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Abstract. Redundant manipulators are currently receiving a considerable interest in
the robotics research community, The extra (redundant) degree-of-freedom's (DOF's) in
a structure which is redundant with respect to a given task can be used to obtain a
more versatile configuration in terms of the interactiom of the structure with the en-
vironment. Two approaches are commonly followed to control robotic manipulators; one
is to solve first the inverse kinematics and then to design a dynamic control in the
joint space, the other one is to design a dynamic control directly in the task space.
The former is adopted for end-effector motion control, whereas the latter is to be
preferred for end-effector tasks that involve constrained motion and active force con-
trol. The task space augmentation approach is an alternative strategy to the usual
methods based on the use of generalized inverses. The supporting idea is to augment
the direct kinematics by the inclusion of a number of functional constraints which

characterize the degree of dexterity required for the redundant structure.

In this

work it is shown how this method serves as an effective tool to contrel redundant ma-
nipulators, according to the above two approaches.
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nonlinear dynamic decoupling control.

INTRODUCTION

Kinematically redundant manipulators may offer 2
number of potential advantages over current
nonredundant designs. The human arm constitutes a
tangible model of the ability of a redundant arm
to execute more dexterous motions. The task space
formulation is usually adopted to develop motion
and force control of the end effector (Khatib,
1987), When a manipulator is redundant with re-
spect to a given task, the space of redundancy can
be conveniently exploited to meet a number of con-
straints on the solution to the inverse kinematic
problem (Hanafusa, Yoshikawa, and Makawura, 1981).
Typical goals are the avoidance of obstacles in
the workspace (Maciejewski and Klein, 1985}, me-
chanical joint limits {(Liegeois, 1977), kinematic
singularities (Makamura and Hanafusa, 19863
Wampler, 1986), or the minimization of actuator
joint forces (Vukobratovic and Kircanski, 1984),
manipulability measures - kinematic (Yoshikawa,
1985b) and dynamic (Yoshikawa, 1985a), dexterity
measures (Klein and Blaho, 1987), task compatibil-
ity indices (Chiu, 1987). Frevious approaches in
the literature have been aimed at solving redun-
dancy at kinematic level in terms of optimizing
quadratic type criteria along with the use of gen-
eralized inverses of the manipulator Jacobian
(Whitney, 1972). Essentially the joint velocity
solution vector is formed by twe terms, a locally
minimum norm term plus a term in the space of re-
dundancy (the null space of the Jacoblan matrix)
which is used for local optimization purposes
(Klein and Huang, 1983).
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The strategy proposed here instead 1s to augment
the task space vector in a systematic manner up to
span the whole space of redundancy eventually, so
as to include all above kinds of constraimts. A
requirement 1g to functionally characterize the
constraints in terms of the joint variables with
regpect to the same base frame associated with the
manipulator (51iciliano, 1986; Sciavicco and
Siciliano, 1987a, 1987b, 1988b, 1989%; Sciaviceo,
Sicilianc, and Chiacchio, 1988). Simillar approach-
es have been proposed by Baillieul (1985), Chang
(1987), and Egeland (1987).

In general, however, it is not possible to arbi-
trarily choose the constraints se¢ that the joint
displacements satisfy the constraints and depend
continuously on the trajectory assigned at the
end-effector (Baillieul and co-workers, 1987). To
avoid this drawback, a task-priority strategy has
been independently suggested by Maciejewski and
Klein (1985) and Makamura, Hanafusa, and Yoshikawa
(L987).

A possible solution to the control problem can be
achieved In two stages. First the end effector de-
sired motion is solved 1into joint motions by
adopting a recently proposed algorithm which is
based only on the computation of the direct (aug-
mented) kinematics (Siciliano, 1986). Once a so-
lution 1s obtained for the joint variables, the
controller can be designed directly in the joint
space as it would be in the case of a nonredundant
manipulator. If the constraints are not properly
formulated, however, the task-priority strategy
introduced above 1s recommendable. Priority is
given to the primary task - typically the
end-effector - and the secondary task - typically
the constraints - is satisfied only on condition
that it does not disturb the primary task.
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This approach, d4ndeed, is independent of the
end-effector dynamic behavior since it is based
purely on kinematic and statie properties which
are solved for in the first stage. So, if a task
involves combined motien and contact forces, the
dynamic control of end-effector motion and contact
forces is not achieved with this two-stage tech—
nique (Khatib, 1987), Therefore, a different ap-
proach is derived accordingly which allows for the
design of rthe controller directly in the task
space, with the inherent advantage of dynamically
controlling the end-effector motion and contact
forces along with the additiomal task space vari-
ables. In particular a nonlinear decoupling con-
trol strategy can be pursued which decouples the
manipulator dynamics by compensating for the
available estimates of the nonlinear terms.

MANIPULATOR MODELING

The kinematic and dynemic models of a manipulator
are recalled in the following in order to provide
the basiec definitions and the nomenclature
throughout the paper.

Kinematics

The direct kinematic equation describes the map-
ping of the (n x 1) joint vector q into the (m x
1) end-effector task vector x_ as (Denavit and
Hartenberg, 1955) €

x, = £ (q) (1)
where f 13 a continuous nonlinear vector func-
tion, whose structure and parameters are known.

The kinematic equation (1)} can be differentiated
with respect to time, ylelding the mapping between
the joint velocity vector q and the end-effector
task velocity vector x _, through the (m x n)
Jacoblan matrix Je(q) - e/aq, i.e.

x, = J, (d)q. {2)
For a kinematically redundant manipulator it is m
< n. Redundaney is usually resolved by optimizing
quadratic type criteria along with the use of gen-
eralized inverses of the Jacobian matrix J
(Whitney, 1972). It car be shown that a genera
solution to (2) is given by

4= 3l @%, + 1 ~ 3H@3 @1, 3

where g7 is  the (n x m) Moore-Penrose
p@eudofig?erse matrix of Je defined as é =
qe(JeJe) » I is the (n x n) identity matrix, and
q, 15 an (n x 1) arbitrary joint veleelty vector.
It can be noticed that the solution (3) composes
of the least-square solution term of minimum norm
plus a homogeneous solutiop term created by the
projection operator (I - J'J ) which selects the
components of & in the nuflespace of the mapping
J_ (Klein and ﬁhang, 1983), Hence, the vector {

can be used to optimize some additional eriterion
such as obstacle avoidance (Maciejewski and Klein,
1985), iimited joint range (Liegeois, 1977), actu—
ator joint energy (Vukobratovic and Kircanski,
1984), kinematic singularity robustness (Nakamura
and Hanafusa, 1986; Wampler, 1986), manipulability
measures — kinematic (Yoshikawa, 1985b) and dynam—
ic (Yoshikawa, 1985a) -, dexterity measures (Klein
and Blaho, 1987), task compatibility indices
(Chiu, 1987), to mention only the most popular us-
es.

ngamics

The manipulator equations of motion in the joint
space are given by (Luh, Walker, and Paul, 1980)

H(q)q + C{q,4)q + g(q) = (4)

where H(q) is the (n x n) kinetic energy matrix,
C(g,q)q is the (n x 1) vector of Coriolis and cen—
trifugal forces, g(q) is (n x 1} vector of gravi-
tational forces, and tis the (n x 1) vector of
input forces, all in the joint space.

The static equation of the manipulator, derived
from (2) along with the use of the principle of
virtual work, relates the generalized forces be-
tween the joint space and the task space. It de-
scribes the mapping of the (m x 1) end-effector
task force vector y into the (n x 1) joint force
vector T as (Whitney, 1972)

T
=T (Y. (5)

If the manipulator is nonredundant (m = n), by
plugging (5) in (4), the end-effector equations of
motion in the task space can be writtem in the
form (Khatib, 1987)

I a3 + e, D4 + gl@)] = ¥ (6)

and then, in terms of the end-effector task vector
X,» as

Ax )%, + Hxg.%,) + px) =y 1)

where A{x } iz the (n x n) kinetic energy matrix,
u(x_,%x ) %s the (n x 1) vector of Coriolis and
cengri%ugal forces, and p(x ) is the (n x 1) vee-
tor of gravitational fordes, all in the task
space.

If the manipulator is redundant (m < n}, the dy=~
namic behavior of the system is not entirely de-
scribed by a dynamic model formally identical to
(7) and A(xe) represents only a pseudo-kinetic en-
ergy matrix. Khatib (1987) showed that (7) can be
rewritten as

Te@H@T + €@, & + g(@] = ¥ (8)

where
= -1 T -1 T, ,.~1
Jo (@) = 5 {a)J (q) (3, (a0 "{q)J_(q)] (%)

is actually a generalized inverse of the Jacobian
matrix J_ corresponding to the solution that mini-
mizes the manipulator's instantanecus kinetic en-
ergy. It 1s quite straightforward to recognize
that the mapping (5), which is the dual of (2),
can be modified into

T= @y + 11 - L@@l (10)

where T 1s an arbitrary joint force vector.

TASK SPACE AUGMENTATION

As previously anticipated, a redundant manipulator
offers the possibility of setting a number of con-
straints on its motion, which make the structure
more versatile. The most widely adopted method to
control a redundant manipulator 1s based on the
use of pgeneralized inverses, see eqs. (3} and
(10); the constraints are incorporated into the
homogeneous solution term.

The task augmentation approach is quite different
from the generalized inverse methods. The main i-
dea is to impose a number of functional differen-
tiable constraints in terms of the joint vector,
expressed in the same base frame associated with
the manipulator kinematic equation (1), as
(Siciliano, 1986)

x, = £ (q) (11)
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where £ is an (r x 1) vector, with r < {n - m).
Therefofe, the augmented kinematic equation re-
sults

X £ (q)
x=| ¢|=1° = £(q) {12)
x Ec(q)

whose joint vector solution ¢ places the
end-effector at the desired location X, as well as
it meets the required constraints, specified by
x . Differentiating both sides of (12) provides
tfie differential kinematic mapping of the joint
velocity wvector into the augmented task velocity
vector, 1.e.

x = J(q)q (13)
where the matrix

J (@)
J(q) = (14)
SCY

with J {q) = 3f [dq, is called the augmented
3
Jacobian matrix,

CONTROL IN THE JOINT SPACE

If it is desired to control the end-effector mo-
tion of a redundant manipulator in the joint
space, the inverse kinematic problem has to be
solved firsr, In other words, it is necessary to
transform the end-effector desired task motion x
intoc the corresponding joint motion g, which con-
stitutes the set of reference variables for the
actual dynamic control to be designed in the joint
space.

If a generalized inverse method is adopted, the
inverse kinematic problem is solved in terms of
the joint velocity vector q as in (3), which is
then integrated over time to provide q.

4 different approach to the inverse kinematic
problem is given by the closed-loop scheme based
on the feedback law

+ T
q= Je(q)Ke[xed - £,@] (15)

whose convergence properties and choice of the
positive definite feedback gain matrix K, are de-
scribed in detail by Siciliano (1986). 1t 1s easy
to recognize that eq. {15), which involves the
sole computation of direct kinematic functions,
yields a general computational scheme to solve the
inverse kinematic problem for any manipulator
structure, This solution is particularly suitable
to the augmented task space approach described in
the previcus section, since it seems natural to
replace the end-effector task vector amd Jacobian
defined in (1) and (2) with the augmented task
vector and Jacobian defined in (12-14), respec-
tively, i.e.

a = I @Klx, - £(@)] (16)

where K = diag (K K ), with K positive definite
e ¢ e
as well.

This approach has been applied to the case of dex-
terity measure constraints (Seiavicco and
Sieciliane, 1987b) and to the case of obstacle
and/or limited joint range constraints (Sciaviece
and Siciliano, 1988b). However, as evidenced in
the particular case study discussed by Sciavicco,
Siciliano and Chiacchio (1988), it is necessary to
augment the task space in such a way that the aug-
mented Jacobian matrix J{(g) in (l4) presents at
mest che same singularities as the end-effector
Jacobian matrix Je(q) in (2) (Baillieul, 1985). If

J{q) is not guaranteed to have full rank (m + r)
for all possible configurations q's (except the
end-effector kinematic singularities), the
tagsk-priority strategy {(Maciejewski and Klein,
1985; MNakamura, Hanafusa, and Yoshikawa, 1987) 1is
advisable, as discusses above and illustrated in
details by Sciavicco and Siciliano (1989). With
reference to the inverse kinematiec solution (16)
for the augmented task case, the Jacobian matrix
to use is modified inte (Sciavicco and Siciliano,
1989)

. I (@)
J(gy = | | (17a)
ERCH
I =J(1I- 3% ) 7m)
[ =4 e e

where only the components of the rows of J into
the null space of the mapping J, are selécted.
This guarantees that the end-effector task is cor-
rectly executed, while the constraint task is per-
formed only along those directions in the null
space of the end-effector Jacobian.

Ac this point, it can be recognized that the
closed-loop scheme based on eq. {(16) ylelds a so-
lution for the joint displacements q as well as
for the joint velocities g, This is seen to be
sufficient if simple linear positional PD contrel-
lers are to be designed for each jeint of the ro-
bot based on the assumption that the joints are
decoupled and linear; this is often the case for
conventional industrial robot controllers. More
effectively, a computed-torque control scheme can
be designed {(Luh, Walker, and Paul, 1980), which
utilizes nonlinear feedback to decouple the manip-
ulator by using the arm dynamic model (4) and com-
pensating, on-line, for the dynamic and gravita-
tional forces that vary as the arm configuration
changes, The control torque v im (4) is computed
as

v = A(q)u + C(q,3)q + g(a) (18a)
u= ‘:-l'd + Kv(‘id - ﬁ) + Kp(qd - Cl) (].Bb)

where K_ and K_ are standard proportional and de-
rivativ® Feedbdck gain matrices and the caret in-
dicates that the estimated arm dynamic model is
used in the computation. The wvectors 94 4 and 94
which constitute the desired references %or theé
decoupled linear joint controllers in (18b) are to
be provided by an inverse kinematic scheme. There~
fore, it is necessary to extend the "first"-order
scheme based on eg. (l6) to a ‘'second"-order
scheme which generates the joint acceleration vec-
tor q, too, If a pseudoinverse of the Jacobian J
in (fi), or the Jacobian 5 in (17), is used in
lieu of the transpose, a solution can be obtained
quite in a straightforward manner from the second
order scheme proposed by Sciaviceo and Sicilianc
(1988a) for nonredundant manipulators. Preliminary
results have shown that even the transpose can be
utilized, but more research work needs to be done.

CONTROL IN THE TASX SPACE

If the assigned task involves combined motion and
contact forces of the end-effector, 1t is neces-
sary to control the manipulater directly in the
task space, If the manipulator is nonredundant,
the dynamic model of the end-effector (7) can be
considered and different control strategies can be
developed. According to the nonlinear dynamic de-
coupling approach that lead to the computed-torque
conttol method in (18), the control y in {7) can
be selected as (Khatib, 1987)

Y = Ax)v 4 0(x,x) + p(x) (19)
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where A(x), bx,x), and p(x) represent the esci-
mates of A(x), p{x,x), and p{x) respectively and v
is the new command vector of the decoupled
end-effector. Various control structures can be
selected for v, depending on the nature of the
task specified for the end-effector (pure motion,
constrained motion involving force control and so
forth). An adaptive control for nonredundant ma-
nipulators in the task space was proposed by
Balestrino, De Maria, and Sciaviceo (1983).

On the other hand, 1f the manipulator is redun-
dant, one should consider the dynamic model of the
unconstrained end-effector (8), which is based on
the generalized inverse matrix in (9). A nonlinear
dynamic decoupling control can be designed in the
same formal manner as in (19). The resulting joint
force vector is given by (10), where thq vector 1

plays the same role as the vector q. in (3

(Khatib, 1987). °

A different strategy can be pursued according to
the augmented task space formulation propesed in a
previous section. Differentiating eq. (13) with
respect to time yields

x = J{qq + Jg)d (20)

with J defined in (14). If the matrix J(q) has
full rank (m + r), it is possible to solve (20)
for the joint acceleration vector q as

1= E - Joq (21)

and then plug (21) into the joint space dynamic
model (4}, i.e.

H(q)J+(q)[§ - J(q)q] + ¢(q,9)q + g(q) = T.(22)

According to the nonlinear dynamic decoupling con-
trol strategy adopted above, the control T can be
thought of as

1= W@ @ - F@d] + @ dd + Bl 23)

where v is chosen as in (Khatib, 1987). Parallel
regearch efforts have been produced by Egeland
(1987) who designed an augmented task space con-
troller for a macro-micro robot system, and by
Hsu, Hauser, and Sastry (1988) who achieved track-
ing of a given end-effector trajectory and control
of the joint velocities in the null space of the
end-effector Jacobian.

On the other hand, if the matrix J(q) in (lﬁ)Ihas
not full rank (m + r}, a generalized inverse J= of
J can be adopted. It can be proved that a computa=
tionally simple expression of J" is given by

J*

=1 I =I
= [(1 - J a1, 3] (24)
with J given in (17b), as found by Maciejewski
and Kfein (1985) and Nakamura, Hanafusa, and
Yoshikawa (1987). In particular, if the
end-effector Jacoblan J is free of singularities,
J¥ can be used in lieuof J . If J 1is also free
of singularities - that is fo say that J has full
rank, when the constraints are well-posed - jc can

be used in lieu of jc'

CONCLUSIONS

The problem of controlling a redundant manipulator
has been considered inm this work in the context of
an augmented task space formulation. Namely, the
end-effector task vector is suitably augmented by
a set of functional task constraints which span at
most the space of redundaney available, If the
end-effector motion is in free space, a two-stage
strategy can be adopted; first solve for the im-
verseé augmented kinematics, then design a dynamic

control in the joint space. On the other hand, if
the end-effector motion is constrained by the en-
vironment, the joint accelerations are solved from
the augmented kinematic equation and plugged into
the manipulator dynamie model, leading to the de-
sign of a dynamic control in the task space. In an
augmented task space setting, it has been argued
how the addition of functional congtraints may be
critical, in which case a task-priority strategy
has been adopted as an effective means to guaran-
tee that at least the end-~effector task is accom—
plished. The nonlinear dynamic decoupling strategy
has been used for the design of the dynamic con-
trols, vespectively in the joint space and in the
task space. Issues like dynamic parameter adapta-
tion and robustness to uncertainties and/or
noncompensated dynamic terms (Slotine and Ld,
1987) have not been addressed here, and constitute
then a guarantee for further research work.
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