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Abstract. The task of a robotic manipulator's controller consists in the control of
the robot's end effector in such a way that it is able to track a desired motionm tra-
jectory. All the proposed control techniques assume that manipulator state variables
(joint positions and velocities) are all measurable. In this paper a new discrete time
decentralized control strategy is developed, which only makes use of joint position
measurements. The boundedness on the position tracking error is obtained via a
Lyapunov-based stability analysis. The trade~off existing between ¢ontrol computation-
al burden and position tracking accuracy is discussed and a case study is finally
worked out.
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INTRODUCTION

The control problem for a robotic manipulator is
to make its end effector track a desired trajecto-
ry of motion in the task space. The dynamics of a
robotic manipulator is highly nonlinear and cou-
pled. Its computation requires in general the use
of time consuming computational schemes, such as
(Hollerbach, 1980) and (Luh, Walker and Paul,
1980a). A number of robot control techniques have
been proposed in the latest years. See for in-
stance the resolved acceleration control (Luh,
Walker and Paul, 1980b), the adaptive econtrol
(Balestrino, De Maria and Sciavicco, 1983) and
(Nicosia and Tomei, 1[984), che sliding mode con-
trol (Young, 1978) and the related robust control
(Slotine, 1985) to mention only a few of them.

The resolved acceleration control, along with any
control technique based on the so-called ' computed
torque’ method, requires a very accurate computa-
tion of the robot's dynamical model. In practice,
however, only estimates of the system dynamical
terms are avallable and robustness to parameter
variations may become critical. In order to over-
come that drawback, adaptive control and {robust)
sliding mode contrel have been proposed. The re-
sulting controls are nonlinear and may effectively
account for parametric uncertainties, such as im-
precision on the manipulator mass properties, un-
known loads, inaccuracies om the torque constants
of the actuators, friction and so on.

The crucial point concerned with all the above
control techniques is the assumption that Fyll
State measurements are available. As a matter of
fact, joint positions can always be sensed, where~
as joint velocities may eventually not. This issue
is of interest, for instance, in case of
direct-drive arms (Asada, Kanade and Takeyama,
1983} where, due to the lack of transmission mech-
anisms, a direct measure of joint velocities may
be questionable. Further, the actuator dynamics is
hever explicitly taken into account in the deriva-
tion of the control laws. With reference to the
sliding mode control, for instance, the unmodelled
actuator dynamics leads to deracted control perfor-
Mance, since in practical implementation it is not
Possible to use high feedback gains in the

proximity of the sliding surface. Nevertheless the
direct measurement of joint accelerations, which
would be needed for control of the whole system
(robot + actuators), is far to be feasible.

The goal of this paper is to establish a new dis-
crete decentralized control technique which only
makes use of joint position measurements. The main
idea is to build up a two-stage control. First a
centralized control system accomplishes nonlinear
compensation of those dominant dynamic terms whose
estimates are achievable within a desired accura-
cy. Then a decentralized control system is de-
signed for each degree of freedom, where all the
noncompensated dynamic terms amd/or the parameter
uncertainties play the role of a disturbance to
the system. The Lyapunov direct method is adopted
to undertake a stability amalysis. It allows also
the quantification of the boundedness on the posi-
tion tracking error, achieving thus a trade-off
which may be exploited for "good" control design.

ROBOT DYNAMIC MODEL

It is well known that the dynamic model of an n
degree-of-freedom (DOF) manipulator can be written
in the joint space as

B{q){ + c(q,q) 4+ g(q) = (1)

where q is the nxl vector of joint displacements,
B(q) is the nxn inertia matrix, ¢(g,q) is the nxl
vector of centrifugal and Coriolis terms, g(q) is
the nxl vector of gravity terms, and T is the nxl
vector of joint torques.

In reality the manipulator is subjected to parame-
ter uncertainties, such as imprecision on the ma-
nipulator mass properties, unknown loads, inaccu-
racies on the torque constants of the actuators,
friction and so on. For the purpose of obtaining a
decentralized contrel in the joint space, the non-
linear terms B and g can be redefined respectively
as

B(q) := B + 4B(q) (2
g(q) = g(q) + aglq). (3)
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In (2) B contains only the constant diagonal terms
of B{(q), and 4B(q) accounts for parameter unecer—
tainties along with q-dependent and coupling terms
of B(q). In (3) g(q) is the available estimate of
g(q), and Ag(q) accounts for parameter uncertain-
ties of g(q). Based on these assumptlons, the dy-
namic model for each DOF 1 can be rewritten as

bygdy + B () + 808 =1, i=l,..,n (&)

whetre
n .. ~ [
& = jfi bij(q)qj + (b, (q) - boJdag + (5
j#i

c;(a,d) +g.(q) - g.(q), i=1,..,n.
i 1 i

In this way n SISO systems have been obtained,
allowing the design of n separate joint control-
lers.

CONTROLLER STRUCTURE

With reference to the dynamic model for each joint
(4), the input torque Ti is thought of as applied
to the joint by an appropriate actuator system. 1f
a d.c. motor with armature control is adopted, the
torque Ti results

T = 5;vy < ongdy (6)
where 8 and n, are usual motor constants, and v
is the appliea voltage. Combining (4) and (6}
ylelds

Bygdy +ngdy + 8, (0) + 8 () = v, (n

where it is understood that all the terms on the
left side of (7) have been appropriately scaled by
5,. The terms § {q) and & (q,4) can be regarded as
disturbances acting at e input of the 1linear
time invariant system

by +ng = v (8)

where the subscripts i's have been conveniently
dropped.

At this extent the goal is to design a digital
joint controller for each DOF. In particular it
must be emphasized that the discrete system corre-
sponding to the linear time invariant continuous
system (8} presents a pole at 1 in the z=plane,
having the system (8) a pole at the origin in the
s-plane. Consequently a preliminary joint position
feedback action must be introduced in order to
place the poles of the discrete system inside the
unit cirele.

Furthermore, in order to lighten the control sig-
nal effort, it is convenient to include in the
digital control a nonlinear term which suitably
compensates for the estimate of the gravity term
g(q) available at each sampling instant. In sum
the digital control at the instant k is chosen as

Vi = 8(g)) + £, + v (9

where 4  is the joint position measurement avail-
able at the k-th sampling instanct, f is the posi-
tion feedback gain at designer's disposal, and vy
is the new control input to be synthesized.

Upon these premises, the discrete time system cor-
responding to the system (8) can be written as

+ a = (10)

Berr ¥ 839 ¥ 259,
By =8 + byt -8 D)

where a_, a5 b, and b, are the coefficients of
the dif%erence equation, depending on the sampling
period, which are derived in  the usgual
discretization process, accounting for (9); & ig
the equivalent discrete disturbance originated
from 6 and from considering g(q) conmstant in the
sampling period. Notice that the system (10) is a
digecrete time minimum phase system.

The goal now is to design the digital control v .
The discrete reference model can be defined as

= (11}

Gepp ALY T B9

bV BV

where § is the desired joint position at keth
sampling’ instant. Subtracting (10} from (11)
yields

+ ag, + ai .y = (12)

bl(\lk - + dk) + bz(vk_1 -V + Gk-l)

Clet1

where €, = q - q, is the joint position tracking
error. ﬁrrané&ng Ehe system (12} in state space
form gives

esl = Aek + B(uk - + dk) (13)
where
€ 9,
e = | 1 i = f‘l (14)
£x Vie
N PR S
Uk. k ° g
Yk k
0 1 ) o' by |
A = B := T b =
-a, -2, b | bl_

A feedforward control action is first introduced
in vk as

Ve = vt L (15)

The control input to be synthesized is then
Ve
o = | ¥ (16)
Tk

At this extemt, in order to synthesize the control
signal Yo the Lyapunov direct method is followed.
Let

T
Vi = &0, Q>0 (n

be a positive definite Lyapunov function. Then one
obtains

AV, = v - ¥ (18)

k k+1 k
T T
T Qe T ooy
which, accounting for (13)-(16), glves
T, T T=T
0V, = e (404 - Qe - 2(e, ~d)7B QAe, (19)
T -
+ (ck - dk) B QB(ck - dk)'
Partitioning ¢ as
qT
1 E T
Q= K [aya; 1, af = Cay, 9,0 (20)
2.

T T .
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yields

. T T
3 . -
A-k ekPek ch

T~ T T~ T-,2
+ dequAek + q22(ckh - dkb)

l;quek (21)

where
aToa -q=-¢, Pp>0, (22)

being A strictly stable. Finally the control Y
can be chosen as

by L og
L e S T P —
i 1922
which gives also

7 T T T2
AV, = -ek(P + A qzqzﬁlqzz)ek + qzz(dkb). (24)

k
It is easily seen from (24) that the first term on
the right side is negative definite, whereas the
second term is positive definite. This fact clear-
ly points out the trade-off at designer's dispos-
al. The smaller the disturbance and the sampling
time, the smaller the joint position tracking er-
ror. From a geometrical viewpoint, If one seeks
the ellipsis V, = const. which is externally tam-
gent to the eElipsis Avk = 0, indeed, a region
which contains the waximum error will be obtained.
It can be checked that an estimate of the upper
bound on €y is given by

e = Uy (415 (a, /(@ (ayyma; P} (29)

The maximum tracking error, in fact, can be mini-
mized by a suitable choice of the matrix P in
(22).

CASE STUDY

in order to test the effectiveness of the proposed
control techmique, the three DOF robotic manipula-
tor referred to in (Nicosia and Tomei, 1984) has
been chosen to work out a set of numerical simula-
tions.

With reference to the dynamic model in the form
(1), the data are:

2 2
by, = A + AjcosTg, + Aycos (a,tq,) + (26}

1"
Aécosqzcos(q2+q3)
big =by3=0
b22 = AS + A{.cosq3
b23 = A6 + A7cosq3
Py = Ag
ep = €583, * €588, @7
¢ = G112 + Cyglyiy - C5dy/2
€3 7 '(:13"‘%'/2 h C256'5/2
€, = ~A,sin2q, - Assin2(q,+a,) +
—Aasin(q3+2q2)
€ 4 = -Aysin2(a tay) - A,c0sq,5in(q,+q,)
025 = -Adsinq3

g, = 0 (28)
gy ™ Blcosq2 + Bzcos(qz+q3)
g8y = Bycos{a,tqy)
Three different values of the manipulator's pay-
load have been assumed: 0, 5, 10, In Table 1 the

numerical values of coefficients in (26)-(28) for
the three different payloads are given.

Table 1, Numerical values of coeffs. in (26)-(28)

Payload mass

0 5 10

AI 23.3803 23.3803 23.3803
A2 9.2063 10.4563 11.7063
A3 2.4515 3.7015 4,9515
A& 5.4 7.9 10.4

AS 82.399 84.899 87.399
Aﬁ 2.6274 3.8774 5.1274
Aq 2.7 3.95 5.2

AB 25.7778 27.0278 28.2778
By -189.1708 -213.6748 -238.1788
B, -52.9286 -77.4326 -101.9366

The manipulator is actuated by d.c. motors; with
reference to (6) the data are:

E 29.59 = 25,42 S5 29.59 29

1 )
n, = 814.36 n, .

All the above values are understood to be in SI
units.

= 1163.32 n, = 814.36.

The trajectory to track in the joint space is de-
scribed in Table 2§ a trapezoidal velocity profile
{acceleration, cruise, decelerarion} has been cho-
gen, The values are in degrees.

Table 2. Desired trajectory parameters

joint 9 Al 9 Inax
1 0 90 26.15 5.23
2 90 135 78.5 3.925
3 45 90 78.5 3.925

The nonlinear compensating term g(q,) in (9} has
been introduced in the conctrol v, ; gﬁe payload of
5 has been selected as the nomindl one. The posi-
tion feedback gain in (9) has been derived in or-
der to get two coincident poles for the equivalent
discrere linear time invariant system (10).

An inverse model technique has been adopted so
that, given the desired joint trajectory, the in-
put to the reference model v, in (15) can be de-
termined. More precisely, since the zero of the
discrete reference model lies in the left hand
plane {(inside the unit circle), the actual inpuc

v, has been conveniently picked up as the average
o¥ two consecutive samples so as to smoothen its
alternating shape.

In (22), moreover, it has been chosen P = L,
The solution sampling time adopted is 5 ms.
Figs. 1l thru 3 show some of the simulation results

obtained, First the joint posicion tracking errors
for the most significant cases of o¢ff-nominal
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payloads (0, 10) are reported in figs. 1 and 2 re-
spectively. They are seen to maintain bounded
along the trajectory and praccically vanish at
steady-state. Fig. 3 then shows the three control
torques for a payload of 10, They are seen to be

smooth and of reasonable magnitude.

[Ek frad x107%]
2k

Fig. l. Joint position tracking errors (0 kg.)

[ & [rad x10°%]

[ (1)

Fig. 2. Joint position tracking errors (10 Kg.
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Fig. 3. Comtrol torques {10 Kg.)

CONCLUSIONS

A new discrete control strategy has been developeq
for robot tracking control in the joint space, The
two main features of the control are:

~) decentralization (n SISO joint control systems)
-} output measurements {only joint positions).

The contrel is made decentralized by rearranging
the manipulator’s dynamic model so as to isolate
the constant diagonal terms in the inertia matrix,
Ther a suitable nonlinear term compensates for the
available estimate of the gravity term. One might
also think of compensating for the available esti-
mates of the dominant configuration-dependent
terms in the inertia matrix, furcher lightening
thus the control effort. To this purpose the de-
sired joint accelerations are understood to be
used in liew of the actual joint accelerations.
The digital control is then synthesized via an
usual model reference techrique but, due to the
particular choice of the model, only joint posi-
tion measurements are used to form the feedback
control. Simulation resuits have finally shown the
effectiveness of the proposed control technique,
also when off-nominal payloads are assumed.
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