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ABSTRACT

A new approach to designing a dynamic controller for
multiple cooperating robotic manipulators s presented. A
suitable kineto-atatic formulation for multi-arm systems
provides an effective framework to analyze the coordina-
tion problem. This gives a global task space description of
external and internal forces and, dually, absolute and rela-
tive velocities. The objective s to control absolute motion
of the object held by the two arms and snternal forces act-
ing on the object. Differently from earlier works aimed at
designing static controllers, the scheme here proposed does
take into account the multiple arm dynamics. A nonlin-
ear action 1s designed first to compensate for the dynamic
terms which decouples the system. Then a linear action
achieves prescribed force/motion behavior.

INTRODUCTION

Cooperative manipulation by multiple robots has
lately attracted many researchers in the robotics commu-
nity. Proper execution of advanced manipulation tasks de-
mands for effective coordination of multiple robots. Han-
dling heavy or non-rigid objects, mating mechanical parts,
servicing in hazardous environments are some examples of
tasks that may require more than a single arm. The po-
tential offered by cooperative manipulation, however, is
counterbalanced by the increased complexity of the coor-
dination problem for multiple robots.

A master-slave (or leader-follower) strategy was de-
veloped by Luh and Zherg (1987) for the simple case of
two-arm systems. In this approach, the desired motion is
defined for the leader arm, which is motion-controlled, and
the motion of the follower arm, which is force-controlled,
is derived via a set of constraints allowing for coordinated
control of the system. This approach seems to be im-
practical since it is naturally sensitive to modeling errors
and system uncertainties, as it was experimentally demon-
strated by Kopf and Yabuta (1988).
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As opposed to the above method, a number of ap-
proaches have been presented which exploit object task
space coordinates defined for the global multi-arm sys-
tem. A technique was proposed by Hayati (1986) which
extends the hybrid position/force control concept to the
case of multiple arm system. Tarn, Bejcsy, and Yun (1987)
derived a closed-chain dynamic model of a two-arm system
adopting the nonlinear decoupling technique to linearize
and control the system in object coordinates. The object
dynamics is taken into account in (Khatib, 1988), where
a dynamic model for the multi-effector/object system is
derived, and motion and active force control is achieved
via dynamic decoupling. One shortcoming of all the above
approaches is that they do not explicitly embed the inter-
nal forces and relative motions into the object task space
defining the variables to be controlled.

On the other hand, a dynamic coordinated control
was designed by Li, Hsu, and Sastry (1988) which achieves
not only tracking of a desired object trajectory but also
stabilization of a desired (internal) grasping force. A con-
ceptually similar approach was independently proposed by
Kreutz and Lokshin (1988); a stability analysis for that
controller can be found in (Wen and Kreutz, 1988).

Differently from these latter methods which consider
internal forces at the end-effectors level, the perspective
here is to control the internal forces at the object level. It
is argued that this approach better reflects the natural way
of specifying a set of independent internal forces for the
system regarded as a whole. It should be mentioned that
a similar approach has recently been followed by Walker,
Freeman, and Marcus (1989).

The global task space formulation proposed by
Dauchez and Uchiyama (1987) is adopted — and here
generalized to the multiple arm case — to describe ex-
ternal and internal forces as well as absolute and rela-
tive motions at the object level. A control scheme based



on this formulation was designed by Uchiyama, Iwasawa,
and Hakomori (1987), and later refined by Uchiyama and
Dauches (1988). These schemes, however, are only static
control schemes since they do not explicitly account for the
dynamics of the multiple arms. This represents a severe
limitation for high performance cooperative robot control
systems.

This work is intended to provide a systematic frame-
work for the design of a dynamic force/motion control for
cooperative robot systems, based on the above global task
space formulation. The resulting controller is obtained
in two stages: First a nonlinear decoupling action, based
on the estimates of the dynamic terms and the measures
provided by end-effector force sensors, iz designed which
lineariges the system. Then a standard linear control ac-
tion allows to achieve prescribed force/motion behavior.
Remarkably, the approach pursued in this work naturally
avoids the use of selection matrices, typical of hybrid con-

_trollers, gsince the choice of controlling the absolute motion
of the object and the internal forces on the object is made
in advance. The orthogonality between force and motion
task directions is ensured by the global task space formu-
lation adopted.

GLOBAL TASK SPACE FORMULATION

The formulation of task space coordinates required
for describing cooperative tasks is derived by regarding
the multiple arms and the grasped object as one integrated
system with respect to the degrees of freedom provided by
the joints of each arm.

The assumption is made to consider tight grasp and
rigid object. Other types of contact have been considered
in the literature, e.g. sliding (Cole, Hsu, and Sastry, 1989)
and rolling (Cole, Hauser, and Sastry, 1989). An elastic
model of the object has been considered in (Nakamura,
1088).

According to (Dauchez and Uchiyama, 1987), the co-
operative task is described in terms of a set of absolute
coordinates and a set of relative coordinates. The formu-
lation has recently been generalized to the case of multi-
ple arms (Walker, Freeman, and Marcus, 1989; Chiacchio,
Chiaverini, and Siciliano, 1990) and is briefly summarized
in the following. Consider a cooperative system with K
arms grasping an object. Let m be the dimension of the
task space of interest and

h.-=[::"‘_] meR™ i=1,...K (1)

denote the vectors of generalized contact forces (forces
f; and moments ;) at the multiple end-effectors, all ex-
pressed with respect to the base frame. The above vectors
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can be compacted into

[hl
hx

where M = Km is the dimension of the contact space,
that is the Cartesian product of the task spaces associated
with each arm. Let then

h heRM

(2)

b= [f«-
Ha

denote the vector of external forces applied at the center
of mass of the object — expressed in the base frame —
described in the global task space. It can be shown that
the mapping from the contact space onto the global task
space is described by

] h, € R™ (3)

h,=Wh (4)
where W € R™XM g the grasp matrix given by
WwW=[W, Wk (5)
The grasp sub-matrices W; € R™*™ are
I O .
W.-=[R'_ I] 1i=1,...,K (6]

where I and O respectively denote identity and null ma-
trices of appropriate dimensions, and R; are the matrices
performing the vector product r; X f; = R;f; with r; de-
noting the vector pointing from the object center of mass
to the i-th end-effector. In the most general case of m =6,

it is
0 -ris Ty
R..'= Tiz 0 —Tiz I:=1,...,K (7)
-ty Tz 0

Since W is a low-rectangular matrix, it can easily be rec-
ognized that W possesses a non-empty null space N(W).
According to the perspective of regarding the system as a
whole, the vector of independent internal forces is defined
ash, € RM—™_ A solution to eq. (4) can then be written

- ®)

where V € RMX(M=m) g 3 matrix whose range spans
the null space of the grasp matrix, i.e. R(V) = N(W).
For example, for a three-arm system (K = 3) with a six-
dimensional global task space (m = 6): W is a (6 x 18)
matrix and V is a (18 X 12) matrix.

At this point, the choice of V is related to the physi-
cal characterization of the internal forces b, of the system.

bh=w'h, + Vh,




The vector of independent internal forces h, can be par-

titioned as
hrl
hr=[ : ] b €R™ {9)
hr.K -1

Accordingly, the matrix V is chosen as

V=[(Vh (V)k-1] (10)
where the j-th block column is
vi
(V); = (V); € RM*™ (11)

-V,

'V, and V; denote the sole non-null sub-matrices defined
as

v.-=[_;1_ (1)] i=1,.. K (12)
Notice that, in force of the above relations, h,; identi
fies the internal forces between the k-th and the I-th end-
effectors. Nonetheless, any choice of V that corresponds
to a physical description of the internal forces can be made
as long as it guarantees that WV = O.

Once the static formulation has been established, the
differential kinematic relationship can be derived in a sim-
ilar manner. Let

v.:[p‘:] v;éeR™ i=1,..., K (13)
L

denote the vectors of end-effector velocities (linear veloci-
ties p; and angular velocities w;), all expressed in the base
frame. These can be compacted into

v
v= [ : veRM (14)

Vi J

Let then .
Vo= 2: vo€ER™ (15)

denote the vector of absolute velocities of the object.
Analogously to the definition of internal forces, the vector
of independent relative velocities v, € RM-™ ig defined

Vel

i

vy v ER™ (16)

Ve K-1
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At this point, in force of the duality between forces and
velocities which follows from the principle of virtual work
in mechanics, it can be shown that

[:‘:] =UTv (17)

where U = [W?! V] is specified as in (8).

DYNAMIC MODELING

Hereafter, a six-dimensional task space will be con-
sidered without loss of generality. The dynamics of the
multiple arms in the task space can be written as (Khatib,
1987)

A% +mi(xi %) =% +m i=1,...,K (18)
where x; is the vector expressing position and orienta-
tion of the end-effector, A; is the positive definite inertia
matrix, n; is the vector containing centrifugal, Coriolis,
gravitational forces and viscous terms, 7y is the vector of
input forces, and ; is the vector of forces acting from the
environment onto the end-effector; all those terms are de-
fined with respect to an inertial base frame. Notice that
a minimal representation of end-effector orientation is im-
plicitly used for x;, i.e.

O

where p; is the end-effector position vector and ¢; is any
set of orientation angles (Euler, RPY); in fact, integration
of end-effector angular velocities w; defined in (13) does
not give a unique definition of orientation. More specifi-
cally, one has

v; = B(x:)%; 1i=1,...,K (20)
where the matrix E(x;) is invertible almost everywhere
in the arm’s workspace. In particular, E(x;) can be ex-
pressed as

E(x;) = [(I) E:()¢.-)] i=1,....,.K (21)

where E, is an orientation Jacobian matrix mapping éi
into [ F

Applying again the duality principle, the following
relations hold

w=ETx)d; ¢=1,...,K (22)
nm=ETx)h; i=1,.. K (23)

Notice that the trasformations in (20,23) are needed to
relate end-effector angular velocities and torques to the



corresponding quantities defined in (13,1); the transfor-
mation in (22) is introduced accordingly.

Plugging (22,23) into (18), the dynamic models of the
multiple robots become in compact form

A(x)% + n(x,%x) = ET(x) [d + h] (24)

wherex = [xT ... x%|T, A = blockdiag(A,, ... yAk),
n=[nf ... nf|T,E= block diag(E,,...,Ex) with
E;=E(x) fori=1,...,K,d=[d] d% |%, and
h defined as in (2).

In (24) it is assumed that sensors are available for
measuring the contact forces h exerted by the multiple
end-effectors on the object. This overcomes the drawback
of needing an accurate object dynamic model to determine
the contact forces, as opposed to previous approaches (Li,
Hsu, and Sastry, 1988; Kreutz and Lokshin, 1988).

DYNAMIC FORCE/MOTION CONTROL

Based upon the kineto-static and dynamic formula-
tions presented in the above two sections, an approach
to designing a force/motion control for cooperative robot
systems is presented in the remainder.

It is intuitive to recognize that, when multiple robots
are employed to manipulate an object, the capability of
exerting external forces is enhanced no matter what are
the configurations of the single arms. On the other hand,
the capability of generating absolute velocities is penal-
ized by that arm which is in the least favourable config-
uration to accomplish the object motion in the required
direction. In force of the duality concept — at the basis
of the above-described global task space formulation —
it can be inferred that the capability of sustaining inter-
nal forces along a given direction is limited by the weak-
est arm of the system, whereas the capability of giving
rise to relative motion between each pair of arms along
a given direction is improved. These considerations have
been confirmed by recent studies on the manipulability
of multi-arm systems aimed at deriving global task space
ellipsoids (Chiacchio et al., 1989; Chiacchio, Chiaverini,
and Siciliano, 1990).

From the control point of view, it can be deduced that
the choice of motion-controlling the absolute coordinates
of the object while force-controlling the relative coordi-
nates between pairs of gnd-effectors naturally copes with
the physics of the system. The manipulability ellipsoids
relative to these variables, indeed, are always smaller in
size than the corresponding single-arm ellipsoids; this al-
lows finer control of the chosen variables. Another point
in favor of this approach is that the structural orthogonal-
ity between absolute and relative variables implied in the
above global task space formulation relieves the user from
the task of adopting selection matrices which is typical of
most hybrid force/motion control techniques. '
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In turn, with this control strategy, the robots can
carry the object with high accuracy while exerting desired
internal forces (e.g. twisting, bending, pushing, pulling
or shearing) on it. Such approach was also followed in
(Uchiyama, Iwasawa, and Hakomori, 1987), but only a
simple static control scheme was designed. In the fol-
lowing, a dynamic force/motion control scheme is pro-
posed based on the nonlinear decoupling feedback tech-
nique which is equivalent to the well-known computed-
torque method for single robot control.

The key point of the approach is to define the output
of the variables to be controlled. In view of the above-
discussed concepts, it is reasonable to choose as output
to the overall system the vector of absolute velocities of
the object v, and internal velocities between end-effector
pairs expressed in the object frame %v,, i.e.

y= [.::,‘,'] (25)

The choice of velocities (linear + angular) in lieu of loca-
tions (position + orientation) overcomes the problems re-
lated to egs. (19-21) (De Luca, Manes, and Nicold, 1988).
Also, it is convenient to describe the internal force task in
the object frame rather than in the base frame (Uchiyama
and Dauches, 1987); given the (3 x 3) matrix °R,, trans-
forming a vector from the base frame to the object frame,
the output vector y can be expressed as

I O Va Va
r=lo R)[u]-=[E] e
with ®A, = block diag(*R,, °R,). Furthermore, it will be
shown next how selecting motion variables for the inter-
nal force task allows to prescribe a satisfactory dynamic
behavior along the directions to be force-controlled.

At this point, nonlinear decoupling theory requires
that the output vector be related to the state vector of the
dynamic system to be controlled. In this process, it may
be necessary to derive the output vector as many times
until the input vector explicitly appears (Hirschorn, 1979).
In the context of the present work, the outlined procedure
translates into the following steps. Plugging (17) in (26)
gives

y = RUTv (27
Accounting for eq. (20) leads to
y = T(x)% (28)

with T = RUTE. The dynamic models in (24) can be
solved for the end-effector accelerations as

% =-A"'(x)n(x,x) + A"} (x)ET(x) [d +h]  (29)
which suggests deriving once eq. (28), i.e.

v = T(x)% + T(x)% (30)



Substituting then (29) in (30) yields

¥ = T(x)%+T(x) [~ A~ (x)nx, %)+A =} (x)ET(x) [d +1]

(31)
Let a denote a new input vector. The input-output decou-
pling control vector d can be chosen =0 as to compensate
for the nonlinear dynamic terms, i.e.

d = E"T(x)A(x)T* (x)[a - T(x)%] + E~T(x)s(x, %) - &

(2)

where ““* indicates the estimates of the dynamic terms

and “"” the available sensor measures of the generalized

contact forces with the object. With perfect compensa-
tion, the system (31) becomes

Vy=a (33)

which is a linear and decoupled system (equivalent to 6K

independent integrators) in the absolute/relative space de-
fined by the output (25).

The goal now is to prescribe a desired behavior for
the system (33) in terms of the absolute motion of the
object and the internal forces acting on the object. Let
Vaq denote a desired absolute velocity vector. Let also
“hrq denote a desired vector of internal forces. The new
input vector a can suitably be selected as

|

where the absolute location error vector is chosen as

o= |

which is consistent with &, = vaq — v, (Luh, Walker, and
Paul, 1980). The diagonal positive definite matrices K,
and K, characterize the desired dynamics of the absolute
location error control loop. Also M and D denote a mass
matrix and a damping matrix determining the behavior
of the internal force control loop (Hogan, 1985).

‘.’ad + K-u (vad - va} + era

~M-![(°h,4—%h,) + Dav,)| (%)

Pad — Pa

1 (Dad X g + Bag X 84 + Bgg X ag) (35)

The resulting controller is schematically illustrated
in Fig. 1. It can be recognized that all the quantities
needed for the computation of the control law (32,34) can
be derived from the sole sensor measurements which are
assumed to be available, that is the joint displacement vec-
tor q = [qT q% |7, the joint velocity vector § and
the contact force vector h. The transformations required
are:

x = g(q) (38)

where g = [gT g% |T is the direct kinematic func-
tion for the multiple robots,

x=J(a)4 (37)
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where J = blockdiag(J,,...,Jk) is the usual Jacobian
matrix, v is computed according to (20), v, and v, are
computed via (17). Also, h, is solved for from (8) with
h, = 0; then v, and h, are respectively transformed into
%v, and “h, by the matrix ®A,, as in (26). Finally, the
actual vector of torques r = [7F 7 |T delivered at
robot joints can be derived as

r = JT(q)ET(x)d (38)

CONCLUDING REMARKS

A new dynamic force/motion controller has been de-
signed for multiple cooperative robot systems. The ab-
solute motion of the object held by the robots, described
with respect to the base frame, and a set of independent
internal forces between end-effector pairs, described with
respect to the object frame, are suitably controlled. The
scheme can be considered as the natural dynamic exten-
sion of a previous static control scheme; both of them are
based on an effective kineto-static formulation for multi-
ple arms. A nonlinear action which compensates for the
dynamic model terms has been designed based on the as-
sumption of disposing of joint displacement and velocity
measures as well as of end-effector contact force measures.
The resulting decoupled linear system allows the design of
standard motion tracking and force impedance control ac-
tions.

Since the proposed control strategy relies on the data
provided by sensors, it is argued that a crucial point is
to investigate the robustness of the scheme to imperfect
robot modeling, inaccurate modeling of the contact be-
tween the multiple end-effectors and the object. In view
of a practical on-line implementation, another issue to
deal with is the computational burden required by the
overall controller. Ongoing research work is oriented to
perform extensive simulations and experiments for typi-
cal case studies.
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Fig. 1 — The overall dynamic force/motion control scheme
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