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Chapter 1

Flexible-link Manipulators: Modeling,
Nonlinear Control and Observer

The interest in flexible robot manipulators has become greater in the lat-
est years. In order to adequately exploit the advantages of this class of
manipulators, accurate models and effective control schemes are necessary.
This work collects a number of recent results on modeling, nonlinear con-
trol and observer for flexible-link manipulators. The equations of motion
are derived on the basis of a combined Lagrange—assumed modes approach.
The resulting model shows several similarities with that of a rigid manip-
ulator, thus allowing important properties to be derived which are used
to design controllers and observers. A nonlinear control scheme based on
robust control techniques is proposed in order to improve the damping of
the system. Since typically link coordinate rates cannot be measured, a
nonlinear observer is presented which provides estimates of both joint and
link coordinate rates while keeping stability of the system.

1.1 Introduction

Lightweight manipulators offer many challenges in comparison to rigid and
bulky robot manipulators. Energy consumption is smaller, so that the
payload—to—arm weight ratio can be increased as well as faster movements
can be achieved. Due to their characteristics, this class of manipulators
are specially suitable for a number of nonconventional robotic applications,
including space missions. On the other hand, the study of link flexibility
is enforced also for some kind of heavy manipulators such as large scale
systems. In either case, it is no longer possible to assume that link de-
formation can be neglected. All these factors make the study of flexible
robot manipulators quite interesting. The present work aims at presenting
some of the latest results on modeling, nonlinear control and observer in
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this field.

The importance of having an accurate model that can adequately de-
scribe the dynamics of the manipulator is obvious. A common way of mod-
eling a flexible robot manipulator consists in using a combined Lagrange—
assumed modes approach, which allows deriving a dynamic model in closed
form [Book (1984); De Luca and Siciliano (1991); Yuan et al. (1993);
Canudas de Wit et al. (1996); Arteaga (1998)]. Just like in the case
of the dynamic model of a rigid manipulator, which possesses many
helpful properties [Ortega and Spong (1989); Nicosia and Tomei (1990);
Canudas de Wit et al. (1990)], it is possible to compute a set of prop-
erties for the dynamic model of a flexible manipulator [Arteaga (1998)],
whose knowledge facilitates the design of controllers and observers for this
kind of system [De Luca and Siciliano (1993a); Lammerts et al. (1995);
Arteaga (1996a); Arteaga (1996b); Arteaga (1996c)]. Perhaps the most
well-known property of (rigid and flexible) manipulators is that referring
to their passive structure. With the exception of those controllers based
on inverse dynamics [Canudas de Wit et al. (1996); De Luca and Siciliano
(1993a)], this property is usually employed to prove stability of several
control schemes. However, there are many other properties which have
been employed to design specific control laws [Ortega and Spong (1989);
Nicosia and Tomei (1990); Canudas de Wit et al. (1990); De Luca and
Siciliano (1993a); De Luca and Siciliano (1993b); De Luca and Panzieri
(1994)].

Control of flexible robot manipulators shows the difficulty that there
is not an independent control input for each degree of freedom. As in
the case of rigid manipulators, there are mainly two goals to be achieved:
point—to—point and tracking control. For the first case, some results are
given in [De Luca and Siciliano (1993b); De Luca and Panzieri (1994)],
where the regulation problem under gravity is studied. In [De Luca and
Siciliano (1993b)] the case of no modal damping of the links is treated. By
making some assumptions on the inertia matrix, it is possible to guarantee
convergence of the link coordinates to certain constant values. In [De Luca
and Panzieri (1994)] a solution is proposed for the case that the gravity
vector is not perfectly known.

Because an arbitrary trajectory can only be assigned for the joint co-
ordinates, the desired trajectory for the link coordinates must be com-
puted in such a way that the control goal can be accomplished. In [De
Luca and Siciliano (1993a); Lammerts et al. (1995)] this problem is ad-
dressed, and in particular in [Lammerts et al. (1995)] not only flexible links
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but also flexible joints are considered, but there is no guarantee that the
computed desired trajectory remains bounded; when the model parame-
ters are not well known, an adaptive algorithm can be used [Slotine and
Li (1987)]. On the other hand, in [De Luca and Siciliano (1993a)] in-
verse control techniques are used [Canudas de Wit et al. (1996)], and it
is shown that the computed desired trajectory remains bounded. In none
of these works the problem of no damping is treated. In this work, the
tracking control of flexible robot manipulators is studied [Arteaga (1996¢);
Arteaga and Siciliano (2000)]. A control law is proposed which is based on
the passivity-based control approach with filtered reference velocity [Or-
tega and Spong (1989)]. It is proven that the desired trajectory for the link
coordinates remains bounded. The no damping case is also treated and
robust control techniques are used to increase the damping of the system
[Dawson et al. (1991)].

A problem which deserves special attention regards the possible lack of
measurement of link deflection rates, which typically requires the use of an
observer. In addition, even though joint positions can be measured very
accurately, tachometers (used to measured joint velocities) may not deliver
reliable signals. That is why nonlinear observers are recommended to esti-
mate joint speeds. In [Arteaga (1996a); Arteaga (1996b)] an observer for
flexible robot manipulators is proposed. Although it is possible to mea-
sure link coordinates by using a strain gauge for each coordinate [Arteaga
(1995)], the observer requires only a sensor for every flexible link. How-
ever, since it is designed independently of any control scheme, the stability
of this observer together with the controller proposed in [Arteaga (1996c¢);
Arteaga and Siciliano (2000)] and presented in this work can no longer be
guaranteed. To overcome this difficulty, a new observer based on that given
in [Nicosia and Tomei (1990)] is proposed [Arteaga (2000)]. In order to en-
sure enhancing of the damping of the system, some essential modifications
are necessary.

The work is organized as follows: Section 1.2 briefly describes the kine-
matics of flexible robot manipulators and their dynamic modelling. Some of
the most important properties of the model are listed. In Section 1.3, con-
trol of flexible manipulators is studied. By using robust control techniques,
the damping of the system is increased. Since it is not always possible to
measure link coordinate rates, a nonlinear observer is proposed in Section
1.4 in order to estimate them. Some simulation results are presented in
Section 1.5, while Section 1.6 gives some concluding remarks.
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1.2 Modeling

A common way of modeling flexible robot manipulators is using the so—
called combined Lagrange—assumed modes approach [Book (1984); De Luca
and Siciliano (1991); Yuan et al. (1993); Canudas de Wit et al. (1996);
Arteaga (1998)]. In this case, it is necessary to describe the kinetic and
potential energy of the system adequately. In order to compute them,
it is advantageous to know the kinematics of the manipulator, which can
be achieved by setting coordinate frames along the joint axes. In this
section, the kinematics of flexible robot manipulators is briefly studied. By
using Lagrange equations of motion, the dynamic model of this class of
manipulators is derived in Section 1.2.2 and in Section 1.2.3 some of its
most important properties are presented.

1.2.1 Kinematics

It is well known that the kinematics of a rigid robot manipulator can be de-
scribed by employing the Denavit-Hartenberg representation [Denavit and
Hartenberg (1955)]. The main idea is to use 4 x 4 transformation matri-
ces which can be determined uniquely as a function of only 4 parameters.
However, this procedure cannot be used directly to describe the kinemat-
ics of a flexible robot manipulator due to link deformation. In order to
overcome this drawback, the procedure has been modified in [Book (1984);
Book (1979)] by including some transformation matrices which take link
elasticity into account. A description of the Denavit—Hartenberg represen-
tation for rigid manipulators is assumed to be known. Fig. 1.1 depicts a
portion of the serial chain for a flexible robot manipulator. The case of
revolute joints is considered.

Consider two coordinate frames 4 and j. Their mutual position and
orientation can be expressed in terms of the homogeneous transformation
matrix

(1.1)

. IR id;
]TZ':|:RZ dl:|

o7 1

where /R; is the 3 x 3 rotation matrix describing the orientation of the
axes of frame 4 and 7d; is the 3 x 1 vector describing the origin of frame i,
both with respect to frame j; also, in (1.1) 0 denotes a 3 x 1 vector of null
elements.
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Fig. 1.1 Flexible manipulator serial chain.

The position of a point on link 7 with respect to frame 4 is given by

M
Pi= Vi - (1.2)
=]
However, it is not possible to use a homogeneous transformation with a
vector of the form (1.2), so that it is necessary to rewrite it as

ip, 2 [lﬂ . (1.3)

To express the position of this point in frame j, a homogeneous trans-
formation is used, i.e.

j’l"i = jTiiT‘i. (14)
In the case of the base frame one has
Op; 2 r; ="T;'r; 2 T;'r;, (1.5)

where the superscript 0 has been conveniently dropped.

In general, the homogeneous transformation of frame ¢ with respect to
the base frame can be characterized through the following composition of
consecutive transformations:

O, 2T, = A\E\AsE, ... A 1\Ei 1A 2T 1 A, (1.6)

N
T 1 =T; 1E; 1 (1.7)

Tl = Ala (]‘8)
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Zi

Yi

z; x;

a) b)
Fig. 1.2 a) Rotation of a coordinate frame; b) Rotation of a coordinate frame due to
deformation of the flexible link.

where A; is the standard homogeneous transformation matrix for joint i
due to rigid motion and E; is the homogeneous transformation matrix due
to link 7 length and deflection. Notice that, even though the superscript is
not explicitly indicated, each transformation matrix is referred to the frame
determined by the preceding transformation.

The transformation matrix A; can be computed just like in the case
of rigid robot manipulators [Sciavicco and Siciliano (2000)]. On the other
hand, the transformation matrix F; deserves special attention. Firstly,
consider the general form of a rotation matrix / R; between two coordinate
frames of common origin (see Fig. 1.2 a)) [Sciavicco and Siciliano (2000)]:

_ xlx; ylz; 2Tx; cos(fz,x;) cos(By x;) cos(fz,x;)
‘Ri= |a]y;yly; zly; | = cos(fz;y,) cos(By,y,) cos(fzy,) |,
xlz; yTz; 272 cos(0z,z;) cos(By, z;) cos(bz,z;)

(1.9)
where x, y, z denote the unit vectors of the respective axes. Then, the
relationship between /p; and ‘p; is given by

’p; ='Ri'p;. (1.10)

From (1.9), it can easily be understood that the knowledge of the an-
gles 0., - - -0z, z, is enough to compute JR;. With this background, the
matrices F; can be determined as follows. Consider Fig. 1.1 again and
assume that the z—axis of frame i is along the link. Assuming small link
deformation [Book (1979); Meirovitch (1967); Meirovitch (1975)], E; can
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be expressed as [Book (1979)]

1 cos(m/2+0,) cos(m/2 — 6y,) l; + 6y,
o cos(m/2—46,,) 1 cos(m/2 +6,,) Oy, (1.11)
! cos(m/2 + 6,,) cos(m/2 — 6,,) 1 Je. ’ ’

0 0 0 1

where 6,,, 0, 0., are the angles of rotation, and §,,;, J,,, J,, represent
link 7 deformation along z, y, z, respectively, being /; the length of the link
without deformation. The angles of rotation 6,,, 8,,, 6., are depicted in
Fig. 1.2 b). By taking into account the fact cos(r/2 + a) = —sin(«) and
assuming small angles, so that sin(a) & « is valid, the matrix E; can be
approximated as

1 -0, ayi li + g,

i

_ b, 1 =6, 61}1‘
E; = o, 6. 1 & | (1.12)

i i

0 O 0 1

By using the homogeneous transformation matrices A; and E;, the po-
sition of any point along the robot manipulator can uniquely be determined
from Egs. (1.5), (1.6) and (1.12).

1.2.2 Dynamics

In order to obtain a set of differential equations of motion to adequately
describe the dynamics of a flexible-link manipulator, the Lagrange’s ap-
proach can be used. A system with n generalized coordinates ¢; must
satisfy n differential equations of the form

doL oL oD

—— — — + = = U ZZI,,TL, 1.13
dt 0q; 0Oq;  0¢; (1.13)

where L is the so called Lagrangian which is given by [Wellstead (1979)]
L=T-U (1.14)

T represents the kinetic energy of the system and U the potential energy.
Also, in (1.13) D is the Rayleigh’s dissipation function which allows dis-
sipative effects to be included, and u; is the generalized force acting on
qi-

To compute the kinetic energy of the system, the manipulator kinemat-
ics can be described systematically as explained in the previous section.



January 27, 2003 15:39 WSPC/Book Trim Size for 9in x 6in CHAPTERn

8 Advanced Studies in Flexible Robotic Manipulators

The kinetic energy of link ¢ link can be expressed as

1 dr; drT
- AR B ) dm, 1.1
T link; a7 2 /linki ' < di dt > dm (1.15)

which implies that the kinetic energy for the whole system is

" 1« dr; drT
— == T d ; 1.1

Tr(-) represents the trace operator of a square matrix. By accounting
for (1.5), the kinetic energy (1.16) can be written in the form

1, .
T = §qTH(q)q, (1.17)

where

S [02(t) - On(t) G1a(t) By (8) 1 (£) - Grum, (D] (1.18)

= [q10®) - guo(®) @1 (t) - qrmy () - @1 () - -~ G, (8)] "

q(t)

is the vector of generalized coordinates which is formed by the rigid co-
ordinates 61...0, (qio---gno) and the flexible coordinates 011 . ..0nm,
((Jn . qnmn), and

Hy(q) Haa(‘l)] (1.19)

is the inertia matrix. In particular, Hgg(q) is associated to the rigid co-
ordinates, Hys(q) takes into account the relationship between the flexible
and rigid coordinates, and Hs5(q) is associated to the flexible coordinates.

In order to find an analytical form for the inertia matrix, it is neces-
sary to describe the deflection and torsion of each link as a function of
the link coordinates. These can be expressed according to the so—called as-
sumed modes method, i.e. [De Luca and Siciliano (1991); Yuan et al. (1993);
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Meirovitch (1967); Meirovitch (1975)]

Ous = Gui0ij  Oa; =Y 020y (1.20)
j=1 Jj=1
j=1 j=1

D I R N (1.22)
j=1 j=1

where ¢g,;, by G2y (Baiys Oy, 02,;) are the spatial mode shapes used
to model the deflection (torsion) of link ¢, being m; the number of link
coordinates.

From (1.16), the elements of Hyy(q) can be computed as

n . ~ R \T
hoowo = 3 T ((Ta_lvaan) Fi (T0aUWT) ) (1.23)
i=max{a,h}
with
A
hTZ = Ah+1Eh+1Ah+2Eh+2"'Ai—lEi—lAi (1‘24)
hTi é EhhTi (125)
JAN 8Ah
U, 2 1.26
" Oqno ( :

m; mq
F; 2 Ci—f-Z(si]‘ ((Ci]‘ +C£~)+25ikcikj> =F] (1.27)
j=1 k=1

A
C; = / (25 yi 2z 1" [z ys 25 1]dm (1.28)
link;
A T
Cij = (i yi 25 1] [2ij Dyij P25 Oldm (1.29)
link;

A
Cirj = /1 N [Pire Pyt Dzik O [Buij Pyij Pij O)dm = Czrjka (1.30)

the elements of Hgs(q) can be computed as

n
hnoos = et > Tr ((Th—thhTi) F, (TaNaﬁaTi)T) (1.31)
i=max{h,a+1}
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with
0 if h>a«

e Tr ((T,HUhhTa) DaﬁTZ) ifh<a

0 _gzozﬁ Gyaﬁ ¢maﬁ
A gzaﬁ 0 _gzaﬁ ¢ af
N,z = Y 1.32
af _gyaﬁ amaﬁ 0 ¢zaﬁ ( )
0 0 0 0

Ma
Daﬁ é Caﬁ + Z‘Sakcakﬁa (133)
k=1

and the elements of Hss5(q) can be computed as

hhkas = NMha + Z Tr ((ThNhkhTi) F; (TaNaBaTi)T) (1.34)
i=max{h,a}+1

with

Tr (ThchkﬁTf) ifh=a

Mhe = 4 Tr ((ThNhkhTa) DaﬁTg) ifh<a

| ((TaNagaTh) thT,{’) if h > a.

Notice that Hygy(q) and H s5(q) are symmetric, so that it is only necessary
to compute the terms for which h > a.

The next step is to compute the potential energy of the system. In a
flexible-link manipulator there are two sources of potential energy: link
gravity and link elasticity.

The differential element of gravity potential energy of link i is given by

didy; = —gd Ti'ridm (1.35)
where

go = [gac 9y 9z O]T (1'36)
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is the gravity vector expressed in the base frame. The total gravitational

energy is
=g} ZT hi (1.37)
with
hi £ Mil; + Z dik Sik (1.38)
k=1
Sik = / [Gair dyir D=ix 0] dm, (1.40)
link;

where [; is the vector from joint i to the center of gravity when link 7 is
undeformed and M; is the total mass of the link.

The strain potential energy associated to the deformation of link i is
given by [Yuan et al. (1993)]

2 2 9 2 2
Us; :%/nnki (Ely (%) +EL (38;5?) + EqJ, (%i:) )dmi,
(1.41)
where E is Young’s modulus of elasticity, I,, (I.) is the area moment of
inertia of the link about an axis parallel to y (z) through the center of mass
of the cross section, E¢g is the shear modulus, and .J, is the polar area
moment of inertia of the link about the center of mass. The integration in
(1.41) is carried out along z—axis. Notice that in (1.41) the compression in
the x direction has been assumed to be negligible. In view of (1.20)—(1.22),
Eq. (1.41) can be rewritten as

Z Z 8i50ik (kyiyn + sy + kaiyn)s (1.42)
] 1 k=1
where ky, ., ky, .., k=, are the stiffness coefficients given by
df,,; df,
kay,\ = EgJ,—2 —"%*dg; 1.43
T i O dy day (1.43)
d2¢ d2¢
by, = EI,—1 —2t g, 1.44
Yijk link, Yy dﬂf d 2 ( )
d*¢s,; d2¢z e
ke = EI, ;. (1.45)

2 2
link; dz dz
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The total elastic energy is

n m4 My

U, = % SN biidinkin (1.46)

i=1 j=1 k=1
with
A
kijk = kyz'jk + kzz'jk + sz‘jk = kikj (1-47)
or in matrix form:
1.7 1 ]OO Al g
=_0 K6 =- =_qg' K 1.4
U= 56" Kb =g [OK}q 54 Keaq. (1.48)
where
A T
8= [011 - Oty On1 o Sy | (1.49)
is the vector of flexible coordinates, and
[ Ky - Eitm, -+ 0 ]
klmll tee k1m1m1
K=| : : (1.50)
k'nll knlmn
0 - R TR —

is called the stiffness matrix.
By taking (1.14), (1.17), (1.37) and (1.48) into account, the Lagrangian
can be written as

1

n
_ . T .
£L=5(q"H(@)a-q"Kcq) +95 Zl” (1.51)

In order to model link modal damping and joint viscous friction, the
Rayleigh’s dissipation function can be employed with the use of a matrix
D so that [Meirovitch (1967)]:

D= %qTDq . (1.52)
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Expressing (1.13) in matrix form yields
T T T
L(O2Y_(95) 4 (22) —y (153)
dt \ 9¢q dq 0q

u? [H (1.54)

where 7 is the n X 1 vector of the joint torques, and 0 denotes an m x 1
vector of null elements (m = m; + --- + m,,) accounting for the fact that
no generalized force acts on the flexible coordinates § as long as clamped

with

boundary conditions at the joint side are assumed.
Then, substituting (1.52) into (1.53) and accounting for (1.51) leads to

H(q)g+h.(q.q) + Kc.q+ Dgq+g(q) =u, (1.55)
where
AN LN -
he(q,q) = C(q,q)q (1.56)

is the vector of Coriolis and centrifugal forces with

n m;
Crsaf = Z Z cijaﬁrsqij (157)
i—1 j=0
Al 8hrsaﬁ 8hrsij 8hijoz,6‘
aprs = 5 - 1.58
Cidadre = 3 < 04qij * 0qap 04ys (1.58)
CijapBrs = CafBijrs (159)
n
JT; .
—QUTZWT:hi ifs=0
i=r
9rs = (160)
n
oT;
T i )
—g (lzzr;rl Das h; + Trsrs> if s # 0.

1.2.3 Model Properties

In this section some properties of model (1.55) are presented. Many of
them are rather physical properties while other arise from the procedure
used to derive the dynamic model of the manipulator. Several of these
properties are similar to those of rigid manipulators. As a matter of fact,
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the properties presented in the following apply to rigid manipulators just
by letting the link deformation be zero.
Hereafter, the Euclidean norm for vectors is used, i.e.

A
llall = (1.61)
The norm of a matrix A is the corresponding induced norm
A T
”A” = )‘max(A A); (162)

where Amax(+) (Amin(+)) denotes the largest (smallest) eigenvalue of a ma-
trix. Since all norms in R" are equivalent [Desoer and Vidyasagar (1975)],
the results presented in this section are valid for any norm in R".

A well-known property of the dynamic model of a robot manipulator is
the following one.

Property 1.1  The inertia matrix H(q) is symmetric positive definite.

Proof: 1t can be seen directly from (1.19), (1.23), (1.31) and (1.34) that
H(q) is symmetric. Since the kinetic energy of any mechanical system
can be zero if and only if the system is in a steady state, and otherwise
it is always greater than zero, it follows from (1.17) that H(q) is positive
definite.

A

The next property is very important. It is related to the passive struc-
ture of robot manipulators and it is frequently used in the proof of many
control schemes. It gives a relationship between the inertia matrix H(q)
and the matrix C(q,q) employed to compute the vector of Coriolis and
centrifugal torques.

Property 1.2  The matrix N(q, q) = H(q) —2C(q, q) is skew symmetric.

Proof: Every element of H(q) satisfies

Ohysa
rsaﬁ = Z Z aqwﬁ i (1.63)

i=1 j=0

By taking (1.57) and (1.58) into account, the elements of N(q, q) can be
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computed as

A .
Nyrsag = hrsaﬁ - 2crsa,[3

— zn:i <ahrsaﬁ _ <ahrsaﬁ + ahrsij _ ahuaﬁ)) q”

i=1 j=0 94 Dqi; 0qap Oqrs
n my
S [ Ohy; Ohrsii \ .
=22 < il J) ij- (1.64)
i=1 j=0 qrs Qap
Since hrsaﬁ = haﬁrs, the property holds true. N

Note that Property 1.2 has been proven using the definition of C(q, q)
which is in terms of the Christoffel symbols. Since there are many possible
definitions for C(q, q), it is worth pointing out that

q"(H(q) —2C(q,4))q =0 (1.65)

is always true no matter what definition of C(q,q) is used [Ortega and
Spong (1989)]. To show this, rewrite (1.53) and (1.55) as

T T
% (%) _ (%) =v=H(q)§+C(q,9)q+ K.q+g(q) (1.66)
with

¥ 2 u— Dq. (1.67)

The Hamiltonian of the system is given by [Ortega and Spong (1989);
Greenwood (1977)]

H=nTq-L, (1.68)

where the generalized momentum 7r is defined as

7= (a_g)Tl (1.69)

On the other hand, by using (1.51), (1.68) and (1.69), the Hamiltonian
can be expressed as the sum of the kinetic and the potential energy of the
system, i.e.

1 1
H= EqTH(q)q + EqTKeq +U, =T +U, (1.70)
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while the Hamilton’s equations are given by

. oH

e 1.71
=3 (1.71)
ﬁi:—gz—f-z/)i i=1,...,n+m. (1.72)

By employing (1.71) and (1.72), the derivative of H can be computed
as

A "on . "o, .
o2 gyl g =AY (173)
i=1 ! i=1 i

Egs. (1.66) and (1.70) can be used as well to obtain d#/dt, i.e.

dH . I o (OUN\T
L _¢TH —¢TH K. b ]
3 4 (mq+2q (@)a+q q+4q 94

="+ 50" (H(@) - 2C(@.9) @ (1.74)

By comparing (1.73) and (1.74), one can conclude that (1.65) is valid for
any possible choice of C(q, q).

The following property holds for the vector h.(q,q) of Coriolis and
centrifugal torques.

Property 1.3  The vector h.(q, q) of Coriolis and centrifugal torques sat-
isfies the equalities:

h‘C(qamay) = C(q,X)y = C(qay)m = hc(qayvm) V:L',y € %n+m(175)

Proof: The element rs of vector h.(q,x,y) can be expressed as (see
(1.56) and (1.57))

n m;
hcrs (qa may) = Z Z Z Z CijaprsTij

a=1p=0 \i=1 j=0

Yap (1.76)

N——

i n Ma

n m
- Z Z Z Z CijapBrsYap

i=1 j=0 \a=13=0

:Ifij
m; n Ma

n
- Z Z Z CaBijrsYap

i=1 j=0 \a=13=0

Tij = hcrs (qa Yy, m)

N— SN
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Due to the orthogonality of the modes shapes of a flexible-link manip-
ulator, the following property can be obtained.

Property 1.4  The stiffness matrix K is diagonal and positive definite and
satisfies

Amin (K)||2]]? < 2T K2 < Apax (K)||z||?> V2 € R™. (1.77)

Proof: To prove the positive definiteness of the stiffness matrix, the def-
inition of its elements can be used (see (1.43)—(1.45) and (1.47)). Since the
mode shapes are orthogonal [Meirovitch (1967)], the result of the integrals
must be zero if j # k and positive otherwise. Eq. (1.77) follows from the
fact that K is positive definite.

A

Regarding the matrix D of link modal damping and joint viscous fric-
tion, the following property can be established.

Property 1.5 The matrix D is diagonal positive semidefinite and satisfies
Amin(D)||2]|? < 2T Dz < Apax(D)||z||*>  Va € R, (1.78)

Proof: D is positive semidefinite because it is defined on the basis of
the Rayleigh’s dissipation function (see (1.52)). Assuming it to be diagonal
is actually a special but very important and common case of the definition
of the Rayleigh’s dissipation function [Meirovitch (1967)].

A

Finding bounds on the norms of the matrices of model (1.55) plays an
important role in the control of robot manipulators because such bounds
are helpful for design of many control schemes. Norm bounds are especially
advantageous when Lyapunov theory is used. As a matter of fact, for any
mechanical system, the vectors ¢ and ¢ are bounded. Taking only link
deformation into account and in view of the small deformation assumption,
the potential energy due to elasticity cannot be infinite, i.e. U, < oo [De
Luca and Siciliano (1993b); De Luca and Panzieri (1994)], so that it is
possible to find a bound for the vector of link coordinates 4.

Property 1.6 The norm of 4 is bounded by

2Ue,max A

< —_—
1911 < /055

J, (1.79)
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where U, max is the maximum of the link strain potential energy.

Proof: In view of the assumption of small link deformation, there must
be a maximum link strain potential energy. Directly from (1.48) it is

0K 3 < 2U, max < 00, (1.80)

from which Property 1.6 follows by taking Property 1.4 into account.
A

Notice that Property 1.6 means that § belongs to a set A whose elements
are bounded. For simplicity, every vector ¢ € " x A C R will be
assumed to belong to a set Q"T™,

The next four properties are related to the inertia matrix and can easily
be derived from Property 1.1.

Property 1.7 The inertia matrix H(q) satisfies

Amin(H(@)ly|]> < y"H(q)y < Amax(H(Q))||ly]> Yy € R"T™.(1.81)

Proof: Since H(q) is positive definite, each vector y in R"*™ can be
expressed in terms of an orthonormal basis (y,...,¥, ) as

n+m

y=Y e (1.82)
i=1

implying that

y H(q)y = M\ (H(Q) + - + ¢y mAnim(H(q)) (1.83)
yy=llyl> =i+ + (1.84)
from which (1.81) follows. A

Property 1.8 The matrix H ~'(q) exists and satisfies
Max(H@)lylI? < y"H™ @)y < \ofa(H(@)||lyll> Consaidvy € RTIRS)

max min

Proof: This property follows directly from Property 1.7. A

Property 1.9 The inertia matrix satisfies

A < H(g)]| £ A < o0. (1.86)
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Proof: Since the vector of generalized coordinates is bounded, i.e. ||q|| <
0o, it is easy to see from (1.81) that

Ap = min  Apin(H 1.87

h= g ln (H(q)) (1.87)

A= max Amax(H(q)). (1.88)
qEQn+m

A

Property 1.10  The inverse of the inertia matrix satisfies
on < |H (@)l < o < 0. (1.89)

Proof: The proof is the same as in Property 1.9 with

= min AL (H 1.90
Oh = dun max (H (q)) (1.90)
= AL (H(q)). 1.91
o = x| min (H (@) (1.91)
A

It is easy to recognize that Properties 1.7 to 1.10 are closely related.
Of course, by taking only Property 1.7 into account, it is not difficult to
develop the other three properties. These properties are very important be-
cause many Lyapunov functions employed to prove the stability of a control
approach make use of the inertia matrix and its boundedness properties.

Since g is bounded, it is possible to find the following bound for the
matrix C(q, q).

Property 1.11  The matrix C(q, q) satisfies

1C (g, DIl < kellall- (1.92)

Proof: From (1.57), it can be seen that matrix C(q,q) can be written
as

sl .
Clq.q) = Ezzcij(qmij, (1.93)
i=1 j=0
so that each element of matrix C;;(q) is given by

ahrsaﬁ ahrsij ahijaﬁ
+ - :
aQij a(JaB 8(]7"3
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Computing the norm of C(q, q) leads to

n mq

chij(Q)qz‘j (1.94)

i=1 j=0

1C(g, )l

N | =

n mq

%ZZ 1Ci; (@) disl|

i=1 j=0

= 23S ey @l iy

i=1 j=0

S Ies @l lall

i=1 j=0

IN

IN

With

n  m;

1
2 x> lICy@l (1.95)

i=1 j=0

k.2

Property 1.11 follows. A

It is worth noticing that Property 1.11 applies to every vector y € R*T™.
Because the vector of gravitational torques g(q) is only a function of q,
one can find a bound related to it as well.

Property 1.12 The vector of gravitational torques g(q) is bounded by a
constant g, > 0, i.e.

llg(@)ll < oy. (1.96)

Proof: Since

(1.97)

it should be proven that each term g, is bounded. By recalling that q is
bounded and taking (1.60) into account, it can easily be seen that each g,
is bounded, so that (1.96) follows. A
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1.3 Nonlinear Control

Perhaps the most relevant issue in controlling flexible robot manipulators
resides in the fact that there are fewer inputs than degrees of freedom,
thus making impossible to choose a desired trajectory for each generalized
coordinate. An obvious solution to this problem consists in renouncing to
choose an arbitrary trajectory for the link coordinates and select only one
for the joint coordinates. By doing so, a new difficulty might arise: since
the desired trajectory for the link coordinates is computed to achieve some
control goal for the joint coordinates, it is necessary to guarantee, at least,
that it remains bounded. In Section 1.3.1, some stability theorems related
to the boundedness of the state of a system are presented. Although they
are mainly used to design robust controllers, it will be shown in Sections
1.3.2 and 1.3.3 that they can be employed to design controllers for flexible
robot manipulators as well. Section 1.3.2 presents a controller based on
the well-known approach with filtered reference velocity at the basis of
passivity. The damping problem is specifically treated in Section 1.3.3,
where a solution to increase damping is proposed.

1.3.1 State Boundedness
Consider a dynamical continuous system

T = f(xz,t) x(tg) = xo (1.98)
where f(-) : " x ® - R™ is known and « is an n x 1 vector.

Definition 1.1 [Leitmann (1981)] Given a solution () : [to,t1] — R
of (1.98), we say that it is uniformly bounded (UB) if there is a positive
constant d(xg) < oo, possibly dependent on &y but not on ¢y, such that

lz())] < d(zo) VYt € [to, t1]. (1.99)
A

Definition 1.2  [Leitmann (1981)] Given a solution x(-) : [tp, 00) — R" of
(1.98), we say that it it uniformly ultimately bounded (UUB) with respect
to the set S if there is a non-negative constant T'(xg,S) < oo, possibly
dependent on xg and S but not on ty, such that

z(t)eS Vit >ty + T(xo,S). (1.100)
A
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Notice that if the constants d(xo) in Definition 1.1 and T'(xo, S) in
Definition 1.2 are independent of xg, then we say that the solution is
globally uniformly bounded (GUB) or globally uniformly ultimately bounded
(GUUB). The next two theorems are related to the stability of a system of
form (1.98).

Theorem 1.1 [Dawson et al. (1991)] Let a continuous system be de-
scribed by (1.98) and let V (x,t) be an associated Lyapunov function with
the following properties:

Mllz®)]? < Vix,t) < Xoll2()] (1.101)
V(z,t) < —As||z(t)]]® + ee P (1.102)

V(x,t) € " x R, where A\, A2, A3 and € are positive scalar constants. If
B =0 1n (1.102), then the state x is GUUB in the sense that

A< [ X2QzlPe™ 4 (1 — e v 1.103
el < (Ellealle ™ + 151 -)) (110)

where A1, A2, Az are defined in (1.101) and (1.102) and X = A3/ 2. If
B > 0 in (1.102), then the state x is globally exponentially stable (GES)
in the sense that

ﬁ||m0||2e**t + e v if 8=\
A\ A

22 g 2e N 4 (B e N v if B# A
2 0 M= 3)
(1.104)

where A1, A2, A3 are defined in (1.101) and (1.102) and X = A3/ \s. A

Theorem 1.2 [Dawson et al. (1991)] Let a continuous system be de-

scribed by (1.98) and let V (x,t) be an associated Lyapunov function with
the following properties:

Ml (t)]?

V(z,1)

V(x,t) < Xo|z(t)]? (1.105)

<
< =Xsllz@I + [lx(t)]joe™ (1.106)

V(x,t) € R™ x R, where A1, \a, A3 and o are positive scalar constants. If
v =0 in (1.106), then the state x is GUUB in the sense that

o0l < <= (Viallolle 2+ § (1=22) ). (uaon)
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where A1, A2, A3 are defined in (1.105) and (1.106), ( = o/v/A1 and X =
As/Ao. If v > 0, then the state x is GES in the sense that

1
Vos <\/)\2||$0||e)‘t/2 + gte”ﬂ) if A=2y

()] <
L —At/2 L -yt —At/2 .
" <\/)\2||m0||6 M (e e ) if A # 2y
(1.108)
where A1, A2, A3 are defined in (1.105) and (1.106), ( = o/v/A1 and \ =
As/Aa. A

1.3.2 Tracking Control

In this section, the tracking control problem of flexible manipulators is
studied. Consider model (1.55) again:

H(q)4+C(q.4)q+ Kcq+Dg+g(qg) =u (1.109)

with u as in (1.54).

Given a bounded continuous desired trajectory q,, with bounded ve-
locity ¢, and acceleration g,, the tracking errors ¢ and g can be defined
as

—q, (1.110)
—qy, (1.111)

Qe
> 1>
R

Before the controller can be introduced, the following definitions are
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necessary:
VAN ~ A BT éd—Agé
= —_Ag=1|- = |- ~ 1.112
9r =44~ [m] [6d—A56] (1.112)
séd—qrszAfzé[zo] (1.113)
4
A -Ag O
A= 1.114
5 o] (1.114)
s [Kp O
K, = 0 Kpa] (1.115)
A -Dg O
D = 1.11
| O D,j] ( 6)
A K g+ Dy (0 A | Kypg O
K,p=K D= P = P 1.11
0 =Rt [ 0 Kp5+DJ [ O Ky }( L
2 [ Co(q,q) Cos(q,q)
Clq.9) = [ : . 1.118
(¢.4) Cs0(q.q) Css(q,q) ( )
AN
9(q) 2 [90] , (1.119)
s

where A and K, are diagonal and positive definite.
The proposed controller is given by

T = H999T+H955r+C’999T+C’955T+D99T+99—Kpgsg, (1.120)
while the desired trajectory d4 is computed from

84=As0 — Hy3 (Cs56, + Dsb, — Kpss5 + Kdg+ Hj30, + Cs00, + g5)
(1.121)
with initial condition

84(0) = 64(0) = 0. (1.122)

It is not difficult to realize that Eqs. (1.120) and (1.121) are equivalent
to

u = H(q)qr + C(qaq)qr + Keqd + Dq’r‘ +g(q) - KPS‘

Notice that in contrast with the control given in [Lammerts et
al. (1995)], the term K. is not multiplied by g, but by q,. It will be
proven that d4 and d, computed from (1.121)—(1.122) are bounded.
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By substituting (1.123) in (1.109), the error dynamics can be expressed
as

H(q)s=—-(C(q,q)s+ K.q+ K,ps). (1.123)
In order to simplify the stability discussion, the state x is introduced:
z 2 [?} . (1.124)
q

By taking advantage of the fact that for any mechanical system the
velocity vector g is bounded, the following theorem establishes the bound-
edness of d; and d, and the stability of x.

Theorem 1.3 Given a bounded continuous desired trajectory 64 with
bounded wvelocity and acceleration, if ||q|| < vm, where v, is a positive
scalar constant, then the desired trajectory d4 and 84 given by (1.121) and
(1.122) remains bounded. In addition, by using the input vector (1.120),
the equilibrium point & = 0 of (1.123) is globally asymptotically stable.

Proof:

a) In order to prove the asymptotic stability of &, consider the Lyapunov
function V(x,t) = V(x):

1 . 1 .
V(x) = §STH(q)s +q7 <AKpD + 5K6> q.

Its derivative along (1.123) is

V(a) = %STH(q)s +aTAK, pd+ @ AK, i+ §TK.g  (1.125)
-5"(C(q,q)s + K.q+ K,p5)
="K, ps+ 4" AK,pG+§G"AK,pg—s"K.q+q"K.q
=—(@"+3"MK,p(q+Aq) +§"AK,pq+ 3 AK,pq
-(@"+§"MNK.qg+q"K.q
= —q"K,pq -4 (AK,pA + AK,)q
= —z1Qux

<0

with

1>

AK,pA +AK, O

@ o) K,p
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To compute (1.125), Property 1.2 has been used. Because Q > O, V (x) is
0 if and only if & = 0, which implies that the equilibrium point is asymp-
totically stable ([Vidyasagar (1978)], p. 154).

b) To prove the boundedness of d, and &4, consider the following nota-

tion:
A .
So =04+ Asdy (1.126)
xs 2 [‘?d} (1.127)
04
and simplify (1.121) to get
Hsss0 = —(CaaSo-FKpDaSO-{—K(sd—I-‘fr) (1.128)

I é Hg:;ér + CMGT +9s — H55A55 — Cs5A50 (1.129)

—D;sA50 — K ,5(8 + Asd).
Since ||g|| < oo and ||g|] < v, the vector f, is bounded by a positive

constant frmax, i-€. [|f,|| < fr.max (see Properties 1.9 to 1.12).
Consider the Lyapunov function Vs(zs,t) = Vs(xs):

1 1 1
Vs(xs) = §SoTH55$0 +6] (AéKpD6+§K> 0q = §$5TM5135,(1-130)

with

M é [2A6KpD6 +K+A5H55A5 A5H55:| .

H ;A5 H;

Since M > O, there exist two constants A\; and A, such that

Mllzsl|® < Vs(zs) < Xoflzs|)? (1.131)
Al .
A= 3 qengunrirm Amin (M) (1.132)
Al
A = 5 g Amax (M). (1.133)

The derivative of (1.130) is

1 . T .
V;;(:l:(;) = §S§H§580 + 6d AaKpD(;éd + 6,£A5KpD66d (1.134)

T )
+6,Ké4+ S%Hagso.
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Evaluating (1.134) along (1.128) and taking Property 1.2 into account yields

V(xs) = %sg’maso 40y AsK ppsda+ 05 AsK ypsda + 55 Koy (1.135)
—s8(Css80 + K,psso+ Kdg+ f,)
= —sTK,psso + 04 AsK ppsda + 6T AsK ypsda — sTKd,
6 Kd,— T,
—(5dT + 05 M) K pps (84 + Asda) + 5§A6KpD56d + 07 AK ,psda
—(by + 0T A KOy + 5y Kbg— sTf,
= 51 K psda — 0T (AsKppsAs + AsK)dg — sTf,

—z! Pxs; — sl f,

< —A3||(L‘§||2 - sgfr
with
p A A5KpD5A§ +A;s K O
o K, ps

and

A

As 2 Amin(P) (1.136)

= min{Amin(KpD(S); >\min (A5)2>\min (KpDé) + >\min (Aé)Amln(K)}

Since

lIsoll = 164 + Asdall < 18all + Amax(As)l1 64l (1.137)
< (1 + Amax(As)) 5],

Eq. (1.135) can be rewritten as

Vi(@s) < —Xallzsl® + (1 + Anax(As)) framaxl2s]| (1.138)

—Asllzs|* + o s

By applying Theorem 1.2 with v = 0, it can be proven that ||;|| is bounded.
A

Now, suppose that the desired trajectory 6, is constant and assume
that = 0. In this case (1.121) becomes

H55Sd + C(M&d + D,;iid + Kdq4 +gs5s=0.
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Assume that the vector g is only a function of @ [De Luca and Siciliano
(1993b); De Luca and Panzieri (1994)], i.e. g5(q) = g;(6). Since 6, is
constant and 6; = 6, the vector g; is constant as well, so that a new
variable y can be defined:

y=6.+K g, (1.139)
and (1.139) can be rewritten as
Hssy + Cssy + Dsy + Ky = 0. (1.140)

Consider the Lyapunov function
Vy(y,9) = %yTKy + %QTHM:I)- (1.141)
Its derivative along (1.140) is
V, =9 Ky + %QTHM?'J + 9" Hssi (1.142)

=9 Ky + 54" Hssy — " (Cos) + Dsyy + Ky)
= -3 " Dsy < 0.

Property 1.2 has been used to compute (1.142). Assuming that Ds > O,
Vy is 0 if and only if ¢ is 0. By applying the invariant set theorem, it can
be proven that the equilibrium point ¥ = y = 0 of (1.140) is asymptotically
stable [De Luca and Siciliano (1993a)]. When y = 0, 8,4 becomes —K ' g;,
which is the same result as in [De Luca and Siciliano (1993b); De Luca and
Panzieri (1994)].

1.3.3 No Damping

In the preceding section, a nonlinear controller for the tracking problem of
flexible robot manipulators was introduced. By studying the case when the
desired trajectory for the joint coordinates is constant and the error vector
x = 0, Eq. (1.139) was obtained. Assuming that Ds > O, it was proven
that d4 — —Kﬁlga. Although this is the case for any mechanical system,
if the elements of Dy are small, it may last before possible oscillations dis-
appear. Therefore, it is desirable that the controller increases the damping
of the system.

Suppose that Ds = O. Since (1.139) belongs to the controller rather
than to the manipulator equations of motion, it is always possible to add,
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arbitrarily, a term Dadg, with Da diagonal and positive definite. If x — 0
were still true, then the desired trajectory of the link coordinates would be
damped and as a direct consequence of this, the real trajectory 4 too.
Of course, by doing so, the stability analysis of Section 1.3.2 is no longer
valid. However, if the term D Adgq is treated as a well-known perturbation,
some robust control techniques [Dawson et al. (1991); Leitmann (1981);
Corless and Leitmann (1981); Qu and Dawson (1991); Spong (1992); Yaz
(1993)] can be used to guarantee that = — 0.

Consider the following equation to compute the desired trajectory d4
and 6d:

B4 = Asd — Hy} (Cssb, + Dsb, — Kpyss + Kb (1.143)
+ Hz:;ér + Caagr +gs5+ DAéd + 1)

with initial condition
04(0) = 64(0)=0 (1.144)
and

A (aijSsi)dij
fij = —0dij — -
10aijss5ij]] + €ije P

i=1,...,n j=1,...,m; (1.145)

where s4;; is an element of sg, Sdij is an element of 5d, fij is an element of
f and d;; is an element of Da. Control (1.120) together with (1.143) can
be expressed as

u = H(q)qr + C(qaq)qr + Keqd + qu +g(q) - Kps + fl’ (1146)

with

A 0
fi= [DA5d+f} . (1.147)

By taking (1.146) into account, the error dynamics becomes
H(q)s = —(C(q,q)s + K.q + Kpps) + f4. (1.148)
Theorem 1.4 establishes the stability of the state & of (1.148).

Theorem 1.4 Given a bounded continuous desired trajectory 64 with
bounded velocity and acceleration, if ||q|| < vy, where vy, is a positive scalar
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constant, then the desired trajectory 84 and 84 given by (1.143) and (1.144)
remains bounded if \3 2 Amin (P) = (14 Amax (As)) VM Amax (DA) > 0, with

A A(;KPD(;A(; + AsK (0

P
O K,ps + Da

and

)‘min(P) = min{/\min(KpDé) + /\min(DA), (1149)
)\min(A5)2Amin (KpDé) + Amin (Aé)Amin (K)}

In addition, by using the input vector (1.120) the state x of (1.148) is GES
in the sense of Theorem 1.1.

Proof: The proof is similar at all to that of Theorem 1.3.

a) For the stability analysis of «, the Lyapunov function (1.125) is used,
which can be rewritten as

V(z) = %:BTN:I: (1.150)

with

A [2AK,p + K.+ AH(q)A AH(q)

N H(g)A H(q)

Notice that N > O, implying that

Mzl < Vi(z) < Aslz)? (1.151)
~ a1 .
AL = 3 gl Amin (V) (1.152)
+ Al
2 = 51]6%%')‘%“ )\max(N)' (1153)

The derivative V(z) can be obtained from (1.125) and (1.148), using Prop-
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erty 1.2, i.e.
V(z) = —2'Qx + sI(Dada+ f) (1.154)
< =)\ (Q)||a:||2+zn:§i (5 d d ||5dij56ij||2
< —Amin dij86ijdij — Qij — —
im1 =1 10aij 55l + €ijePist
< i@l + 373 Wiyl - iy ——L0ssssill”
>~ min 17°01t) (¥ ] | & .
i1 =1 10aijssij|| + eijePist
n m; R ..
i OgiiSsii €..e—Piit
— _)‘min(Q)||wH2+ZZ dij ” 1] l]” 1] —
i=1 j=1 10aijssijl| + eijePis
n  m;
< _/\min(Q)“$H2 + Z Z(dijeijeiﬁijt)
i=1 j=1
= —As|z|]* +ee P
with
LA
A3 = )\min(Q) (1.155)
A n m;
€ = szijeij (1156)
i=1 j=1
A . . .
B =min{f;;,i=1,...,n,5 =1,...,m;}. (1.157)

The proof concludes by applying Theorem 1.1 with 5\1, 5\2, 5\3.

b) To prove the boundedness of §, and 5d, the variables x5 and sg are
used again (see (1.126) and (1.127)), such that the dynamics of d4 and d4
can be expressed as

Hsss0 = —(C,j,jso + K,psso + Kés+f,.+f+ DAiSd). (1.158)

The term f, is the same as in Theorem 1.3 (see (1.129)). Note that || f, || <
fr.max- The following Lyapunov function is employed:

1 1 1
Vs(zs) = ESEH&SSO + 555 (2AsKyps + K+ AsDa)da = EIB;‘FM:B&
(1.159)
with
A 2A5KPD5 + K+ AsHssAs + AsDa AsH 55

M
H55A5 Héé
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Since M > O, there exist two constants A; and Ay such that

Aillzs|® < Vs(as) < Aoflas|? (1.160)
Al

M =2 min Agin(M 1.161

1S5 g8 (M) (1.161)
1

22 Amax (M). 1.162

3 qa,, Ama (M) (1.162)

It is not difficult to obtain Vj(as) from (1.135) and (1.158), using Property
1.2, 1e.

.T .

Vs(xs) = =0, K ppsba— 04 (AsK,psAs + AsK)dq  (1.163)
+0 AsDASy — sT(f, + f + Dada)

< = Amin(P)||zs]* = 55 (f, + 1),

where Amin(P) is given by (1.149). By noting that f can be written as

f = —Dadiag{dam1, .-, danm, } (1.164)
with
AN A N T
. I
fij 2 _ dijSdij — (1.166)
10aijssisll + €ije i
and since ||f”|| <1,Vi=1,....,n, j = 1,...,m;, it can be seen from
(1.164) that
1£1] < Amax(Da)vm [|84, (1.167)

such that (see (1.137))

56 (F 1+ P < (L Amax (M) |25 | (fr.max +Amax (D a)vml[25]])- (1.168)

Eq. (1.163) then becomes

Vs(xs) < =Amin(P)[@s]]” + (1 4+ Amax(As))l|sl| (frmax  (1.169)
+Amax(Da)vm [|z;5])
= —(Amin(P) = (1 + Amax(As)) Amax (D a)v/m)|| s
+(1 4 Amax(As)) fr.max||Zs]|

A
= = sllzsl” + ollzs |-
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By using A1, Ay given in (1.161), (1.162) and taking into account that
A3 > 0 (by assumption), Theorem 1.2 can be applied with v = 0 to prove
the boundedness of ||z;s]]|- A

The control approach of Theorem 1.4 is similar to that given in [Dawson
et al. (1991)], although here it is used to increase damping, rather than to
consider possible uncertainties in the manipulator model. Notice that it is
always possible to get A3 > 0 just by letting the elements of K,s be large
enough.

In order to show that the damping of the system becomes greater, as-
sume that x is negligible and that Ds = O. In this case, the vector
Dby + f represents the damping of the system. By factorizing every
element of this vector as

, F
10aij ssijl| + €ijePist
it can be seen that §4 is damped because the second factor belongs to the

open set (0,2). This becomes clearer if one considers again the case when
0, is constant. The dynamics of 4 is described by

H555d+0555d+DA5d+K5d+95+f:0. (1.170)

If gs(q) = g5(0), the vector y (see (1.139)) can be employed, so that (1.170)
becomes

H;sy + Cssy + Day + Ky + f(y) = 0. (1.171)
Using the Lyapunov function (1.141) leads to (see (1.142))

V, = 9" Day — 97 f() (1.172)

n m;

- diit? — diit? YijSsij
ZZ( ijYij ”y”||yij36ij|| +6ije—ﬁi]-t

i=1 j=1

n m;

. YijSsij
_ d'-y? (1 S >
Z Z e 19358605l + €ijePist

i=1 j=1

<0.

Because Vy is 0 if and only if ¢ = 0, the asymptotic stability of the equilib-
rium point y and gy of (1.171) can be proven by using the same argument
as before. Note that §; becomes —K ‘g4 as well and that this would not
be true if DA = O.
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1.4 Control with Nonlinear Observer

In the previous section, the tracking control problem of flexible robot ma-
nipulators was studied. It was shown how to get a bounded desired trajec-
tory for the link coordinates (44, 5d) and how to increase the damping of the
system by resorting to a robust control technique. However, it was assumed
that link and joint coordinate rates were available. Although one can use
tachometers to measure joint speeds, it is not always possible to measure
link coordinate rates. In this section, the controller given in Section 1.3 is
slightly modified and a nonlinear observer is proposed to estimate link and
joint coordinate rates.

1.4.1 Nonlinear Observer

In this section, the tracking control problem with a nonlinear observer is
studied. Consider model (1.55) again:

H(q)j+C(q,9)q§ + K.g+ Dg+g(q) =u (1.173)

and the tracking errors ¢ and @ given in Section 1.3.2, together with defi-
nitions (1.112) to (1.119). In addition, define:

A R 0—9 4}
=qg—q= ~ | = 1.174
=94 la-a] La] (L174)
N ér VAN X . . .
a. = [3 ] =4, —AG@—q,) =G, +Az (1.175)
_ éd_AG(a_od) _ [ér+A029:|
Sd — A5(3 — 6d) 67" + Asz;s
A A . . Sg —20 A 30 é—éT
= — = — = . = ~ = o . 1176
$s=q—q,=8—=z2 [35—z5] [Sa] l‘s_&r] ( )
S0 28— 5y + As(d— 82) (1.177)
JAN qu O
K, = [ o KqJ (1.178)
A

Ky O ]Q[KW o ] (1.179)

O Ki;+K O K
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where (A) denotes the estimate of (-) and z and % are the observation errors.
In view of Property 1.11, there exists a constant k.s5 such that
1Css(a, )|l < kessllyll Vg€ Q"F™, Yy € R, (1.180)

The proposed controller is given by

T = Hppb,+Hy50,4+Coo(q,3)0,+Chs(q, 9)0,+D0,+9,— K 60— K 55,
(1.181)
while the desired trajectory for the link coordinates is computed from

ba= As(6 —ba) — Hy (HE6, + Coo(a, )0, + Casla, )b, (1182)
+K64+ D5y + g5 — K58 — K5 + Dada+ f),
with initial condition
04(0) = §4(0) =0 (1.183)
and

A 4 (OaijSaij)dij
fij = —daij— e
0aijsij]| + €ije P

i=1,...,n, j=1,...,m; (1.184)

where s,;; is an element of the vector s,. The inclusion of the positive
definite matrix K, should be noticed. As pointed out before, f helps
increase the damping of the system. Eqs. (1.181) and (1.182) are equivalent
to

u=H(q)q,+C(q.9)q, + K.q;+Da,+9(q) — K,q— K,5+ f, (1.185)

with

A 0
fi= [DN;HA . (1.186)

It is not difficult to show that control (1.185) can be rewritten as
u=H(q)q, +C(q,9)q, + Keqs + Dq, +g(q) — K,q (1.187)
~Kys+ f,+ H(g)Az - C(q,2)q, + Kpz.
By substituting (1.187) into (1.173), the error dynamics is given by

H(q)$=-(C(q,9)s + Kyps+ K,q) + f, + H(q)Az (1.188)
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In the following, an observer based on that given in [Nicosia and Tomei
(1990)] is presented, although some essential modifications are necessary in
order to guarantee the stability of the whole system and the improvement
of link damping [Arteaga (2000)]. Consider the following definitions:

4, 24— Az (1.189)
rfg-q,=q-g+Az=2+Az (1.190)
By using an estimate of q,, the proposed observer is given by

ad=q,+Az+kyz (1.191)
H(q)q, + C(q.2)4, + K.q+ Di, +9(q) = u+ K,z + f,(1.192)

where K, is diagonal and positive definite and k4 > 0. Since one has
q=aq,+Az+kyz, (1.193)
Egs. (1.191) and (1.192) are equivalent to

H(q)g,+C(q,9)q,+ K.g+ Dq,+9g(q) =u+ K,z+ f, (1.194)
+kaH(q)z + C(q,2)q,,-
Subtracting (1.194) from (1.173) yields

H(q)r +C(q,q)r + Kez+ Dr =-K,z— f, —kqH(q)2 — C(q,2)q,.
(1.195)
Due to Property 1.3, the following equality is valid:

C(qaz)QO = C(q,Z)(q - T) = C(qaq)z - C(q,z')r, (1196)
so that (1.195) can be rewritten as

H(q)7 = - (C(q,q)r + Kyez + Dr + kqH(q)2)+C(q, 2)r—C(q,q)2— [
(1.197)

with K, 2 K, + K.

In order to simplify the stability discussion, the following definition is
introduced:

(1.198)

>
W Qe
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By taking advantage again of the fact that g is bounded, Theorem 1.5
establishes that the state @ of (1.188) and (1.197) is exponentially stable
(ES). In order to prove it, Theorems 1.1 and 1.2 can be employed. Although
they are helpful to prove whether the state of a system is GUUB or GES,
they can be used as well to analyze if it is UUB or ES. To show this, suppose
that there exists a ball B, = {x : ||| < b} so that conditions (1.101)—
(1.102) of Theorem 1.1 or (1.105)—(1.106) of Theorem 1.2 are satisfied. If
it is possible to find a region of attraction S = {x : |[jz| < bs} with
0 < bs < by, so that ||| never abandons the ball B,, then it can be proven
that ||z|| is UUB or ES.

Theorem 1.5 Given a bounded continuous desired trajectory 64 with
bounded velocity and acceleration, if ||q|| < v,,, where v, is a positive scalar
constant, then the state x of (1.188) and (1.197) is ES in the sense of
Theorem 1.1 as long as the following inequalities are satisfied:
9 (/\M/\H + kU, + )\p)2 kevm — A\
kq > — 1.199
177 Mpdn TN (1.199)

gAM()\M)\H + koo + )\p)

- \m — /Amin Ke 1.2
At > I Ot e — ooy et = Amin(KCe) - (1.200)
9 (kadv A i + Anrkevn)?
v A - \m — Amin Ke 1.201
Av> g Am(Ad + kahn — kevm) AmAd = Amin(Ke) (1.201)
2,2 > ee 1 Zf ﬂ . (1 202)
¥ m > = :
2,2 5 € (on(MR) _ AR i g2 (12
902m>)\1()\_6)(e B e g ) if B # X (1.203)

with

A AN JAN
)\m = Amin(fx) )\M = Amax(-A) )\pd = )\min(KpD)
JAN JAN JAN
)\d = /\min(D) )\qe = )\min(qu) )‘q = )‘min(Kq)
)\P é Amax(I{p) )\ve é )\min(Kve) )\v é )\min(Kv)

and A, Ag are defined in Property 1.9. A region of attraction is given by

S=daeRimrm . gl < /AL (222 _e) (1.204)
- Ao m ALA

if 6=\, and by

S = {:c € pintm) . (1.205)
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llzll <4/ % <902Z?n - ﬁ (o5 - e—x(lny_/;ﬂ))> 2}
2 1 _

if B # A\, where

Al .
A = 3 qenQn"I}rm Amin (V) (1.206)
Al
A3 2 min Amin(Q) 0 < 12| < pzm, 0<p <1 (1.208)
A (1.209)
A2
€ é Z Zdijeij (1210)
i=1 j=1
BEmin{Bi, i=1,...,n; j=1,...,m} (1.211)
)\fn)\pd+)\m)\qe Apd )\fn)\d+)\m)\ve Ad+EkiA\n—kevm )
Xk ke Ak, e ’
()\gn)\pd‘*')\m)\qe)()\d‘*'k'd)\h_kc'Um)_%)\M()\M)\H+kcvm+)\P)
TeeOZ Xpd+ AmAge + X2, A+ kahn —kicum)) ’
Apd(Ad+karn —kevm) —§ (AmAm +kevm +Ap)?
kc()\pd+)\d+kd)\h_kcvm) ’
L M ApatAmAgedd (223 it AmAge \ T\ T 203 Apa A Age
Zm 2 min 4 8A2, k2 1672, k. 1632k,

(AmAve +)‘$n)‘d) ANg+karn —kevm)— %(k'd)\]\/[)\H-{—)\]\/[kc’l}m)2
NI 12

-

L (AmAve T AN+ Ny atkadn = kevm) +93 (Kadm +hcvm) %\ ?
16k, 2,

AmAve A2 X+ 23, (Aa+Ekarn —kevm) +903, (koA g +kevm)
16k A2,

7

(1.212)



January 27, 2003

>

>

15:39

(

(

AK,pA
FAK,,
—1AC(q,2)A

T N
—%AC (g,2)A

—I%CT(q,z.)A
_§C (q7 Z)A

2AK,p + K, AH(q)

+AH(q)A

WSPC/Book Trim Size for 9in x 6in

CHAPTERn

Flexible-link Manipulators: Modeling, Nonlinear Control and Observer 39
~1AC"(¢,%) o —LAH(q)A |
—1AC(q, %) —1AK,
+3AC(q.q)
KpD (0] —%H(q)A
) g
_§C (q,Z) +§C(qaq)
(0 AK,. %deH(q)
+ADA  -1AC"(q,2)
—%AH(q) %de(q.)A D
%I;:p _%C;‘(qa Z)A +kqsH (q)
+3C"(q.q) |
(1.213)
0 O
H(q) o o
(1.214)
O 2AD+ K, AH(q)
+AH(q)A
o H(q)A  H(q) |

given by (1.182) and (1.183) remains bounded if

As

1>

In addition, the desired trajectory for the link coordinates §, and da

Amin(-P)_(1'|_/\max(j&5))(/\max(-l)A)\/’r_77f'+'kcé(icpzm(]-'+'Amax(j‘6)) >0

(1.215)
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with
A | AsK o5 + AsKppsAs o
P = ae P 1.216
o DA+ Kpps ( )
Amin (P) = min{)\min(Aé))\min (qué) + )\Ian(A(S))\min (KpD5)7(12]-7)

)\min(KpD(S) + )\min(DA)}-
Proof:
a) Firstly, the stability of the whole system will be proven. Consider
the following Lyapunov function:

1
Viz,t) 2 V(z) = ESTH( q)s + %(]T (2AK,p + K,)q (1.218)

1 1
+§rTH(q)r + EzT (2AD +K,.) =

1
= EmTN:L',

whose derivative is given by

. 1 . B . 1 .
V(ix) = ESTH(q)s +q" 2AK,p + K,.)q+ ETTH(q)r (1.219)
T(2AD + K,.) 2 + sTH(q)$ + rT H(q)7.

Substituting (1.188) and (1.197) into (1.219) leads to

. . 1 .
V(z)=-sTH(q)s +q" 2AK,p + K,.)q+ §TTH(q)r (1.220)

DN | =

+2T (2AD + K,.) %
C(q,q)s + Kpps + K Q)

(
_ST(
+sT (f, + H(q)A% — C(q, )2+ C(q,2)s + K,2%)
T
(
(

—r' (C(q,q)r + Kyez + Dr + ksH(q)2)
+r° (C(g,2)r — C(q,9)z2 — f1).
Since
—s"K,ps—s"K,qg=—(q" +q"A)K,p(q+ Aq) (1.221)
—(&T +q"A)K e q

~q"K,pqg—q"AK,pq —q"K,pAq
~q"AK,pAG - q"K,q— q"AK,.q
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and

—TDr —7TK .2 = —(27 + 2TA)D(2 + Az) (1.222)
—zT+ zTA) veZ
=—3'Ds - 2TADz — 3T DAz
—2TADAz — 3T Koz — 2T AK . 2,

by taking Property 1.2 into account, one gets from (1.220)-(1.222)

V(z) = -q"(AK,pA+ AK,)qg—q"K,pq (1.223)
—2"(ADA + AK )z — 27 (D + k,H (q))2
+sT(H(q)Az2 — C(q,q)2 + C(q,2)s + K,2)
—kaz" AH(q)2 +77(C(g,2)r — C(q,9)2) + (s" —r")f,
= -4 (AK,pA+ AK, — AC(q,2)A)q - q" (K,p — C(q,2))q
—2T(ADA + AK,. — AC(q,2)A)z
~2"(D +ksH(q) — C(q,2) + C(q,9))%
+3"(AC"(q. %) + AC(q,2))q
+z" (~kaAH(q) + AC"(q, 2) + AC(q, %) — AC(q,q))%
+qT(AH(q)A — AC(q,q) + AK )z
+q" (H(q)A — C(q,q) + K2 + 5L (Dadg + f)
=—z'Qx + s! T(DAby + 1)

Finally, from (1.184) it is

V(z) = -2 Qx (1.224)

+zn:§: Siisids s — dos ||5dij3zij||2
dijoxijij 2]| R —B3;:t

Pl |0dijSaijl| + eije=

n m; Q
S s [10aij52i5 1>
—wTQw+ZZ<|I5dij5zij||dij—dij : R

i=1 j=1 ||6dij3zij|| + €;5€ Bij

m; o
_ —mTQ:L'—f-zn:Z & [19aij8i;l Bt
= e 5 i€

i=1 j=1 |0aijSaijl| + €€ B

IA

n m;

—CETQLB + Z Z dijeijefﬁ“t

i=1 j=1
< —z2TQx + ee .

IN
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The stability of the system can be proven by using Theorem 1.1 with A3
given by (1.208) and assuming @ to be positive definite. It can be shown
(see Section 1.4.2), that conditions (1.199) to (1.201) together with the
definition of A3 guarantee that Q > O. Since

lz]? < p?2m = (12117 < @27, (1.225)
a proper region of attraction should be selected in such a way that (1.225)
is always true for t > 0. If # = A and Q > O, the following must hold:

A
)% < 2 llaolZe ™ + —te . (1.226)
)\1 )\1

In view of (1.225) and (1.226), it should be satisfied that
A
22l 26N + e M < @222, (1.227)
A1 Al

Since the maximum of the left—-hand side of (1.227) is a function of ||z,
it is easier, although more conservative, to compute the maxima of both
terms separately, so that one has

A2 2 € - 2,2
— — < . 1.228
2ol + 1 55e 7 < 2, (1.228)
The region of attraction (1.204) comes from (1.228). If 5 # A, it should be
true that
A €
z|? < ZlzolPe M + ———— (et —e7M). 1.229
I < Sllolle ™ + 355 ) (1.229)
From (1.225) it is
ﬁ”mgﬂze*)‘t + ;(efﬁt —e M) < P22, (1.230)
A1 AM(A = B)

By calculating the maxima of both terms on the right-hand side of (1.230)
as before, the region of attraction (1.205) can be derived.

b) It must be proven that the desired trajectory given by (1.182) and
(1.183) remains bounded. In view of part a) of the proof, a constant ¥,
exists such that ||g|| < ¥,. By using again

80 =04+ Asdy (1.231)

x5 = [gﬂ : (1.232)
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Eq. (1.182) can be written as

H;s550 = —(Cs5(q,q)80 + Kppsso + K 4504+ Dada+ f, (1.233)
- Céé(qa'.z)s(] + f):
with
A p i/ A .
f, = Hys0, + Cs0(q,q)0, + g; — HssAs0 — Ci5(q, ) As (1.234)
—DsAs6 — qu(s — Kp53 — Kp5A56 + Caa(q, Z)A(;é

To compute (1.233) and (1.234), Property 1.3 has been used in the form:

Jone 5] = [entart Grtardh] [3] 0
_ [Coo(q,%) Caa(q,%)] [07«} ‘
Cso(q,2) Cs5(q,2) | |0,

Cool(q,

q
Cso(q,q

Since ||q|| < oo, ||g]] < vy and ||@|| < Dy, Ff, is only a function of bounded
variables, which implies that a positive constant f, max must exist such that
(see Properties 1.9 to 1.12)

121l < fr.max- (1.236)

A Lyapunov function for system (1.233) is

A 1 1
Vs(ms,t) = Vs(xs) = 5sg’HMso + 553’(2A5Kp,35 + K yes (1.237)
+ A(;DA)éd
_ le AsHssAs +2As K pps + Kges + AsDa AsH s 25
270 HssAs H;;s
1
= E:c(;TM:ca

In view of Property 1.9, one has

Mllzsll? < Va(@s) < Aoflas|? (1.238)
« al .
M =3 qenélgm(kmin(M)) (1.239)
ol
222 max (max(M)). (1.240)

2 qeQrtnm
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The derivative of (1.237) is

) 1 ... ) .
V;;(:l:(;) = ESgHMSO + 55(2A5KPD5 + qua + AaDA)(sd + ng&;sO.

(1.241)
Substituting (1.233) into (1.241) and taking Property 1.2 into account leads
to
. 1 ... .
Vs(xs) = =g Hssso + 0 (2As K yps + Kges + AsDa)dy (1.242)

2
—st (Caa(q, q)so + K504+ Kppsso + DA5d)
—s0 (f, + f — Css(g, 2)s0)

= 0T AGK 4500 — 6y Dada — 55K ppsda

5y K ypsAsda — 0T AK ppsda — 6L AsK ypsAsda

+8,3 KppsAsda+ 65 A K pnsba — s (f, + F — Cas(a, 2)s0)

6T (AsK ges + AsK ppsAs)a — 8y (Da + Kpps)da

—s0 (f, + F — Css(q, 2)s0)

= —xj Pxs — 5] (f, + f — Css(q, 2)0) ,

where P is given by (1.216). Notice that

l[s0ll = 114 + Asdall < [18all + Amax(As)[|8all < (1 + Amax(As))l|2s]|-
(1.243)
Rewrite f as

04115211

||$d113z11|| + 6116_511t
f = —DAdiag{(Sdn, . aédnmn} ,
6dnmn5znm"

||5dnmn Sznmy, || + €nm,, e~ Bnmnt

(1.244)

to show that
1 £1] < Amax (D a)v/m ||zal]. (1.245)
To find a bound for Cjs5(q, 2), consider (1.180). From part a) of the proof,

it is

||Ct§6(qa'é:)|| < kc&&@fzm- (1246)
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By taking Eqs. (1.243)—(1.246) into account, (1.242) can be written as

Vs(@5) < =Amin(P)l12s]1* + fromax(1 + Amax(As)) |25 (1.247)

+(1 + )\max(Aé)) (Amax(DA)\/m + kcééwzm(l + )\max(Aé))) ||$6||2
A =
= —Asllas | + oflas |-

Since A3 > 0 (by assumption), the boundedness of |lzs|| can be proven
using Theorem 1.2 with v = 0. A

In the case that the term f is not to be used, i.e. DA = O, d4 can be
computed from

8a=As(8 —64) — Hys (HE:0, + Cs9(q,@)0, + Css(q, @), (1.248)
+ Kég + D55r +9s5s — quss — Kp5.§5)
with initial condition
84(0) = §4(0) = 0. (1.249)
Egs. (1.188) and (1.197) then become
H(q)s = —(C(q,q)s + Kyps + K.q) + H(q)A%z — C(q,q)£1.250)
+C(q,%2)s + K, %
H(q)r = —-(C(q,q)r + Kyez + Dr + ksH(q)%2) + C(q, 2)r (1.251)

The next Corollary establishes the stability of system (1.250) and
(1.251) when DA = O.

Corollary 1.1

Given a bounded continuous desired trajectory 04 with bounded velocity
and acceleration, if ||q|| < v where vy, is a positive scalar constant, then
the equilibrium point & = 0 of (1.250) and (1.251) is asymptotically stable
if conditions (1.199)-(1.201) are satisfied. A region of attraction is given

by
4(n+m) /\1
sS=lzen el < 4/ oz b (1.252)
2

where A1, A2, ¢ and z,, are the same as in Theorem 1.5. In addition, the
desired trajectory 84 and 84 given by (1.248) and (1.249) remains bounded
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if
:\3 = Amin(P) — kesspzm (1 + )\max(fxti))2 >0 (1.253)
with
A [AsK s + AsKypsAs O
P = a4 P 1.254
(0 K, ps ( )
Amin (P) =min{Amin (As) Amin (K ges) + A2 (As) Amin (K pps),(1.255)
Amin (KpDé)}-

Proof: The proof is similar to that of Theorem 1.5 just by letting
Da = 0.

a) Firstly, the stability of the whole system will be proven. Consider
again the Lyapunov function (1.218). From (1.224) one has

V(z) = -z"Qu. (1.256)
Since
Mllel* < V(. t) < doflz|f?, (1.257)
V(x,t) is a decrescent function. On the other hand, since
V(z) < =gl (1.258)

with Az as in (1.208), system (1.250) and (1.251) is asymptotically stable
[Vidyasagar (1978)]. As before, the region of attraction (1.252) can be com-
puted by taking (1.257) and the definition of A3 into account.

b) To prove the boundedness of the desired trajectory given by (1.248)
and (1.249), the existence of a constant ©,,, such that ||g|| < O, is necessary.
Note that v, must exist in view of part a) of the proof. By employing
(1.231)—(1.233) and the Lyapunov function (1.237), and setting f to 0, one
gets (see (1.247))

Vs(zs5) < —Asllzs]? + oll2s]|. (1.259)

The proof is accomplished by using Theorem 1.2 with v = 0. A

As discussed in Section 1.3.3, f helps increase the damping of the system
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since every element of Dby + f can be expressed as

. Goig
dijéij 1-—— dijPzij i:l,...,n,j:l,...,mi,
[10aij saisl| + €ije =Pt

so that d,4 is damped. When the tracking error becomes negligible, § be-
comes damped as well. Note that this is true even if 84 is not a constant
vector. It is not difficult to show that if 64 is constant and g;(q) = g4(0),
then d4 becomes — K~ 'g;.

It should be noticed that both Theorem 1.5 and Corollary 1.1 assume
that 5\3 > 0. From its definition, it is obvious that it is always possible to
achieve this goal by letting ¢ be small enough and Amin (K ;) large enough.
Nevertheless, it is not obvious whether one can enlarge the region of attrac-
tion arbitrarily. To show that this is actually possible, let Amin(Kps) be
large enough and choose k4, K4, K, to satisfy conditions (1.199)—(1.201).
Note that A can be selected freely. From (1.212) it can be seen that

] (1.260)
ke

with a proper choice of k4, Ay and A,. Although some of these constants
appear not only in the numerator but also in the denominator, it should
be pointed out that they appear in the numerator as a product and in the
denominator as a summation, so that a parameter selection can always be
found so that the assumption (1.260) is valid. Without loss of generality,
it can be assumed that

)\min(Kp) = Amin(I{pé) (1261)
Zm = W (1.262)

Also without loss of generality, from (1.217) it can be assumed that

)\min(P) = /\min(Kpé) + Amin(DA); (1263)

since Amin(K4es) can be tuned arbitrarily large. Taking into account
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Eqgs. (1.261)—(1.263) together with (1.215) yields
X3 - Amin( pé) + /\mm(DA (1264)

(1 + )\max A(S ()\max DA \/_ + kcéé‘ﬁzm(l + )\max(Aé)))
= Amin( pé) + Amm(D

min K
—(1+ Amax(As)) ( Amax(Da)vm + %(ﬁkaw(l + )\max(A5))> ,
which implies that
kess 9
Amin(Bps) (1= == @(1 + Amax(As)) (1.265)

“Amax(Da)Vm(1 + Amax(As)) + Amin(Da) >0 (1.266)
must be satisfied, or in other form

/\max(DA)\/ﬁ(]- + )\max(Aé)) - Amin(DA)
(1 - k]?/.—i(sso(l + )\max(Aé))Q)

/\min(Kpé) > (1267)

ke
kcdé(l + )\max (Ad))2

> . (1.268)

Since condition (1.268) can always be accomplished, it is possible to choose
Amin (K p5) as large as wished and, as a direct consequence, z, and the
regions of attraction (1.204) and (1.205). The same conclusion can be
derived if DA = O. Conditions (1.202) and (1.203) can also be satisfied by
letting either € be small enough or z,, be large enough.

1.4.2 Analysis of matrix Q

In this section, the conditions under which the matrix Q (used in the proofs
of Section 1.4.1) is positive definite will be studied. A direct analysis is too
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difficult. Consider again Egs. (1.223) and (1.224) to get

V(z) < —q" (AK,pA+ AK, — AC(q,2)A)q (1.269)
—-q"(K,p - C(q,2))q
—2T(ADA + AK,. — AC(q,2)A)z

—#"(D + kqH(q) — C(q, %) + C(q,q))2

q"(AC"(q, %)+ AC(q,2))q

+2" (—kaAH(q) + AC"(q,2) + AC(q, 2) — AC(q,q))%

q"(AH(q)A — AC(q,q) + AK,)z

" (H(qQ)A — C(q,q) + Kp)% +ee "

+

+ +

and take norm bounds into account, so that (1.269) can be written as

V(@) < —[1alP (A5 Apd + AmAge — Agkel12])) (1.270)
~ll@ll*Apa — kell21)
—[12P A Ave + A Aa = Arkel|2]])

=212 (Aa + kadn — k|| ]| = kevm,)

+2 ke 21| 11l Nall

+| 2| 12| (kaAs Ae + Anrkcvm + 2Xnrke|| 2]))
+lall 2l[(A3Am + Aarkevm + AmAp)

+1all 121(AmAm + kevm + Ap) + ee™ P

Define

22 |l (1.271)
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[ A2 00 —Aarkel|2]| 0 —5(A\Am ]
+Am)\qe +AMkom
—Adke|| 2] +AmAp)
“MckellZl Apa 0 —LOwmAm
—k||Z]| +kcvm
+Ap)
Q= (1.272)
- 0 0 Amde = L(kadaAm ‘
+/\72n)‘d +/\Mkcvm)
—Akellzll —Anrke]|2]
—12An —LOwAm —L(kadvdm A
+FAvkevm  Fkevm +Amkevm) +kaAn
+)\M)\p) +)\p) —)\MkCHZH —kevm
L _kcHzH
and rewrite (1.270) as
V(z) < —&" Qi + ee ", (1.273)

From (1.273) it can be seen that @ > O as long as Q > O. However, it is
still too hard to say whether or not @ > O. On the other hand, one can
express Q as

L2 04 + Amdge — Akl 12l —Aarkel|lz]l 00
—Aarkel|2]] L(pa —kelI2IN 00

Q= 0 0 00 (1.274)
0 0 00
A2 + AmAge — Akl 2])) 0 0 0
n 0 0 0 0
0 0 2 (mAve + A% Aa — X kel |2]]) O
0 0 0 0
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T2 X pa + AmAge — Arkel[2]]) 00 =3 (A2, Mg + Anrkevm + A Ap)
0 00 0
0 00 0

=5 (A2 A + Anrkcvm + A Ap) 00 5(Ag + kadn — kevm — ke||2]])

0 0 0 0
0 1 (hpa — Kell2]) 0 0
0 0 L Ave + A2 — A3 ke ||2]]) O
0 0 0 0

0
3 (Vpa — kel 2]])
0
(/\M/\H + kc’l)m + )\p)

0
—5(AmAm + kevm + Ap)
0
%(Ad + deh - kcvm - kC”zH)

0
0
0
0

N[

|

0
0
L(AmAve + A2
S TLAIEA )

00 —L(kadardm + Arkevn)

_/\Mkc||é:||

0
0
_%(kd)\M)\H + )\Mk'c’l)m)
_)\Mkc||"z||
%()\d + kgAp
_kcvm - kCHZ”)

and define the matrices

Qlé[

Q,

Q;

>

>

%()‘7271)‘@1 + )\m)‘qe - )\?\H%HZH)

_)\Mk'cHz”

0

[%(/\fn/\pd + /\m/\qe - /\?\/IkCHZ”)

E

0
2 AmAve + A2 A — A?Mkcllzll)}
()‘zn)‘pd + )\m)‘qe - )‘%MkC”zH)

_%()‘%\/I)‘H + Avrkevm + )\M)‘P)
%()\d + kaAp — kevy, — kcHz”)

_)\Mkc”zH
L(Apa — kel|2]))

] (1.275)

(1.276)

(1.277)

(1.278)

CHAPTERn
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1 .
A [ 5(Apa = kell2]]) 0
= 1.2
Qs [ 0 EOwAue + A2ha — Xhell2) (1:279)
1 .
A 3 (Apa — Eel|2]])
A 1.280
Q5 [_%()‘M)\H + kevm + )\P) ( )
1
—5(/\M/\H+kcvm+/\P) ] 1.981
%(/\d+kd)\h —kcvm—kC”,'Z”) ( ) )
%()\m)\ve + )‘gn)‘d _%(kd)\M)\H + )\Mk'c’l)m)
A —)‘?\47%”2”) _)\Mkc”zH
Qs = (1.282)
_%(kd)\M)\H + )\Mk'c’l)m) %()\d + kgAn — kevm
—Anrke| ]| —kel|]])

Of course, if every matrix @, is positive definite, so is Q This implies that
every term Q; . and @, , together with det(Q;) must be positive.
Regarding @, one has

X2 Apd + AmAge

oy (1.283)
A2 ke
A
TN (1.284)
1
Ao A2 4+ AmAge Apd n 203 Apd + AmAge ) (1.285)
8L, 2 16A2, k. '
2A?\/[Apd + AmAqe .
— > ||z]|.
162, k. Il

As for Q,, (1.283) must be satisfied together with

A?n Ad + )\m Ave

o > 12]. (1.286)
M e
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As for Q5, one has condition (1.283) and

Ad + kgn — kv, >0 (1287)
A kg n — k
4 Ra2n =2 g (1.288)
ke
(/\zn)‘pd + /\m/\qe)(/\d + kaAn — kevr,) (1.289)

9
— Z()\?M)\H + Avrkevm + )\M)\p) >0

()‘gn)‘pd + )\m)\qe ) ()\d + kg p— kc’l)m) — %)\M()\M)\H+kcvm+)\P){1 290)
EdAZ X patAmAget A3 Natkadn—kevm ) A

> [|2]]-

Note that Q, is positive definite if conditions (1.284) and (1.286) are
satisfied.
As for Q;, one gets (1.284), (1.287), (1.288) together with

Apd(Aa + kaAp — kevm) —
)\pd()\d + kgAp — kc’l)m) — %()\M)\H + koo + )\p)2

AMAE + kevy +Ap)2 >0 (1.291)

=] ©

> [|z]]- (1.292
ke(Apa + A + kadn — kcvom) =1 € )

Finally, as for Qg, one has (1.286)—(1.288) and
AmAve + A2 00) (Ad + kadn — kevy) (1.293)

9
— Z(k'd)\M)\H + )\Mkc’l}m)Q >0
<()\m/\ve +)\gn/\d)()\d+kd)\h _kcvm) - %(kd)\M/\H’+‘/\Mkc'Um)2
A2, 2
1
+ /\m)\ve +)\3n/\d+/\?\/[()\d+kd/\h_kcvm)+9/\%\4(kd/\H+kcvm) ? 2
16k 02,

_ )\mAve +/\$n)\d+)\%\4(/\d+kd)\h _kcvm) +9/\?\/[(kd)\H +kcvm)
16k.\2,

(1.294)

> [|12]-

By sorting Egs. (1.283) to (1.294), one obtains conditions (1.199)-
(1.201) and (1.212).
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Fig. 1.3 Planar two-link flexible robot arm.

1.5 Simulation Results

In order to test the controllers given in Sections 1.3 and 1.4, the planar two—
link flexible robot arm modeled in [De Luca and Siciliano (1991)] (Fig. 1.3),
and modified in [De Luca and Siciliano (1993b)] to take gravity into account,
has been used. A complete description of the arm equations of motion
together with the parameters employed in the simulations can be found in
[De Luca and Siciliano (1991); De Luca and Siciliano (1993b)].

1.5.1 Control Without Observer

The first simulations are aimed at testing the controllers given in Section
1.3. The arm is assumed to be initially in its vertical equilibrium configu-
ration, i.e.
T
6 =[-900]" [’
and
]T

§=100000] [m].

As for the control goal, the final desired joint angles

04 = [—4545]" [°]



January 27, 2003 15:39 WSPC/Book Trim Size for 9in x 6in CHAPTERn

Flexible-link Manipulators: Modeling, Nonlinear Control and Observer 55

should be reached at a final time ¢t; = 7.5[s]. Since control (1.120) has been
designed for time—varying trajectories, a linear trajectory interpolation with
a fifth-order polynomial is used for the time 0 < ¢ < 7.5]s]:

—90 + 1.0667t> — 0.2133¢* + 0.0114¢°

04 = 1.0667t3 — 0.2133t* + 0.0114¢° -

The matrices K, and A are
K, = diag{10,10,0.5,0.5,0.5,0.5}
and
A =diag{1,1,1,1,1,1}.

In the first simulation, the desired trajectory d4 is computed from
(1.121). The results are depicted in Fig. 1.4 in terms of the joint torques,
the joint coordinate errors and the link coordinates with their desired val-
ues. As foreseen, the tracking errors converge to zero while &4 and 84
remain bounded. The final value for d4 is

54 = diag{—0.1832, —0.0048, —0.0078, —0.000106 }.

In the second simulation, it is assumed that Ds = O. The desired
trajectory &4 is computed from (1.143), while the elements of Da take
on the values of Ds given in [De Luca and Siciliano (1991); De Luca and
Siciliano (1993b)]. Also, with reference to (1.145), it is €11 = 0.1, €2 =
00001, €21 = 00001, €99 = 0.00001 and ,811 = 612 = ,821 = ,822 = 0.001.
The results are depicted in Fig. 1.5. It is worth observing how the overall
behavior remains satisfactory; this is because the desired trajectories are
damped and control (1.120) guarantees that the tracking error converges
to zero. As expected, the final vector d4 is the same as before. Notice that
a bad choice of the parameters ¢;; and [3;; may cause chattering behavior.
More simulation results can be found in [Arteaga (1996¢)].

1.5.2 Control With Observer

In order to test the observers of Section 1.4, the same control goal as in
Section 1.5.1 has to be achieved. The initial conditions for the joint and
link coordinates of the arm are

0= [~900)" "
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and
T
6 =1[000.050.02]

[m],

while the velocity vector initial condition is 0. The gains of the controller
and the observer have been selected to be:

K, = diag{5,5,0.25,0.25,0.25,0.25}

A = diag{0.75,0.75,0.75,0.75,0.75,0.75}
K, = diag{1.5,1.5,1,1,1,1}
K, = diag{50, 50, 50, 50, 50, 50}

kq = 10.

In the first simulation, the desired trajectory 4, is computed from
(1.182) by setting Da to O. The results for the tracking errors are de-
picted in Fig. 1.6. Again, they converge to zero while d4 and &4 remain
bounded. The final value for d4 is the same as in Section 1.5.1. The obser-
vation errors are depicted in Fig. 1.7. It can be seen that they converge to
7€10.

In the second simulation, Dg is set to O and DA takes on the old
values of Ds. The desired trajectory d4 is computed from (1.182). Also,
with reference to (1184), it is €11 = 0.1, €19 = 001, €1 = 001, €29 = 0.05
and f11 = P12 = B21 = P22 = 0.001. The results for the tracking errors
and input torques are shown in Fig. 1.8, while those for the observation
errors are shown in Fig. 1.9. As expected, the final vector §, is the same
as before. More simulation results can be found in [Arteaga (2000)].

1.5.3 Control with a Reduced—Order Model

In this section, the controllers given in Section 1.3 are used again with the
purpose to test their sensitivity to the number of modes taken into account.
In particular, it is assumed that only one link coordinate for each link is
included in the controller. It is not troublesome to get this reduced—order
model from the original one, since it can be obtained by just letting the
high—order terms be zero. On the other hand, the simulated model includes
two link coordinates for each link as ever before, but no gravitational term
is considered so as to obtain somewhat less damped motions. The initial
values of the generalized coordinates are

6=[00]" [
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and
T
6=[0000] [m].
As for the control goal, the final desired joint angles
04 = [4545]" [°]

should be reached. In order to excite the unmodelled high frequencies, no
trajectory for the joint coordinates is assigned. The matrices K, and A
are

K, = diag{10,10,0.5,0.5}
and
A = diag{1,1,1,1}.

In the first simulation, the desired trajectory &4 is computed from
(1.121). The results are depicted in Fig. 1.10. It can be observed that
the tracking errors converge to zero. Notice that there is no desired trajec-
tory for d15 nor for dy5 and that those for ;7 and d2; remain bounded.

The next simulation is aimed at testing the robust term used to increase
the damping of the system. As a matter of fact, any mechanical system
must be damped, so it makes more sense to show whether a poor damping
can be improved. To do this, only the damping of the modeled dynamics
is set to zero while that for the unmodeled dynamics is the same as before.
The elements of DA are assumed to be the ones of the original system,
while €11 = 0.1, €21 = 0.0001 and 611 = /821 = 0.001. The results are
depicted in Fig. 1.11. It is worth observing how the overall behavior remains
satisfactory. Note that d1; and d2; are damped because 411 and 401 are
damped as well.

It is interesting to carry out the same simulation while letting D be
O. As can be appreciated in Fig. 1.12, §;; and do; are no longer damped,
which shows the efficacy of the proposed solution to increase the damping
of the system. Nonetheless, the tracking errors become zero in all the cases,
as it could have been foreseen.
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Fig. 1.4 Simulation results for a planar two-link flexible robot arm: Damping case. a)
Input torques 71 (—) and 72 (- - -); b) Joint errors 1 (—) and 02 (- - -); ¢) Link
coordinate §11 (—) and its desired value d411 (- - -); d) Link coordinate d12 (——) and

its desired value 412 (- - -); ) Link coordinate da21 (

) and its desired value d401 (- -

-); f) Link coordinate d22 (——) and its desired value 6492 (- - -).

CHAPTERn



January 27, 2003 15:39 WSPC/Book Trim Size for 9in x 6in
Flexible-link Manipulators: Modeling, Nonlinear Control and Observer 59
71 and 75 [Nm] 4 [°] and 0~2[°]
8 0.1
] W \
N
0 L
4 N
eI A
/ N\/
2
, P
0 5 10 0 5 10
fs] ts]
a) b)
611 and &411[m] 612 and 8412[m]
0 0.002
—0.05 0
—01 —0.002
—-0.15 —0.004
—0.2 \% ~0.006
0 5 10 0 5 10
tls] t[s]
c) d)
891 and d421[m] O3 and d422[m]
0 0.00005
0
—0.004
— 0.00005
0008 —0.0001 \'ﬂ\
—0.00015
0 5 10 0 5 10
fs] ts]
) f)
Fig. 1.5 Simulation results for a planar two-link flexible robot arm: No damping case.
a) Input torques 71 (—) and 72 (- - -); b) Joint errors §; (—) and 62 (- - -); c¢) Link

coordinate d11 (—) and its desired value d411 (- - -); d) Link coordinate d12 (——) and

its desired value d419 (- - -);

e) Link coordinate d21 (

) and its desired value 0421 (- -

-); f) Link coordinate d22 (——) and its desired value dg09 (- - -).
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Fig. 1.6 Simulation results for a planar two-link flexible robot arm: Damping case with
observer. a) Input torques 71 (——) and 72 (- - -); b) Joint errors §; (—) and 62 (- -
-); ¢) Link coordinate §11 (—) and its desired value d411 (- - -); d) Link coordinate d12

(—-) and its desired value 6412 (- - -); e) Link coordinate d21 (

) and its desired value

0421 (- - -); f) Link coordinate d22 (——) and its desired value dg02 (- - -).
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Fig. 1.7 Simulation results for a planar two-link flexible robot arm: Damping case with
observer. a) Joint coordinate §; (—) and its estimate 61 (- - -); b) Joint coordinate 62
(—-) and its estimate 63 (- - -); ¢) Link coordinate 617 (—) and its estimate d11 (- -
-); d) Link coordinate 612 (—) and its estimate 812 (- - -); €) Link coordinate 821 (—)
and its estimate da1 (- - -); ) Link coordinate dao (—-) and its estimate dap (- - -);
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Fig. 1.8 Simulation results for a planar two-link flexible robot arm: No damping case
with observer. a) Input torques 71 (—) and 73 (- - -); b) Joint errors 6; (—) and 6,
(- - -); ¢) Link coordinate d11 (—) and its desired value d411 (- - -); d) Link coordinate
012 (—) and its desired value d415 (- - -); e) Link coordinate d21 (——) and its desired
value 8421 (- - -); f) Link coordinate d22 (——) and its desired value 499 (- - -).
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Fig. 1.9 Simulation results for a planar two-link flexible robot arm: No damping case
with observer. a) Joint coordinate ; (—) and its estimate d; (- - -); b) Joint coordinate
02 (—) and its estimate s (- - -); ¢) Link coordinate 811 (—-) and its estimate 11 (- -
-); d) Link coordinate &12 (—) and its estimate §12 (- - -); €) Link coordinate d2; (—)
and its estimate d21 (- - -); f) Link coordinate das (—-) and its estimate dag (- - -);
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Fig. 1.10 Simulation results for a planar two-link flexible robot arm with reduced-order
model: Damping case. a) Input torques 71 (—) and 73 (- - -); b) Joint errors 6; (—)
and 0y (- - -); ¢) Link coordinate d1; (—-) and its desired value d411 (- - -); d) Link
coordinate d12; €) Link coordinate d21 (—) and its desired value 491 (- - -); f) Link
coordinate d22.
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611 (—) and its desired value d411 (- - -); d) Link coordinate d12; €) Link coordinate

d21 (—-) and its desired value 421 (- - -); f) Link coordinate d2s.
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Fig. 1.12 Simulation results for a planar two-link flexible robot arm with reduced-order
model: No damping case with desired trajectories d411 and d42; undamped. a) Input
torques 71 (—-) and 72 (- - -); b) Joint errors 6; (—-) and 6 (- - -); ¢) Link coordinate
011 (—) and its desired value d411 (- - -); d) Link coordinate d12; €) Link coordinate

d21 (——) and its desired value 421 (- - -); ) Link coordinate d2s.
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1.6 Conclusion

The modeling and control problem of flexible robot manipulators has been
studied in the present work. By using Lagrange’s equations of motion, a
closed—form dynamic model has been obtained where link deflection has
been described in terms of assumed modes. For control design purposes,
several important properties of the manipulator model have been given and
proven. Some of them are physical properties whereas others do arise from
the method used to derive the model.

The tracking control problem has been studied. Because a flexible robot
has fewer inputs than degrees of freedom, a desired trajectory for the flexible
coordinates cannot be selected arbitrarily and has to be computed on-line
to accomplish the tracking control goal for the rigid coordinates. It has
been proven that this trajectory remains bounded. In order to increase
the damping of the system, the equations used for the desired trajectory of
the link coordinates have been modified. To ensure global stability of the
system, robust control techniques have been employed.

Since the possible lack of measurements of link deflection rates is a draw-
back of the proposed control scheme, a nonlinear observer has been designed
which can still guarantee global stability of the system and boundedness of
the desired link coordinate trajectory. It has been shown that the region
of attraction for the observer can be enlarged arbitrarily.

In order to test the controller, with and without observer, several simu-
lations have been carried out. It has been shown that the proposed solution
does actually increase the damping of the system. To investigate how the
controller works in the presence of unmodelled dynamics, some simulations
have been accomplished with a reduced—order model yielding satisfactory
results.
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