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INVERSE KINEMATICS AND RELATED ISSUES:
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ABSTRACT

The goal of this paper is to give a short tutorial presentation of a
recently proposed approach to solving the inverse kinematic problem for
general robotic manipulators (redundant and nonredundant). It is also
shown that the resulting algorithm serves as a powerful tool to solving
many of the issues related to the mapping between the joint space and
the task space of a manipulator, such as occurrence of kinematic singu-
larities and determination of the manipulator workspace.

1. INTRODUCTION

The solution to the inverse kinematic problem is of crucial impor-
tance for robotic manipulator control. A computational convergent algo-
rithm has been recently proposed in the literature [1-3] which provides
a systematic solution tool for general robot kinematic structures, with-
out requiring the inversion of any kinematic function. Indeed the solu-
tion is based on the transpose of the Jacobian of the manipulator. One
requirement is to express the orientation of the robot's end effector in
terms of unit vectors, rather than orientation angles (Euler, RPY) [4].
Nevertheless, this issue turns out to be useful for geometrically task
constrained motions such as sliding on a surface, inserting a peg in a
hole, etc.

In this paper both nonredundant and redundant structures are consid-
ered. For the former ones it is shown how the algorithm can be conve-
niently partitioned in two stages, allowing a reduction in the computa-
tional burden [2,5,6]. For the latter ones it is shown how a set of con-
straints, in number of the degrees of redundancy, can be incorporated in
the solution [3,7,8]. The sole requirement is that such constraints can
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be functionally expressed in terms of the unknown joint variables with
respect to the same base frame in which the robot's kinematics is ex-
pressed. Obstacle avoidance, existence of joint limits and manipulator
dexterity all provide constraints that can be modelled as described
above.

The occurrence of kinematic singularities is finally analyzed in
details; the null space of the transpose of the Jacobian allows the
identification of both boundary singularities (due to the boundaries of
the workspace) and internal singularities (due to the alignment of cer-
tain axes) [9]. It is shown then how the same inverse kinematic solution
algorithm can be used to draw the reachable workspace of a general ma-
nipulator, as well as how it can provide a solution for the joint vari-
ables even in the case of a trajectory that does not entirely lies in
the workspace itself.

2. THE GENERAL SOLUTION ALGORITHM

The configuration Xx € R™ of the manipulator's end effector in the
task space can be described as a function of the joint variables g € R"
(n DOF's) by the following nonlinear equation [101:

= f(q) (1)

The relationship between the joint velocities é and the end effector
velocities v is described by the following linear equation with the

Jacobian matrix J(g) := 3f/3q as the joint-dependent coefficient matrix
(41:

= J(q)g (2)

There are two classical approaches in the literature to solving the in-
verse kinematics. One tries to solve equation (1) [4,9], the other at-
tempts to solve equation (2) [11]. The first approach is based on the
possibility of obtaining a closed-form analytical solution “to (1) this
is true for manipulators having a spherical wrist, or more generally
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satisfying Pieper's sufficient condition [12]. The second approach re-
lies upon the possibility of inverting (2) (the pseudoinverse of J is
usually proposed for redundant manipulators); if J(q) is not a full rank
matrix, a kinematical singularity occurs and the solution is not feasi-
ble.

A rather different approach has been recently introduced by these
authors [1-3] which reformulates the problem as a dynamical one. This
Teads to a general solution algorithm, whose nice feature is that it
requires only the computation of direct kinematic functions, avoiding
thus those numerical instabilities concerned with matrix inversion [11].
Consider the dynamic system of fig. 1; the error e in the task space can
be made arbitrarily small by suitable increasing the feedback gains in
the positive definite diagonal matrix K. The resulting update law is

g = ke (3)

which provides also a solution for the Joint velocities, usually re-
quired by the control servos in the Jjoint space. Convergence can be
shown by defining the Lyapunov function candidate v = .5§Tg and verify-
ing that its time derivative v is negative definite outside a region in
the error space containing the origin e = 0 [1-3].

The task space vector x in (1) can be partitioned as §T = (5; 51),
where 5p determines the position of the end effector and X, its orienta-
tien. Three position coordinates locate x_, whereas three orientation
angles (Euler, RPY) are usually specified in Xp [4]1. Correspondingly it
is also ET = (gg g;). Here it is important to remind that, while v is
. the actual linear velocity of the end effector ﬁp’ Yp is not the true
time derivative of X,- Instead, vy, is the angular velocity w of the end
effector (9,11]. In terms of the above algorithm, this poses the re-
quirement that the orientation of the end effector X, must be described
by the unit vectors s, a (n is redundant, since n=s xa). In practice,
geometrically task constrained orientations of the end effector are nat-
urally specified in terms of s and a (sliding on a surface, inserting a
Peg in a hole, etc.), whereas arbitrary motions are more conveniently
imposed to the orientation angles.
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3. NONREDUNDANT STRUCTURES

With reference to (1), a manipulator is termed nonredundant if n =
m. For instance, six DOF's are needed to uniquely locate the position
and orientation of the end effector.

The general solution algorithm of fig. 1 can be partitioned into two
stages, depending upon the configuration of the last axes of motion,
generally revolute axes [2,3]. The end effector position, indeed, can be
assumed at any point along the structure which is known as a function of
the assigned task variables. Obviously, in case that position is located
through more than three joint variables, geometrical constraints have to
be introduced in order to obtain a unique solution.

In case of a spherical wrist (fig. 2a), for instance, the position
is naturally chosen at the intersection of the last three revolute axes
and Xq will depend only on the first three joint variables (lst stage);
the remaining joint variables will be determined through x, (2nd stage)
[13.

If the axes intersect two-by-two (fig. 2b), four DOF's will deter-
mine the end effector position. Therefore, a constraint on the orienta-
tion of the fourth link must be introduced in the 1st stage in order to
uniquely locate the point. The last two joint variables will be deter-
mined in the 2nd stage [5,6].

Finally, if the axes do not converge at all (fig. 2c), two con-
straints have to be introduced to uniquely position the point; in this
case a has to be completely oriented. The outer joint variable will just
orient s [2,3].

4, REDUNDANT STRUCTURES

If the number of DOF's n exceeds the number of task space variables,
the manipulator is termed kinematically redundant relatively to that
task. The space of redundant solutions can be conveniently exploited to
obtain a more versatile manipulator in terms of its kinematical configu-
ration and its interaction with the environment. In.particular, redun-
dancy can be used to meet constraints on joint range availability and/or
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to obtain trajectories in the joint space which are collision-free in
presence of obstacles along the motion. Another important use of redun-
dancy is in keeping the manipulator in a configuration which makes it as
dexterous as possible, that is also avoiding kinematic singularities.
With reference to the general inverse kinematic solution algorithm
of fig. 1, a set of constraints can be systematically introduced in the
definition of the task variables, up to eventually cover the number of
degrees of redundancy (n - m). Such constraints, indeed, have to be
functionally expressed in terms of the unknown joint variables with re-
spect to the same base frame in which the manipulator kinematics is gfv—
en. The result is an augmented direct kinematic equation of the type [3]

y = £'(q) (4)

where y € Rm+v, with 0 < v < n-m. In terms of the solution algorithm, an
augmented Jacobian matrix Je will be obtained, whose first m rows will
be the same as in J and whose last v rows will be obtained by properly
differentiating with respect to g the extra task variables introduced in
f'.

In case of a constraint on a joint Timit (qimin < q; S-qimax)’ the
proper variable to introduce in the task space will be simply the dis-

tance of the actual q; from either limit, dq =q; - or d

imin q © %imax
- Q5 depending on which limit is involved. The resulting row in the
Jacobian Je will have a +1 in correspondence of the i-th column (all the
other elements will be zero), so as to prevent the joint variable to
approach the limit (7,131,

In case of an obstacle in the manipulator workspace, a point at min-
imum distance along the kinematic structure from the obstacle can be
determined (obstacle avoidance point) [7,14] (fig. 3). The task space
variable to introduce will be the distance of the obstacle avoidance
point from the obstacle; in fact, such distance can be shown to be a
function of those joint variables which determine the position of the
obstacle avoidance point. The Jacobian of the obstacle avoidance point
will obviously contribute to form the additional row of the augmented
Jacobian Je.

If the manipulator is vrequired to be dexterous, one of the
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manipulability measures proposed in the Tliterature can be directly
adopted as the additional task space variable [8]. The determinant of
the square root of JJT [15) is perhaps the simplest measure for detect-
ing a kinematic singularity, whenever it approaches zero. Other measures
can be thought of, depending on the particular kinematic structure and
on the necessity of extracting one particular singularity out of differ-
ent ones (the shoulder singularity, the wrist singularity, etc.).

A very important point in applying the general solution algorithm of
fig. 1 to constrained redundant manipulators is the logical activation +
inactivation of constraints. It is possible, indeed, to wind up in a
"deadlocked" situation where further movement is not possible
(overconstrained system) and the algorithm has to be aborted [7].

5. SOME REMARKS CONCERNING SINGULARITIES: DETERMINATION OF THE WORKSPACE

A solution of the type (3) recalls the fundamental relationship be-
tween the joint torques T € R" and the task (Cartesian) forces f € RM
applied at the end effector [9], i.e.

= J1(g)f (5)

It can be recognized that applying the solution (3) is equivalent to
regard the manipulator as a set of weightless links with unity damping
at each joint; Ke play the role of elastic forces.

It has been anticipated that when rank(J) < m, a singularity occurs.
As far as the update law (3) is concerned, it results JTg = 0 when e
belongs to the null space of JT. On the basis of the above equivalence,
however, the null space of JT spans those directions along which a
Cartesian force is completely neutralized by the mechanical structure of
the manipulator. From the implementation viewpoint, such configuration
is detected by having liql = 0 and lel # 0.

The direction of the null space of the transpose of JT identifies
not only the so-called "internal" singularities (inside the reachable
workspace) due to the alignment of certain axes, but also the so-called
"boundary" singularities (at the boundaries of the workspace) at which
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the manipulator is fully extended [9].

On the basis of equation (5), it is seen that, under the action of a
force imagined applied to the end effector, the manipulator reaches a
(stable) static equilibrium configuration in which it assumes maximum
extension in the direction of the force [16]. If a point X out of the
workspace is assigned, the algorithm of fig. 1 will take the actual x to
a boundary singularity. Therefore, if a trajectory is planned which con-
tains points outside the workspace, the algorithm will not fail, but it
will automatically generate a solution which proceeds along the bounda-
ries of the workspace,

From the analysis of the singularities performed above, it becomes
quite straightforward to adopt the same algorithm to draw the boundaries
of the workspace ag well as those lines inside the workspace which limit
the regions with different aspects [17]. This will be explained in the
following.

The reachable workspace of a wmanipulator is the volume in the
Cartesian space defined as the geometrical locus of the end effector
point p, when the joint variables range between the two extreme values
[171:

P = p(q) Yimin < 9 < qimax (6)

The volume is finite, closed, connected (p(q) is continuous) and, there-
fore, entirely defined by its boundary surface. This surface is made up
of planar, spherical, toroidal and cylindrical surface elements.

A rank deficiency in the Jacobian matrix J of the manipulator is
caused by any of the following situations, whenever a loss of m0b11ity
occurs:

a) a null column vector (the corresponding joint is blocked at either
of the two limits, %min °" Yimax’ ag/aqi-= 0),

b) 1linear dependence of the column vectors (the manipulator is in a
singular configuration, usually two or more axes are aligned:
9p/3q, x aﬂfaqj =0).
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A11 the possible combinations of two or more of the above situations are
to be considered to derive the surfaces characterizing the workspace and
jts significant zones. In particular, the colinearity of the column vec-
tors in the Jacobian is of primary importance to determine the aspects
of the manipulator [17]. For a two DOF planar mechanism, for instance, a
single point can be accessed by p for two different aspects,
"elbow-down" and "elbow-up". For a redundant mechanism (three DOF's in a
plane), instead, there will be two families of aspects rather than two
single aspects.

Based upon the above premises, the boundaries of the workspace and
the curves limiting those regions with different aspects can be directly
determined by applying the inverse kinematic algorithm of fig. 13 the
sole requirement is to choose the reference trajectory ﬁ according to
the possible combinations of the above two situations a) and b). A sim-
ple example with a two-DOF planar mechanism will illustrate the proce-
dure.

The trajectory p(t) is obviously chosen as a circle of radius 1> 1,
+ 12, being 11 and 12 the lengths of the two links. In order to start
the algorithm, assume to locate the arm at the configuration 9 = Gpin°
9 = 9min (point A of fig. 4). The corresponding p(t=0) is chosen at an
angle o(t=0) = atanz(px(t=0),py(t=0)) with the X axis.

The logical sequence to account for the joint limits (null column
vectors in J) is as follows. The stop on q, is released (agfaql = 0);
the tip of the arm p(t) draws the arc AB, as a(t) increases. At point B,
in fact, the limit 9omax is encountered. Then the stop on q, is released
(3p/3q, = 0); p(t) draws the arc BC, since at C the limit qq... is
reached. Then the stop on q, is released again (Bpjaql = 0); the corre-
sponding arc drawn is CD. The stop on q, is finally released again
(ag/aq2 = 0), drawing the arc DA.

It is necessary now to account for the colinearity between the two
columns of J. Restarting from point A, both joint stops are released;
the tip of the arm will initially redraw AB, up to that point E, corre-
sponding to q; = Gqpins Gy = 0 (agfaql x 9p/dq, = 0). From there on it
will proceed along a new arc, up to encounter the point F, corresponding
to 9 % Gqmax> 92 °© 0.

At this point the required workspace is completely determined by the
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area limited by the arcs AEFCGDA, where G is the intersection between
arcs BC and CD. Moreover, it can be recognized that the area limited by
AEFDA corresponds to the first aspect "elbow-down" attainable by the
arm, whereas the area limited by BCFEB characterizes the second aspect
"elbow-up” of the arm. Therefore, the area EBGFE is the dexterous region
of the reachable workspace [9] where the arm can assume both aspects, up
and down (fig. 4).

6. CONCLUSIONS

This paper has hresented a short tutorial of a new algorithm to
solve the inverse kinematic problem for a general (nonredundant and re-
dundant, constrained or unconstrained) manipulator as well as to deter-
mine its workspace. The real breakthrough of the proposed solution is
that it is based only on direct kinematic functions computation. A vari-
ety of applications to different structure geometries can be found in
the references by these authors. Here a novel, simple application to the -

workspace determination of a two-DOF planar arm has been offered.
T
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Fig. 1. The General Inverse Kinematic Solution Algorithm.
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Fig. 2. Three Basic Kinematical Configurations at the End Effector:
a) Spherical Wrist, b) 2-by-2 Intersecting Axes, c) Nonconverging Axes.

End
Effector

Fig. 3. Geometry of a Planar Manipulator Showing the Point Nearest
to the Obstacle.

Fig. 4. Workspace of a 2-DOF Planar Arm.
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