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Abstract. Dynamic modelling of gear-driven rigid robot manipulators is discussed in this work.
The dynamic effects of the motion of the motors driving the joints through gears are analyzed. A
complete model is derived using the Lagrange formulation in which the contributions of rotor inertias
and rotor-link interactions are evidenced. The resulting equations of motion are shown to be linear
in terms of a suitable set of dynamic parameters for the augmented links (links with motors). These
are utilized for model derivation using the recursive Newton-Euler formulation. The example of an

elbow manipulator is developed.
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1. INTRODUCTION

Most industrial robot manipulators are driven by
motors through gears with high (from tens to a
few hundred) reduction ratios. The use of gears
permits an optimization of manipulator static and
dynamic performance since the motors can be lo-
cated on the links preceding the actuated joints
along the kinematic chain. Further, typical robot
applications require motions with large torques
and relatively small velocities, and thus the use of
gears allows joint actuation by motors of reduced
size.

The inertial effects of fast spinning rotors of the
motors may have a relevant influence on the dy-
namic behaviour of such manipulators. The ef-
fective rotor inertias are indeed multiplied by the
square of gear ratios and coupling torques and
forces arise from the interaction with the link mo-
tion.

The usual way to take into account the rotor in-
ertias is to add a diagonal matrix to the inertia
matrix of the dynamic model of the manipulator
without actuators derived by using a Lagrange for-
mulation (Armstrong, Khatib and Burdick, 1986:
Dombre and Khalil, 1988). This corresponds to
neglecting the coupling effects between rotor and
link motion. Nevertheless it has been shown that
additional contributions have to be introduced in
the off-diagonal elements of the inertia matrix and
in the Coriolis and centrifugal terms to properly
account for the above effects (Chedmail, Gautier
and Khalil, 1986; Otter and Tiirk, 1988; Chen,
1989; Murphy and Wen, 1993).
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Programs allowing automatic generation of dy-
namic models by means of symbolic manipula-
tion languages have been developed, e.g. (Cesareo,
Nicolo and Nicosia, 1984), which include both mo-
tor inertias and joint elasticities. The resulting
models may be in a scarcely compact form and
thus of limited use for control design (Chiacchio,
Sciavicco and Siciliano, 1990).

Recursive computation algorithms of dynamic
models of geared robot manipulators have been
developed both for rigid joints (Murphy, Wen and
Saridis, 1990; Jain and Rodriguez, 1990) and elas-
tic joints (Murphy and Wen, 1991), which adopt
an unusual formalism based on the spatial op-
erator algebra. A Newton-Euler formulation is
adopted and the equations of motion are obtained
by deriving force and moment balances separately
for links and motors.

This paper is aimed at pointing out the modifi-
cations that have to be introduced both in the
Lagrange and in Newton-Euler derivations of the
dynamic model of a manipulator without actua-
tors, in order to include the complete effects of the
rotor inertias and rotor-link interactions. Stan-
dard notations are used for vector algebra and
the Denavit-Hartenberg convention is adopted for
the assignment of coordinate frames on the links.
Both the cases of revolute and prismatic joints
driven by revolute motors are considered and the
rotor axes are supposed to be arbitrarily oriented
with respect to those of the actuated joints.

The adopted Lagrange formulation naturally al-
lows linear parametrization of the complete model
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in terms of a suitable set of dynamic parameters
(Nicolo and Katende, 1983). For each joint, the
eleven parameters are the rotor inertia and the
mass and inertial parameters of the augmented
link which is obtained by considering the link and
the motor mounted on it. Hence the dimension
of the dynamic parameter vector is the same as
in the usual approximate approaches that neglect
rotor-link interactions.

Further it is shown how the augmented link con-
cept can be conveniently used in the Newton-Euler
recursive derivation of the equations of motion.

The explicit dynamic model of a gear-driven elbow
manipulator is derived to illustrate the complete
effects of rotor inertias and rotor-link interactions
and to give an example of linear parametrization
of the model.

2. PRELIMINARIES

The manipulator is seen as a serial chain of n + 1
rigid links connected by revolute or prismatic
Joints. The base of the robot is numbered as link
0 and the terminal link as link n. The joint i
(i=1,...,n) connects link i —1 to link i and mo-
tor ¢ driving joint 7 is located on link i — 1. This is
a current practice in industrial manipulators, re-
sulting by a tradeoff between the need to locate
the motors as close as possible to the manipula-
tor base so as to reduce the structural mass of the
robot, and the need of using transmission elements
simple and efficient, with low backlash and wear.
However this assumption is made only for clarity
of presentation; the case of different motor loca-
tion can be analyzed in a formally analogous way.
Also mass and inertial contributions of gears can

be suitably included in the corresponding terms of

the motors.

The standard Denavit-Hartenberg convention is
adopted for the coordinate frames on the links,
1.e. a frame of rotation matrix R; is fixed with re-
spect to link i and its unit vector z; lies along joint
1+ 1 (see also Fig. 1). In addition, for each mo-
tor a frame of rotation matrix R,, is introduced
which is fixed with respect to rotor i and with unit
vector z,, lying along the rotation axis.

The following notations are used for link and mo-
tor parameters:
pi position of the origin of frame i

Ti_1, vector from the origin of frame i — 1 to
the origin of frame i

m,. mass of link i

pe, center of mass of link 7
I,, inertia tensor of link 7 relative to its cen-

ter of mass

m,,, mass of rotor i

Pm, center of mass of rotor i

ter of mass

m; global mass of augmented link  (link i
and rotor i + 1)

I,,, inertia tensor of rotor i relative to its cen-

pc, center of mass of augmented link i

ri—1,c, vector from the origin of frame i — 1 to
the center of mass of augmented link ¢

r; c, vector from the origin of frame i to the
center of mass of augmented link ¢

I; inertia tensor of augmented link 1 relative
to its center of mass

I; inertia tensor of augmented link i relative
to the origin of frame i — 1

where all quantities are referred to the base frame.
In the following the presence of a superscript will
denote a frame different from the base frame.

Let ¢; denote joint i variable and V,,,, the angular
displacement of motor i. In the assumption of
rigid transmission the relation between velocities
is

krigi = Opm,, (1)

where k,; is the gear ratio; notice that in the case
of a prismatic joint k,; is a dimensional quantity
since the motor is usually taken to be revolute.
Hence the angular velocity w,,, of rotor i is

Wm, = w1 + kr:‘q‘izm.v (2)

where w;_ is the angular velocity of link i — 1 on
which the motor is located.

3. LAGRANGE FORMULATION

According to Lagrange formulation for dynamic
modelling of mechanical systems, define the func-
tion

L=T-U (3)

where 7T is the global kinetic energy and U is the
global potential energy. The equations of motion
can be obtained from the following n Lagrange
equations

:—tg—g—g&%zn i=1,....,n (4)
where 7; is the generalized non-conservative force
acting on the joint variable g;, i.e. a force for a pris-
matic joint and a torque for a revolute joint. Non-
conservative forces include friction, driving forces
provided by motors through gears and forces aris-
ing from possible contact at the end effector.

The global kinetic energy can be obtained by
adding the individual contributions of links and
motors, where the contribution of each link is rela-
tive to all the parts fixed on it including the motor
stator.
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The kinetic energy of link i is given by

Tti = %mlii’}:"}fd + %u?ﬂqu. R"Tw‘ (5)
where the inertia tensor of link i has been referred
to frame i so that it is independent of the joint con-
figuration. In order to express (5) in terms of the
vector of joint coordinates g =[¢; ... g, IT, as
required by (4), the following Jacobian matrices
are introduced for linear and angular velocities of
link 1:

P = J5q

. (6)
w;:Jg'}q,
with
(&) _ L, (L
JP "[prlJ JSD;'] o ... 0] (7)
(¢, e, '
I =) o o)

whose columns can be evaluated as

() Zi_) prismatic joint

P71 2o x (Pe, = pj-1) revolute joint
) [0 prismalic joint
05 7 2oy revolute joint.

(8)
The kinetic energy contribution of motor i coin-
cides with that of its rotor, given by

1 T . 1
Tm, = _mm.P;lr:,]"m. + .‘“’::.Rm-m:nrhwm"

2 2
(9)
The linear and angular velocities of motor i are:

j’m, = J}!m.)é

(m,)- (10)
wm, =Js ‘g,
with
(m,) _ (m,) (m,)
Jp _[JP; J;:—l 0 0 ... 0]
(m,) _ B 1, '
Jo' = [ag) Y 5 o . o]

(11)

whose columns can be evaluated as

J(m.} _ ) Fi-1
i 7 zjo1 X (Pm, = Pj-1) revolute joint

prismatic joint

(m.)_{sg}’ i=1,...i-1
Jo; = i )
krizm, j=i

(12)
To obtain (12) the expression of W, in (2) has
been considered.

In view of (5)~(12), the global kinetic energy can
be expressed in the quadratic form

T =3 (T +Tm) (13)
i=1

1 . :
=3 Do bii(aiid; = 39 Bla)g,

i=1j=1
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where

n
B(q)=Z(m¢..J}f"TJff‘)+Jg‘)TR,-I§.R?Jg')
i=1
A IS4 3G R, 7 R )
(14)
is the (n x n) inertia matrix of the manipulator
which is symmetric and positive definite.
The global potential energy is the sum of the indi-
vidual contributions of links and motors which,
in the assumption of rigid links and Joints, in-
clude only gravitational effects. Denoting by go
the gravity acceleration vector, & has the simple
form

U= (U, +Un,) (15)

i=1

n
= "Z(mfngg‘ptl + mm.goTpmu)‘

i=1

Using the expressions of kinetic energy (13) and
potential energy (15), from (3).(4),(6),(7),(11),
(12) the equations of motion become

> bii(@); + D _hii(a,d)é; + gi(q) =
i=1 =1

i=1,...,n (16)

LN~ [0b; Oy db; ) .
Z h’) ‘IJ - 2 Z (gq: + 6qJ aq' quJ
_ (17)
are the Coriolis and centrifugal terms, and

n L]
¢
gi = — E (mc,gnTJﬂaf)(Q) + mm,goTJfPTJ)(QJ)
=1

(18)
are the gravitational terms.
Equations (16) can be rewritten in the well-known
compact form

B(9)g+H(q.9)a+g(q)=1.  (19)

4. EFFECTS OF ROTOR INERTIAS

In the derivation of the dynamic model (19), link
and rotor contributions have been considered sep-
arately. This distinction is needed for gear-driven
manipulators only and not for direct-drive manip-
ulators in which the rotors are integral parts of the
driven links. For the latter the procedure leading
to (19) still remains valid with unitary gear ratios
and can be actually simplified by considering only
the contributions of each link including that of the



annexed rotor. In that case rotor i is naturally as-
sociated to link 1.

In order to have a clear understanding of the influ-
ence of motors on the dynamic behaviour of gear-
driven manipulators, it is convenient to associate
the kinetic and potential energy contributions of
each rotor with that of the link on which the mo-
tor is mounted, i.e. to consider an augmented link
¢ composed by link 7 and rotor i 4+ 1 .

In the reasonable hypothesis that rotors have a
symmetric mass distribution around their rotation
axes, the inertia tensor relative to the center of
mass of rotor i, expressed in frame R, , has the
form

 j— 0 0
I,.':I' - 0 Im..r: 0 (20)
0 0 T2z

and thus the inertia tensor of rotor i+ 1 expressed
in a frame fixed with respect to the supporting link
i is constant, i.e. it does not vary with the angular
position of the rotor. The inertia tensor of the
augmented link relative to its center of mass is also
constant in frame I%; and can be obtained from
straightforward application of Huygens theorem
as

II=0, +mST(r;, ,)S(rb )+ T,

+ Mm, 4, ST{'-"E-_‘,‘m,_” }S(rti:‘,_m..... )

LIS |

(21)

where ré‘..!. = P:‘.’. - ])iC‘.’ rE..m..“ = p:n..,.. _])'C.
and S(-) is the skew-symmetric matrix operator
performing the vector product S(a)b = a x b.
By using (2),(5).(9),(20),(21) and the following
equations

Pl = Pe, +wi xTe g,
] 1

. _ : ) (22)
Py, =00, + @i XTC s
the kinetic energy of the augmented link takes on
the form
Ti = ?}a + T"‘!+l
I i |
= gmapg e, + el Iiw] (23)
1 i ) ; .
+ §k3.i+] Q|'-+1 Iﬂl,+: + "l“r.l'+1 Tig) JIl'nH” Z"T.+| U:

where Iy, ., = Im,,,::
be easily evaluated as

. The potential energy can

Ui=Uy +Upm,,, = —m,-ganE’. (24)
Equation (23) reveals that the kinetic energy of
the augmented link is the sum of four contribu-
tions. The first two express the kinetic energy
of the augmented link when the rotor is motion-
less. The third one is the kinetic energy of the
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augmented link when the link is motionless. The
remaining term is the rotor kinetic energy deriv-
ing from the interaction of its rotation with that of
the link. Equation (24) shows that the potential
energy does not obviously depend on the angular
position of the rotors since their centers of mass
are on the rotation axes.

From the above considerations and in view of the
form of Lagrange equations (4), it is possible to
quantify the error made in accounting for rotor
inertias effects by simply adding a term k2 I, to
each diagonal element of the manipulator inertia
matrix. In particular, from the last term on the
right-hand side of (23) it is clear that this approx-
imation is exact only when z:':f'“w:f = 0, that is
for motors mounted on links with angular velocity
null or orthogonal to the rotor axis for any config-
uration of the manipulator.

5. LINEARITY IN THE PARAMETERS

On the basis of the previous considerations, the
dynamic model (19) can be suitably expressed in
linear form with respect to the dynamic parame-
ters of the augmented links.

The kinetic energy (23) can be rewritten in the
form

1 i i i e
T = Emipzzlps'-l +P:215(“;)mi"i-1,c.

i

+wiThw! + krit19is1Im, 1:::“ w;
LR TN RV (25)
where the equation
pe, = Pioi+wi x il g, (26)

and the expression of the inertia tensor of the aug-
mented link relative to the origin of frame i — 1

=T +mST(ri_, c)S(ri_1c)  (27)

have been exploited.

Equation (25) i1s linear with respect to the in-
ertia moment of the rotor and to the mass,
the six components of the inertia tensor (27)
and the three components of the first moment
mTi_ o = [milc, - milc,y m,—fa_Z]T of the
augmented link.

Similarly the potential energy (15), by means of
the equation

Pc, = piy + rio1c (28)
can be rewritten as
U, = —g(‘;T{m.'p::_l + miff_l.c.) (29)

which is linear with respect to the mass and the
three components of the first moment of the aug-
mented link.



By adding all the kinetic and potential energy con-
tributions, the Lagrangian function (3) can be ex-
pressed in the form

L= Z(ﬂ;i - Bl

i=1

(30)

which is linear in terms of the (11 x 1) vector of
augmented link dynamic parameters and rotor in-
ertia

(31)

mo=[m; mibe,r milc, mlc,.
[ [ I 7.

Is':z' Ii:y "l'r: ]t'yy I:'yz Il'zz
Notice that in r; the inertia of rotor i has been
associated to the dynamic parameters of aug-
mented link 7 so that the vectors By; and Br;
in (31) depend only on joint coordinates gq; ...qg;
and their derivatives, i.e. By = Builq1, 92, ..., qi)
and Br; = Bri(q1.92,....¢:,41,92,- ... Gi).

In view of (30), Equations (4) become

ZUE'?T}:”I' i=1,...,n (32)
=1
where
_ ddBr; 0Br; . 9Bu;
Vo= 005  on o ¥

By virtue of the particular structure of 87; and
Bui. Equations (32) have the triangular form

T U;rl yTz yir" ™y
7 0T yh vl | |

= (34)
Tn OT OT y::r n Ty

It should be observed that the obtained parame-
terization is in general non-minimal. In fact each
joint axis has only one degree of mobility and thus
it is possible that some dynamic parameters do not
influence the gencralized force at the joint whereas
some others may appear in the dynamic model
only in linear combinations (Gautier and Khalil,
1990).

6. NEWTON-EULER FORMULATION

With the Newton-Euler formulation for a direct-
drive manipulator, the equations of motion are
obtained in a two-step recursive procedure: a for-
ward recursion for the propagation of velocities
and accelerations from the base to the end effec-
tor, and a backward recursion for the propagation
of forces and moments from the end effector to
the base. Thanks to the introduction of the aug-
mented link concept, the same procedure can be
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Fig. 1. Characterization of augmented link 7

applied also to gear-driven manipulators as shown
below.

With reference to Fig. 1, the balance of forces for
the augmented link can be expressed by the fol-
lowing Newton equation

fi = fisa + mi(pc, — go), (35)
where f; and — fi+, are respectively the sum of

the forces exerted on augmented link i by the pre-
ceding link and the subsequent link of the chain.

The balance of moments for the augmented link
can be expressed by the following Euler equation

dk;
pi=—f; x(fi—l,r’+f:’.C‘.)+P|’+l+.fi+1x'|”i,C.+"F

(36)
where p; and —p,4, are respectively the sum of
the moments of forces exerted on augmented link
i by the preceding link and the subsequent link of
the chain, evaluated with respect to the origins of
frames i —1 and 7 respectively; ‘also k; is the angu-
lar momentum of augmented link i with respect to
its center of mass. Accounting for (20),(21) yields
(37)

ki = Liw; + kriv19ie1Im, 4y Zm g,
leading to

Bi = —fi x (ric1i+7ic,) + pig1 + fig1 X i,
+ Liwi + wi X (Liwi) + krin1Giv1Im,y, Zm,,,
+ kr_i+1éa'+1fm.+,wi X Zm - (38)

The generalized force at joint i can be computed as
the sum of the inertial torque of rotor i reported to
the joint side and the component of force f; (for
a prismatic joint) or moment u; (for a revolute
Joint) along the axis of joint i. Therefore it is
- flzio+ kr,-Im,-dﬁ‘ Zm, prismalic joint
! urzio) + krilmiw? zm, revolute joint.

(39)

e ———



Equations (35),(38),(39) require the evaluation of
velocities and accelerations of links and rotors.

The angular and linear velocities of link i are re-
spectively:

o=
and
{ revolute joint
(41)
where the joint coordinate g; has been denoted by
d; for a prismatic joint and by 6; for a revolute
joint.
By differentiating (40) and (41), the following ex-
pressions for the accelerations of link i are ob-
tained

. Wi~
w;i =1 . - ; .
' {w;_1+1.?;z;_1+0;w;_,xz;_1 revolute joint

prismatic joint
revolule joint

wi_y
Wiy + Yz

(40)

o pi_1+&;z;_1+w;xr;_1_i prismatic joint

e

Pi-1twiXxXri_;;

prismatic joint

(42)
and
f’,‘-l'}‘ r:?,-z,-_l-{- 2(}?,‘&),‘)(2,‘_] prismalic
_JFwixTiog 4 wix(w; x rioy ;) joint
) piea+ Wi X Ty revolule
4wy X{W, X 1‘,‘_1_,‘) jCli'l"lt.
(43)

Finally, the acceleration of the center of mass of
augmented link 7 and the angular acceleration of
rotor i are respectively:

Pe=pi+wixXric, +w, x(w, xr, ) (44)

“.Jm.:‘biw 1 + kri“}-: :nu'+ ll-n"jr‘-"";-l X Zmg - [45J

The equations of motion are obtained through
a forward recursion based on (40).(42).(43).(44),
(15) starting from initial conditions wq. o — go.
wg, and a backward recursion based on (35).(38),
(39) starting from terminal conditions Fos1,
#n41; notice that augmented link » coincides with
link n. For computational efficiency. all the vec-
tors in the above equations are to be referred to
the current link frame 7 in the actual implementa-
tion.

7. EXAMPLE

The explicit dynamic model for the three-degree-
of-freedom elbow manipulator in Fig. 2 is pre-
sented in the following. The Denavit-llartenberg
parameters are listed in the table below:

Link a; a; d; Ui
1 0 1?/2 0 131
2 a» 0 0 0
3 as 0 0 Ilj3
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Fig. 2. Three-degree-of-freedom elbow manipulator

Let g=[9; 92 93]7 be the vector of joint vari-
ables. The motor of joint i is located on link i — 1
and zm, = 20, Zm,; = Y1, Zm, = Z2; note that the
axes of rotors 2 and 3 are not aligned with the
respective joint axes. It is assumed that I; is a di-
agonal matrix and m;r{_, o = [mifc,. 0 0]T,
i=23.

It can be found that the dynamic model can be
expressed in linear form with respect to the fol-
lowing linear combinations of augmented link dy-
namic parameters and rotor inertias:

r r r 2 2
m o= I]yy + Inyy + Iayy + azm3z + k,!fml
Mo = mgfc,, + a:ams
P ; 2
3 = Iogr — I?yy -~ a;mg
. il bl
T4 = l: + kinlma + ams

5 = "3:: - ‘(Syy

Te = mafC;r
mr = ‘i:l:.'
Ts = Ina
79 = lna

with obvious meaning of the quantities.

The elements of the inertia matrix B in (14) are:

byy=m + Sgﬂ'g -+ 83315 + 2ancacaamg
bia = kyomy

b3 = krasamg

b2y = by

ban = my + 2ascamg + 77

baz = aacame + 77

b3y = by3

b3z = bo3

633 =7+ k‘rzsﬂrg

where the standard abbreviations 8i.j and ¢;_;
have been used for sin (9; +...+9;) and cos (¥; +
...+ U;) respectively.




The coefficients of the matrix H in (17) are:

hi1 = s3c2g273 + s23¢23(g2 + 4a)7s

= a2 (52¢2342 + €2523(42 + ¢3)) 76
hi2 = 53029173 + 523¢23¢) 75

— a3(c2523 + 52023)q1 6 + 0.5k, 3¢2437s
his = 523¢2391 75 — @2c25231 M6 + 0.5k, 3¢2g27s
hay = =hy,
hay = —a253¢3 g
has = hap — hs,
ha) = —s23¢23q) ™5 + a2c2523¢1 6 + 0.5k, 3c2¢27g
hs2 = azs3ga7s + 0.5k,3c04, 7o
hzz = 0.

The elements of the gravity vector g in (18) are:

91=0
92 = g3 — gcams
g3 = —gCa37¢.

As can be recognized from above. the elements bya
and b,3 describe the effects of the accelerations of
rotors 2 and 3 on joint 1. Notice that. in view of
the location of motors, b,, is a constant whereas
b1z depends on Joint variable 2. The latter gener-
ates additional contributions in the coefficients of
the Coriolis terms h;, i # j. Such eflects are ne-
glected in the approximate models which are com-
monly used.

8. CONCLUSIONS

The effects of rotor inertias and rotor-link inter-
actions on the dynamic model of gear-driven rigid
manipulators have been analvzed in this work.
The concept of an augmented link incorporating
the link itself and the supported motor has lead
to evidencing how the kinetic and potential ener-
gies are modified in the Lagrange formulation due
to the presence of motors. allowing also a siple
linear parametrization of the model in terms of
the rotor inertias and the dynamic parameters of
the augmented links. The Newton-Euler formu-
lation takes advantage of the above derivation as
the balances of forces and moments are expressed
directly in terms of the augmented links. An ex-
ample for an elbow manipulator has been worked
out to capture the effect of motor-link interaction
which is typically neglected in most models.
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