated by the adaptation
mechanism. From a theoretical viewpoint this scheme
corresponds to the one of Fig. 2. The matrices
J ~{@) and J (@) are needed to transform linear ac
celerations into angular accelerations and end ef
fector forces inte joint moments respectively. The
matrix J(®&) and the vector f(8) have been intro
duced in order to reconstruct Cartesian position
and velocity measurements from the correspending
joint ones.

Setting K_ = Ku = 0 leads to the scheme of Fig. 5
which, evgn if in principle seems to correspond to
the one of Fig. 3, in reality deeply differs from
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Fig. 4. Adaptive Control Scheme in the TQS
with Nonlinear Compensation.

that one, In this case, indeed, the decoupled con
trol in terms of task variables cannot be realized
by means of a set of independent controllers,
since the decoupling in X corresponds to interac
tion in @. The most interesting features of such
a technique, however, are the following ones:

i) the computational burden, even if not negli
gible, refers to a control scheme which dees
not require any coordinate transformation pro
cedure,

ii} the only nonlinear functions to be evaluated

on-line with adequate accuracy are the direct
kinematics ones,

iii} the adaptive controller counteracts the ef
fects due to nonconsidered terms and parame
ter variations; as a consequence the matrix
B and the vector E to he determined on-line
can be evaluated even with low accuracy.
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Fig. 5. Adaptive Control Scheme in the TOS
without Compensation,

COORDINATE TRANSFORMATION

In order to provide the DOS robot controller with
the reference joint variables, a coordinate tran
sformation from the TOS to the DOS is needed (1n
verse kinematic problem}., Any coordinate transfor
mation technigue must be evaluated in terms of a
compromise between computation time and precision
requirements. So as it results frem literature
there are no general coordinate transformation al
gorithms; in other words the transformation soft
ware is specifically designed for each kinematical
structure.

A very general ccordinate transformation algorithm
is the one suggested in Fig. 6, If the system is
asymptotically stable it is evident that, resul
ting a null steady-state error, the vector @ corre

sponding to X can be determined on the basis of di
rect relationship f(e). If the controller is cap
able to ensure a null error for all trajectories
%(t) satisfying certain constraints, one can obtain

a(t) = £ M (x) = £ (5 = B(t) . {12)

In other words the dynamic system of Fig. & repre
sents a coordinate transformation algorithm if and
only if it is possible to determine a controller
which ensures that x(t) tends to %(t) (Balestrino
and co-workers, 1983},

Fig. 6. Coordinate Transformation General
Scheme.

For most industrial robots the position of the
wrist 1is independent of the orientation of the
hand; in this case the coordinate transformation
problem can be conveniently divided inte two sub
problems, one relative to the wrist position and
the other one to the hand orientation. To this end
let

x =f (8 ) x=J (& )eo (13)
PP P PP P P

"h"fh(" 18,) kh=.:hp(ep,eh)épuh(ep.eh)éh (14)
be the direct kinematic relations between TOS and
DOS positions and velocities, where subscripts p
and h refer to wrist and hand respectively. x re
presents the vector of Cartesian wrist coordin%tes
which depends on the angular displacements of the
preceding joints, whereas x is a six component vec
tor which is specified by any two of the three unit
vectors s,a,n which usually define the hand orient:a_
tion. By making use of the structural properties
of the above Jacobian matrices and recurring to a
control system appreach based on the direct methoed
of Lyapunov (Balestrine and co-workers, 1985), the
scheme of Fig. 7 is achieved; it ensures that

%im (8 -x})=0 &

+ P P P (15)

1i g - = ¥

M (2, -x)=0 W,
that is e = 0, e = 0 are stable equilibrium
points. Thfs means that, if the initial conditiens
on % and @ are so that e (0} = e (0) = 0 (so

asg 1tn is reasor?a’brie for a coord?nate transformation
algorihtm}, the tracking errors maintain identical
ly zero along the whole trajectory. It must be em
phasized that only the direct kinematic relatlons
must be evaluated on-line, and there is no problem
of nonuniqueness of the solution. The controllers
i and y_which ensure the convergence to zero of
errors ep and eh are respectively
i

PP & >0 (16)
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where A(A} and A(A) denote the maximum and the mi
nimum eigenvalue of matrixz A respectively,

Fig. 7. Coordinate Transformation Algorithm
for Wrist Position and Hand orienta
tion.

CONCLUSTIONS

In the previous sections robust contrel laws, both
in the Task Oriented Space and in the Drive Orien
ted Space, and c¢oordinate transformation proce
dures have been derived for continuous time
systems. Since such algerithms are to be implemen
ted on reduced complexity computer systems, time
discretization and quantization problems naturally
arise, The effects of the sampling period have
been evaluated by means of simulating the proposed
control laws for a three degree of freedom robet;
the tracking error along a trajectery 1line of
1.5 m with a maximum velocity of 1.5 m/s has been
shown to be limited to 5 mm in the worst case cor
responding to a sampling frequency of 100 Hz, and
to .5 mm with a sampling frequency of 1KHz. The
steady-state error has always resulted negligible.
Analogously, as far as the inverse kinematic pro
blem is concerned, simulation results for a six
degree of freedom robot have shown the effective
ness of the proposed scheme, giving a wrist posi
tion error less than 1 mm and a hand orientation
error less than .1°,
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