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Abstract. A force/position local control scheme of the PID type with gravity com-
pensation is shown to guarantee asymptotic stability for robot manipulators in con-
tact with an elastically compliant environment. The scheme is built upon the foun-
dation of the parallel control strategy which structurally provides dominance of the
force control target over the position one. Stability is proved by resorting to an

energy-based Lyapunov argument.
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INTRODUCTION

It is well known that, in order to make a robot ma-
nipulator capable of interacting with the environ-
ment, the forces arising from the contact must be
properly considered. As a matter of fact, when the
end effector of a position-controlled robot manip-
ulator comes into contact with the environment,
the experienced forces are treated as disturbances
by the controller leading to instability phenom-
ena. It is then opportune to design robot control
strategies that can handle the interaction effects.

A survey of major force control techniques can be
found in (Whitney, 1987). One can distinguish be-
tween techniques that assign a dynamic relation-
ship between force and position variables without
explicitly using force sensor feedback information,
e.g. impedance control (Hogan, 1985; Kazerooni,
Houpt, and Sheridan, 1986), and techniques that
provide the robot with force sensor capabilities
and suitably embed the force measurements into
the control scheme. On the other hand, a typi-
cal manipulation task specifies both motion and
force at the end effector. It becomes then neces-
gary to manage the natural conflict between the
force control loop and the position control loop.

The most widely adopted approach to force/po-
sition control of robot manipulators is the hybrid
control (Raibert and Craig, 1981; Khatib, 1987;
Yoshikawa, 1987; De Luca, Manes and Nicold
1988). Distinct force and position control loops
are designed and selection matrices are introduced
to suitably switch from one loop to the other along
each task direction. Therefore, this technique well
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matches the framework of natural vs. artificial
constraints introduced by Mason (1981). One in-
trinsic drawback of the approach is that the selec-
tion mechanism is based on the available model
of the task; thus lack of knowledge about the en-
vironment may cause improper operation of the
system. A recent study about stability of hybrid
control is reported in (Wen and Murphy, 1990).

In the framework of force/position control tech-
niques, a novel control strategy was proposed,
namely the parallel control (Chiaverini and Scia-
vicco, 1988), which differs from the conventional
hybrid control schemes in that it is based on feed-
ing back both position and force errors along each
task space direction. The key feature is that the
force loop prevails over the position loop to man-
age also those cases when unplanned contacts with
the environment are experienced; this is accom-
plished by means of an integral action on the force
error. A realisation of the parallel control in the
case of perfect nonlinear compensation and dy-
namic decoupling has been discussed in (Chiave-
rini, 1990); however, extensive computation is re-
quired to perform on-line evaluation of compen-
sating torques.

In this paper, we investigate the stability proper-
ties of a control scheme adopting the above strat-
egy which is based on simple position PD control
+ gravity compensation + desired force feedfor-
ward + force PI control; remarkably, full model
dynamic compensation is not required, thus light-
ening the computational burden of the control al-
gorithm. For the purpose of the present work, we
restrict our analysis to the case of an elastic con-
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tact (sensor and environment). Inspired by the
results on stability of PID position control (Ari-
moto and Miyasaki, 1984), an energy-based Lya-
punov argument is used to show that, for given
force and position set points, the force error is
asymptotically driven to sero at the expense of a
steady-state position error.

MODEL OF A ROBOT
MANIPULATOR IN CONTACT
WITH THE ENVIRONMENT

We consider a robot manipulator formed by an
open kinematic chain of n rigid links connected
by actuated joints. When the manipulator oper-
ates in free space, its dynamic model is usually
expressed in the joint space and attains the con-
ventional Lagrangian form

Bo(a)d+Ce(a,d)a+gel@) =t (1)
where q is the (n x 1) vector of joint variables, Bg
is the (n x n) symmetric positive definite inertia
matrix, Cqq is the (n X 1) vector of Coriolis and
centrifugal generalised forces, gq is the (n x 1)
vector of gravity generalized forces, and t is the
(nx 1) vector of joint actuating generalized forces.

On the other hand, when the manipulator in-
teracts with the environment, it is more conve-
nient to describe its dynamics in the operational
space (Khatib, 1980) that is the space where ma-
nipulation tasks are naturally specified. The di-
mension of this space (m) is usually less or equal
than the dimension of the joint space (n). The
dynamic model in the operational space can be
written as

B(x)x + C(x,%)x +g(x) =u—f (2)

where x is the (m x 1) vector of end-effector lo-
cation, B, Cx, g, u are the counterparts of By,
Cq4q, gq, t respectively, and f is the (mx 1) vec-
tor of contact generalized forces exerted by the
manipulator on the environment; all operational
space quantities are expressed in a common ref-
erence frame. When m = n, the vector of oper-
ational variables constitutes a set of Lagrangian
generalized coordinates and B assumes the mean-
ing of a true inertia matrix. Instead, in the case of
kinematically redundant manipulators (m < n),
B is only a pseudo inertia matrix (Khatib, 1987).
Focusing on the case of non-redundant manipu-
lators (m = n), the relationship between the two
spaces is established through the following equa-
tions:

B=J"TB,J! (3a)

Cx=J"TCqq - Big (3b)

g=J"Tgq (3¢)

u=J"T¢ ) (3d)
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where J is the (n X n) manipulator Jacobian ma- ..

trix that is supposed to be non-singular.

A notable property of the dynamic model in the  :

joint space is that the matrix

8q(9,9) = Bg(q) - 2Cq(q,q) (4)

is skew-symmetric (Takegaki and Arimoto, 198 1).
On the basis of the relations (3), it can be shown
that the dynamic model in the operational space
enjoys the same property; that is, the matrix

S(x,%) = B(x) - 2C(x,x) (5)

is skew-symmetric. This property could have been
inferred by observing that in the case m = n, we
have a set of Lagrangian generalized coordinates
in the operational space, like in the joint space.
Equation (5) will be useful for the stability proof
in the following section.

For the purpose of the present work we restrict
our attention to the case m = n = 3, i.e. we study
only translational motion and force components.

Accurate modelling of the contact between the
manipulator and the environment is usually dif-
ficult to obtain in analytic form, due to the com-
plexity of the physical phenomena involved dur-
ing the interaction. It is then reasonable to resort
to a simple but significant model, relying on the
robustness of the control system in order to ab-
sorb the effects of inaccurate modelling. Following
these guidelines, we consider the case of an en-
vironment constituted by a rigid, frictionless and
elastically compliant plane. The choice of a planar
surface is motivated by noticing that it is locally
a good approximation to surfaces of regular cur-
vature. The rigidity of the contact plane allows to
neglect the effects of local deformation at the con-
tact. The total elasticity, due to end-effector force
sensor and environment, is accounted through the
compliance of the plane. Friction effects are ne-
glected within the operational range of interest.

With the above assumptions, the model of the
contact force considered takes on the simple form

f=K(x-x) (6)

where x is the position of the contact point, x, is
a point of the plane at rest, and K is a (3 x 3) con-
stant symmetric stiffness matriz (Lonéaric, 1987)
that establishes a linear mapping between (x—xo)
and f; notice that eq. (6) holds only when the ma-
nipulator is in contact with the environment and
all quantities are expressed in the common refer-
ence frame. Moreover we observe that:
® The contact force is orthogonal to the plane for
any vector (x — Xo); then, a base of R(K) —
R(K) denotes the range space of matrix K—
is the unit vector n orthogonal to the Plane,
and rank(K) =1 < 3.
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* All vectors (x —x) lying on the plane do not
contribute to the contact force; then, a base of
N(K) —N(K) denotes the null space of ma-
trix K— is a pair of linearly independent unit
vectors (p;, p2) tangential to the plane.

¢ In force of the symmetry of K, R(K) =
R(KT), and a convenient choice for (p,, P2)
is such that the columns of the matrix

R=(py p; n) (7

form a set of orthonormal vectors constituting
a base of RS.

According to the above remarks, matrix K can be
decomposed as

K =R diag(0,0,k) RT = knnT (8)

where R, defined in (7), is the rotation matrix
from the frame attached to the plane to the ref-
erence frame; then k is the stiffness coeflicient,
characterizing the contact, that acts along the di-
rection orthogonal to the plane.

PARALLEL CONTROL

We intend to derive a force/position controller
in the framework of the parallel control approach
(Chiaverini and Sciavicco, 1988). The key feature
is to have a force control loop working in parallel
to a position control loop along each operational
space direction. The logical conflict between the
two loops is managed by imposing dominance of
the force control action over the position one. The
potential offered by this technique compared to
conventional controllers also using force feedback
sensory information is discussed in full in (Chia-
verini and Sciavicco, 1990).

With reference to operational space model (2), we
have to synthesize the vector of actuating forces
u. In the previous work (Chiaverini and Scia-
vicco, 1988) full dynamic model compensation is
performed by the law

u=BE)M;'E+Cx,x)x+8x) +T  (9)

where the upper hat denotes the available esti-
mates of the dynamic terms, My = mgl is a
desired mass matrix —I is the (8 x 3) identity
matrix— and i is a new force input. Plug-
ging control (9) into model (2) gives, under the
assumption of perfect compensation (ﬁ = B,
é=cl§=sl?=f}

Mgx = i

that is a linear decoupled inertial system. Let
then x; and f; respectively denote the assigned

(10)
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position and force set points; Ax = x4 — x and
Af = f4—f are the position and force errors. The
new force input is designed as

t
i=-Kpx+KpAx+KrAf+K; f Afdr, (11)
0

where Kp, Kp, Kr, K; are suitable gain ma-
trices that are to be chosen in order to make
the system described by egs. (10,11,8) asymp-
totically stable. These matrices are taken as
Kp = kpl, Kp = kpl, Kp = krl, K; = k1
with kp,kp,kr,kr > 0 to preserve a decoupled
and isotropic behaviour of the system (Chiaverini,
1990). Control (11) is formed by a PD action on
the position variables and of a PI action on the
force variables so as to realize the above required
force dominance. It is important to emphasize
that no exact information about stiffness matrix
K is required by the control, but only a rough es-
timate of k is used to suitably tune the feedback
gains,

Since the task is prescribed in terms of a posi-
tion set point x4 and of a force set point f4, there
is obviously no guarantee that the simultaneous
achievement of both of them be compatible with
the task geometry. In other words, the presence of
the manipulator and of the environment imposes
constraints between position and force variables,
and thus there is no control scheme that can take
the system towards given set points if those vio-
late the physical constraints.

As emphasized in (Chiaverini and Sciavicco, 1988,
1990), the force dominance requirement met by
control (11) leads system (10,6) to an equilibrium
state characterized by a null force error and a con-
stant position error. Further clarification is in or-
der and is provided below. :

Looking at the properties of elastic contact
model (6), the only possibility of obtaining a null
force error is to assign a set point f; € R(K). On
the other hand, this is consistent with the fact
that the considered environment can generate re-
action forces only along the direction of n. If no
information about the geometry of the environ-
ment is available, i.e. n is unknown, the null vector
can be assigned for f; that is anyhow in the range
space of any matrix K. Thus, in the remainder,
we assume f; € R(K).

Adopting similar reasoning about the contact
model, we can recognize that there is no prob-
lem to obtain a null position error in the plane of
(P1, P2), while the component of x along n has to
accomodate the force requirement specified by f;.
Thus, x4 can be freely reached only in N (K).

It can be shown that the resulting equilibrium
state for system (10,11,6) is

Xeo = K7 (fa+ Exo) + (I- K~ K)xq (12)






Fig. 1. Construction of the equilibrium state in
a two-dimensional case.

foo = K(xoo —X0) =14 (13)
which merely reflects the above considerations.
The matrix K~ indicates a generalized inverse of
matrix K which, in view of expression (8), can be
written in the simple form

K~ =R diag(0,0,1/k) RT = (1/k)unT. (14)
For further use, we remark that the products

KK~ = K"K = R diag(0,0,1) RT = onT
(15)
do not affect vector components in R(K) while
cut off vector components outside R (K).

An example of construction of the equilibrium
state in a two-dimensional case is illustrated in
Figure 1.

STABILITY OF A NEW SCHEME

The parallel control scheme based on laws (9,11)
achieves given contact force and position set
points even in the case of unplanned contact with
the environment. Our goal is to design a robust
control law that guarantees the same steady-state
performance without requiring complete knowl
edge of manipulator dynamic model; this dras-
tically reduces the computational burden of the
control algorithm and then is more suitable for
real-time implementation.

We show below that system (2) under a control
law based on simple position PD control + grav-
ity compensation + desired force feedforward +
force PI control converges asymptotically to the
same equilibrium state (12,13) as for the system
under control (9,11).

(
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u=~Kpx + KpAx + g(x)

t
+f4+KpAf+K;fAfdr.
0

where Kp, Kp, K5, K; have the same structure
as in law (11) and f; € R(K).
Let define

e=Xmn—X (17)

which, by virtue of (12,6), can be also written as
e=(I-K K)Ax+K~Af = Ax+K;'d (18)
where

d=KpK™ (fs + K(xo — x4)) (19)

is a constant vector. For later use, notice that

K-Ke = K~ Af (20)
From (17) it is
(21)

Further, let define
t
se=RT (/ K~ Afdr — K;‘K-d) (22)
0

that is a vector expressed in the frame attached to
the contact plane. Being f; € R(K), vector (22)
is of the kind

8=(0 0 s,)T. (23)
Deriving (22) with respect to time and a.ccou:ft.ing
for (20,23), it turns out

$p =nTe. (24)

At this point, let consider the (7 x 1) augmented
state vector

s=(x e s,)7. (25)
The augmented system described by eqs. (2,21,24)
under control (16) can be written in the standard
compact form:

i="Fz (26)

where

F= (27)

0
oT nT 0

~B~}(C+kpl) B~!(kpI+ KpknnT) k_rkB‘ln)
-1 o '
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with K = 1+ kp; O denotes the (3 x 3) null
matrix and O the (3 x 1) null vector. Notice that
some handy reductions, using the structural prop-
erties of K in eqs. (7,8,15) and the definition of
85 in (23), have been performed to derive (27).
The main result of the work can be stated as:

Theorem. If the following assumption holds:

Z‘- 9B

i=]

<P < oo, (28)

then there exists a choice of feedback gains kp,
kp, kr, k that makes the origin of the space state
for system (26,27) asymptotically stable. .
Proof. We consider the energy-based positive def-
inite Lyapunov function candidate

V= %-Tps (29)
where
B -rB 0
P=| —pB kpl+KpknnT kikn |. (30)
oT kiknT pkrk

Then, we compute the time derivative of V along
the trajectories of system (26,27), i.e.

(PF + %P) z.

The core of the quadratic form in (31) can be
evaluated in two steps:

V=37 (31)

—(C +kpl) +pB
PF = | p(C + kpl) - (kpI+ kpknnT)
—k;knT

(32)

kpl+ k’,.knn'r krkn
—p(kpI + Kk nn®) + k;knnT  —pkrkn
pkrkn 0

. (1/2)B  —(o/2)B 0
P=|-(/2B o0 o (33)
oT oT (i}

Then, combining (32,33) and extracting the sym-
metric part gives

~ V =%xT(~kpl+pB)x + peT (kpI+ C - B)x
+ eT(k;knnT — p(kpI + kpknnT))e
(34)
in which we have taken advantage of the skew-
symmetry property of (5). Next, we observe that

187

from the Lagrangian operatmnal space model one
can derive the relation

(C-B)x= _13("B%)

2 ox 0 )

and then, manipulating the term containing (35)
and exploiting (24), function (34) becomes

V = —xT (kpl — pB)x + pkpeTx
3
_ Py OB\ T
2x (gc.az‘)x pkpe’e

— k(oK — kr)32. (36)

By virtue of assumption (28) and of the inequality
Anl<B < AN, (37)
where ),, and Ajs respectively denote the mini-

mum and maximum eigenvalue of B, we have
eT) ((kp —pinm — p®/2)1

—(pkp/2)1

—(pkp/2)T (X _ 1y 0 1 va2
pkpl e k(PkF kf)sn'

On the other hand, function candidate (29), ac-
counting for (30) and (24), can be written as

(38)

1. o, . 1
=3 TBx — px"Be + Ekpe're

. (59)
+ SKekil + kiksndn + gk,ksi,
or, in compact form,
_ 1 . T T B —pB i
V=3(x" e )(—pB kel ) \e
k . pkr ki Sn
e (8 ) (3)-o

Expressions (38,40) reveal that, for p sufficiently
small, there exists a choice of kp, kp, kr, ks that
makea V>0andV <0. In particular, we have
V <o, Vx # 0,e # 0,3, # O while V = 0 im-
plies x = 0, e = 0, §, = 0. Therefore, s, is a
constant and X = O; from the first three equa-
tions of (26,27) we get krks,B~'n = 0 and then
s, = 0, too.
In sum, the only equilibrium state satisfying V =
0isx = (0T 0T 0)T. Hence, due to LaSalle’s the-
orem (La Salle, 1960), this state is asymptotically
stable.

Q.E.D.
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DISCUSSION

In order to gain insight in the above stability
proof, we remark the following issues:

o Satisfaction of assumption (28) is not criti-
cal since it is reasonable to assume that both
Ax and d are bounded and derivatives of the
terms of B are bounded too.

It can be recognized that the set of conditions
to be satisfied by kp, kp, kr, ks are:

kp — pAn — p®/2 > pkd [4kp  (41)
A1+ kr) >kt (42)
kp > p?2%,. (43)

Remarkably p is a free parameter that is not
used in control law (16). About the gains, no-
tice that: From (41) and (43) it is convenient
to choose large values of kp. From (41) a large
value of kp is needed. From (42) a large value
of kr and a small value of k; are required.

We stress that stiffness matrix K is not used
at all in control law (16). However, the choice
of the feedback gains is indirectly influenced
by k via the bound in (28); in any case, a
conservative choice can be made.
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