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Abstract This paper presents a new linear velocity esti-
mator based on the unscented Kalman filter and making use
of image information aided with inertial measurements. The
proposed technique is independent of the scale factor in case
of planar observed scene and does not require a priori knowl-
edge of the scene. Image moments of virtual objects, i.e. sets
of classical image features such as corners collected online,
are employed as the sole correcting information to be fed
back to the estimator. Experimental results performed with
a quadrotor equipped with a fisheye camera highlight the
potential of the proposed approach.

Keywords UAV quadrotors · Velocity estimation ·
Computer vision · Data fusion · Kalman filter

1 Introduction

Nowadays, the development of unmanned aerial vehicles
(UAVs) is reaching remarkable proportions. In particular,
vertical take-off and landing (VTOL) UAVs, such as rotary-
wing vehicles, possess the hovering capability which makes
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them appealing if not unique candidates for numerous poten-
tial applications, in both civil and industrial scenarios, aswell
as for both outdoors and indoors missions.

Linear velocity measurement is an essential information
for the control system of UAVs (Castillo et al. 2004). For
instance, in a visual servoing scenario (Espiau et al. 1992),
knowledge of the linear velocity will suffice to position the
vehicle to a desired location. Although the linear velocity
could be inferred from global positioning system (GPS)’s
position measurements, GPS is an active sensing modality
relying on an external source (satellite) of information. GPS
is therefore unreliable at low altitudes, in urban and indoor
areas, suffers from signal cut (Prasad et al. 2008), has its
performance affected by weather conditions, and is typically
available at low frequency (1 Hz).

Inertial measurement units (IMU) provide attitude and
acceleration measurements at relatively high frequency,
which yields an important sensing modality for the UAV atti-
tude control. Nevertheless, the measure of the acceleration
is relayed with a bias and large noise, and thus numerical
integration thereof to obtain the linear velocity leads to drifts
quickly growing over time, especially for low-cost IMUs.

On the other hand, vision relays wealthy information with
pixel-order resolution, involves low power consumption, and
is passive. Moreover, modern technology affords cameras
with increased streaming rate and resolution, yet with lighter
weight and lower energy consumption. These characteristics
make cameras as a good sensing modality for UAVs appli-
cations.

The onboard linear-velocity estimation problem triggered
different research works, leveraging vision and IMU for the
purpose. In Shen et al. (2011), a simultaneous localization
and mapping (SLAM) fuses IMU and laser range sensor data
with an extended Kalman filter (EKF) to obtain quadrotor
pose and velocity.
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In Achtelik et al. (2011), an EKF is used to fuse vision,
IMU, and air pressure data in a SLAM framework for
pose estimation. It is based on a linear model of the vehi-
cle motions, thus not benefiting from larger reactivity and
domain of convergence of a nonlinear model. In Kneip et al.
(2011) the linear velocity is provided as a closed-form solu-
tion from three consecutive measures of IMU and vision. A
similar solution is presented inLippiello andMebarki (2013),
but spherical visual features are adopted, while in Mebarki
and Siciliano (2013), Mebarki et al. (2015) an image-based
nonlinear observer is proposed.

A large number of research works focused on optical flow
(Ma et al. 2003). InGrabe et al. (2012), by assuming the scene
to be planar, the continuous homography constraint (Ma et al.
2003) is used and the linear velocity is provided as a closed-
form solution, involving the angular velocity from the IMU.
In Weiss et al. (2012), Honegger et al. (2013), optical flow
and IMU data are fused instead. In Zhao et al. (2015), optical
flow along with barometer measures is exploited in an EKF
to estimate the velocity, but the reliability of using a barom-
eter in indoor environments is still an issue. In Mourikis and
Roumeliotis (2007), an EKF fuses IMU data with a set of
visual features observed in a number of successive image
sequences for state estimation. It is assumed that a prior esti-
mate of the 3D positions of the visual features with respect
to a global frame is first extracted or known. The EKF update
measurements consist of the image coordinates of the visual
points but also combined to those 3D position approxima-
tions. A similar algorithm is applied inMourikis et al. (2009)
for spacecraft planetary landing application.

In this work image moments are employed as the sole
feedback correcting-measurements for velocity estimation.
However, classical surface image moments imply that con-
trasted (physical) objects be in the scene and their image sec-
tions be properly segmented. In our previous work (Mebarki
and Lippiello 2014), synthetic and engineered objects of cir-
cular shape and black color have been introduced into the
scene to cope with the issue. The solution we propose in
this paper overcomes this limitation such that it only needs
that natural feature points be present in the image. The pro-
posed algorithm fits virtual objects to the observed visual
points, like corners, collected online during the flight and
clustered accordingly to their position in the image. Specifi-
cally, each cluster would be considered as a virtual object to
which a convex hull is fitted and tracked through the succes-
sive images. For each virtual object, the image moments are
then computed from the convex hull’s vertexes representing
its contour.

Due to the nonlinearity of the systemanunscentedKalman
filter (UKF) (Julier and Uhlmann 1997) is adopted. IMU
measurements are involved only in the update phase, while
for the correction phase only image information is injected.
The proposed algorithmhas the remarkable property of being

Fig. 1 The quadrotor used for the experiments is endowed with a
down-oriented fisheye camera

independent of the scale factor when considering a planar
scene or when the virtual objects are planar. Moreover, it is
computationally cheap, such that its complexity is linear with
the number of virtual objects constructed from the clusters
of image features.

The validity and potentiality of the proposed approach is
confirmed by both simulation and experimental tests on a
real flying quadrotor equipped with a down-oriented fisheye
camera and a low-cost IMU (see Fig. 1).

The remainder of the paper is structured as follows. In
Sect. 2, image moments along with their kinematic model
are revisited. The state and measurement vectors along with
the estimation model for UKF are presented in Sect. 3. Sec-
tion 4 shows how virtual objects are extracted from natural
visual features (corners) and upon which image moments are
then computed to be used as measurements in the UKF. Sim-
ulation and experimental results on a real flying quadrotor
are reported and discussed in Sects. 5 and 6, respectively,
before drawing concluding remarks in Sect. 7.

2 Image moments

Let us first assume that an object is observed by the camera.
The projection of this object on the current image frame is
denoted by S, as shown in Fig. 2. Let c = (x, y) ∈ R

2 be
an image point corresponding to the 3D point p ∈ R

3 of the
object, i.e. c lies on section S. Image moment mr j of order
(r + j) associated to S is a function of the image coordinates
(x, y) of the points lying on S as follows (Hu 1962):

mr j =
∫∫

S
xr y j dx dy. (1)

Its time variation ṁr j can be written in terms of the image
points velocity as follows (Chaumette 2004):
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Fig. 2 Image section S along with its contour C

ṁr j =
∫∫

S

(
∂ f

∂x
ẋ + ∂ f

∂y
ẏ + f (x, y)

(
∂ ẋ

∂x
+ ∂ ẏ

∂y

))
dxdy

(2)

where f (x, y) = xr y j , and ċ = (ẋ, ẏ) represents the image
velocity of point p.

Let {c} be a Cartesian frame attached to the camera, such
that its Z-axis coincides with the camera optical axis. Let
c p = (X,Y, Z) ∈ R

3 be the 3D coordinates of p in {c},
consider a perspective camera projection model such that
c = (X/Z ,Y/Z), and assume the object surface is planar.
Thus p satisfies

1

Z
= a x + b y + c, (3)

with (a, b, c) parameters defining the plane. Let then v =
(v� ω�)� ∈ R

6 be the velocity of the camera, which is
defined with respect to fixed inertial frame {i} and expressed
in frame {c}, such that v = (vx vy vz)

� ∈ R
3 corresponds to

the linear velocity, and ω = (ωx ωy ωz)
� ∈ R

3 to the angu-
lar velocity. Therefore, under the assumption of motionless
objects, time variation ṁr j is given as a function of the cam-
era velocity v in the following linear form (Chaumette 2004):

ṁr j = Lmr j v (4)

where Lmr j = (mvx mvy mvz mωx mωy mωz ) ∈ R
1×6 is

referred to as the interaction matrix associated with moment
mr j , with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mvx = −a mr, j − r
(
a mr, j + b mr−1, j+1 + c mr−1, j

)
mvy = −b mr, j − j (a mr+1, j−1 + b mr, j + c mr, j−1)

mvz = (3 + r + j)(a mr+1, j + b mr, j+1 + c mr, j )

−c mr, j

mωx = (3 + r + j)mr, j+1 + j mr, j−1

mωy = −(3 + r + j)mr+1, j − rmr−1, j

mωz = r mr−1, j+1 − j mr+1, j−1.

(5)

In the following section the above relationship is employed
to construct the transition model for UKF estimation.

3 Estimation model

The analytical models describing the time update of each of
the variables involved in the image moments variation are
derived in this section. After this, both the state and mea-
surements models, that will be used in a UKF algorithm to
estimate linear velocity v, will be derived.

3.1 Plane orientation

Let ip ∈ R
3 be the 3D coordinates of p in the fixed inertial

frame {i}. Let n ∈ R
3 be the normal to the object surface,

which is assumed planar (see Fig. 2). It is expressed in the
inertial frame and thus is constant. Since p lies on the object
surface, it satisfies:

n� (ip − i p) = 0, (6)

with i p another point lying on the object surface. Point p
coordinates in camera frame express as a function of its coor-
dinates in inertial frame {i} as:
cp = cRi

ip + c t i , (7)

where cRi ∈ SO3 and c t i ∈ R
3 are the rotation matrix and

translational vector representing the orientation and transla-
tion of inertial frame {i} with respect to camera frame {c},
respectively. Substituting ip with (7) in (6) yields

ń� cp = η, (8)

with

{
ń = cRi n
η = ń� c t i + n� i p ∈ R,

(9)

where vector ń corresponds to the expression of normal vec-
tor n in camera frame, hence this quantity varies with the
vehicle (camera) motion. Identifying the second equation of
(9) with (3), it can be deduced that parameters a, b, and c
express in terms of n as follows:

q = 1

η
ń = (a b c)� ∈ R

3. (10)

Time differentiating ń and η gives, after using the classical
relationships stating that iṘc = iRc [ω]× and that c ṫ i =
−v + [ω]× cRi

itc:
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˙́n = −[ω]× ń, (11)

and η̇ = −ń�
v, (12)

where [a]× denotes the skew-symmetric matrix of vector a.
It represents the cross product in matrix form. Finally, time
variation q̇ of q is derived from (10) after exploiting (11) and
(12), as follows:

q̇ = 1

η
˙́n − 1

η2
η̇ ń

= 1

η
(−[ω]× ń) − 1

η2
ń (−ń�

v)

= −[ω]× q + q q�v. (13)

3.2 Velocity time update

Assume that the IMU accelerometer is calibrated. Let am ∈
R
3 be the measurements from the IMU accelerometer. They

are expressed in the IMU frame. Let i v̂ be the estimate of
linear velocity iv expressed in the inertial (global) frame.
Then, time variation i ˙̂v of i v̂ can be obtained as follows:

â = iR̂
�
c g + cR I MU (am − b̂a)

i ˙̂v = (− iω × i v̂ + â)
(14)

where c RIMU corresponds to the constant orientation matrix
from the camera frame to the IMU Cartesian frame (can be
a priori known). As for vector â, it corresponds to nothing
but the IMU acceleration expressed in the camera frame,
b̂a ∈ R

3 is an estimate of the corresponding bias, and iω

corresponds to UAV (IMU) angular velocity expressed in
the inertial frame. It is worth highlighting the importance of
considering the estimate of the velocity in the inertial (con-
stant) frame instead for instance the camera frame. When
expressing in the camera frame indeed, the time variation of
the angular velocity would appear, which yields the obtained
model less interesting in view of the unnecessary introduced
noise, inherent to the acceleration measurements.

3.3 State vector of the Kalman filter

Assume that N sections S, i.e. virtual objects, are detected in
the current image frame and tracked in the time, as described
in more details in Sect. 4. Define vector mi ∈ R

6 enclos-
ing image moments up to second order computed on the i th
section, such that1:

mi = (
m00,i m10,i m01,i m20,i m11,i m02,i

)� ∈ R
6. (15)

As will be explained in more detail later in Sect. 3.4, the first
three components of mi are relevant for estimating linear

1 mr j,i denotes the (r+ j)th order moment associated to the i th section.

velocity v, while the last three could be used to estimate
angle vector q.

For use within the Kalman filter (KF) we propose the state
vector x to be defined as

x = (
v� x̄�

1 x̄�
2 · · · x̄�

N

)� ∈ R
3+9N , (16)

with

x̄i = (q�
i m�

i )� ∈ R
9, (17)

where qi is the angle vector associated with the i th section
and is defined by (10). Notice that all of the x̄i share the same
linear velocity v. This means that the higher the number of
image sections, the better the robustness in estimating v with
respect to measurement noise.

Next, by applying first-order Euler integration to (14),
time-discrete update vk+1 of velocity v at time k+1 is given
by

ivk+1 = ivk + �t

(
− iω × i v̂ + â

)
, (18)

where ivk = i Rc vk , and �t corresponds to the sampling
time. Notice that since the feedback measurements consist of
image information, the estimation is performed at the camera
streaming rate. Similarly, from (13) discrete update qi,k of
qi can be expressed as

qi,k+1 = qi,k + �t

(
− [ωk]× qi,k + qi,k q

�
i,k vk

)
. (19)

Also, from (4), discrete update mik of mi expresses

mi,k+1 = mi,k + �t Lm,ik vk, (20)

wherevk = (v�
k ω�

k )� and Lm,ik = (L�
mi,00,k

L�
mi,10,k

L�
mi,01,k

L�
mi,20,k

L�
mi,02,k

L�
mi,11,k

)�, with Lmi,r j ,k given by (5) com-
puted at discrete time k, such that mi,r j,k denotes moment
mr j of the i th section at time k.

3.4 Measurements

The proposed measurements vector is based on image
moments extracted from the current image frame as follows:

z = (
z�1 z�2 · · · z�N

)� ∈ R
6N , (21)

such that zi encloses moments corresponding to the i th of the
N sections extracted from the image, as detailed in the next
section. In particular, the following quantities are chosen:
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zi =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
ai
x̄i
ȳi

η20,i
η11,i
η02,i

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
6, (22)

where ai is the area of the i th section, (x̄i , ȳi ) its center of
gravity in the image, and (η20,i , η11,i , and η02,i ) are sec-
ond order moments invariant to scale and translation. Notice
that all these quantities can be expressed in terms of image
moments only. More precisely, the first three components of
zi express in terms ofmoments up to the first order as follows
(Hu 1962):

ai = m00,i

x̄i = m10,i/m00,i

ȳi = m01,i/m00,i ,

(23)

while the last three components are given as follows:

ηr j = μr j

a1+
r+ j
2

, (24)

where μr j are centered image moments, which are invariant
to translation, defined as follows:

μr j =
∫∫

S
(x − x̄)r (y − ȳ) j dx dy. (25)

They can be expressed in terms of image moments only,
as follows:

μr j =
r∑
k

j∑
h

(
r
k

) (
j
h

) ( − x̄
)(r−k) ( − ȳ

)( j−h)
mkh (26)

with
( ·

·
)
denoting the binomial coefficient. Notice that the

first three components (
√
ai , x̄i , ȳi )would be themain actors

in the estimation of v. Indeed, the area variation corresponds
mainly to motions along the optical axis of the camera, that
is component vz of v. On the other hand, center of gravity
(x̄i , ȳi ) is correlated mainly to the motions along the camera
plane axes, that is velocities vx and vy . This shows the rel-
evance of the area and center of gravity in the estimation of
linear velocity v. Moreover, invariant second order moments
ηr j have been introduced mainly to extract an estimate of
qi . Indeed, second order image moments describe the orien-
tation of an observed object in the image which intuitively
would be mainly correlated to the camera orientation, hence
to q. Also the invariance properties of ηr j would yield the
first three components of zi decoupled from the last three,
which would enhance the estimation performance.

Fig. 3 Sketch of a polygon
(convex hull) fitting the points
of contour C. The vertexes
defining the polygon are shown
in red-filled circles (Color figure
online)

S

C

c

The computation of image moments needed by the algo-
rithm during run time is not performed by using formula (1)
as it is, but exploiting only the contour points. Specifically,
instead of the whole points lying on a considered section,
only the vertexes of the convex hulls (i.e. polygons) are used.
This reduces the computational complexity from square to
linear. Accordingly, let the extracted contour be character-
ized by a set of m image points, where c j = (x j , y j ) , with
j = 1, . . . ,m, being the j th point (see Fig. 3). Add c0 = cm
as the (m + 1)th point, so that all these points form a closed
contour. Then, relationship (1) expressing an (r + j)th order
image moment recast as follows (Steger 1996):

mr j =
m∑
i=1

(yi − yi−1) σi,r j , with σi,r j =
r+1∑
k=0

j∑
l=0

akl fx fy⎧⎨
⎩

fx = xki x
r+1−k
i−1 , fy = yli y

j−l
i−1

akl = 1
(r+ j+2)(r+1)

(
r + 1
k

) (
j
l

)/(
r + j + 1
k + l

)
,

(27)

where xβ = yβ = 0 for β < 0 is considered.

3.5 Kalman filter-based estimation

In this section the analytical model to performKalman Filter-
based estimation is presented. Expressions (18), (19), (20),
and (21) can be recast in the following transition and obser-
vation relationships:

{
xk+1 = g(xk, ωk, ak) ∈ R

3+9N

zk = h(xk) ∈ R
6N

, (28)

where

g = (g�
v g�

1 · · · g�
N )�

gv = ivk + �t

(
− iω × i v̂ + â

)
∈ R

3

gi =
(
qi,k − �t [ωk]× qi,k + �t qi,kq

�
i,k vk

mi,k + �t Lm,ik vk

)
∈ R

9

(29)

and

h(xk) =
(
h1(x̄1)� h2(x̄2)� · · · hN (x̄N )�

)�

hi (xi ) = (√
xi,4

xi,5
xi,4

xi,6
xi,4

ηxi,20 ηxi,11 ηxi,02
)�

,
(30)

123



Auton Robot

with xi,r the r th element of x̄i at time-sample k. Recall that
x̄i is defined by (17). As for ηxi,r j , it simply corresponds to
ηr j given by (24) but is expressed in terms of the elements
of mi given by (15) and enclosed in x̄i .

As can be seen from (28) and (29), along with all the
involved variables introduced above, the obtained model is
independent of the scale factor and this constitutes a nov-
elty with respect to the state-of-the-art. Since the model is
nonlinear, a UKF algorithm is adopted to perform the esti-
mation (Julier and Uhlmann 1997). Doing so allows to better
handle the nonlinearities than for instance EKF does. Our
implementation of the UKF follows that described in Cras-
sidis and Markley (2003), which, in contrast to the original
version presented in Julier and Uhlmann (1997), does not
require the state vector or the covariance matrices be aug-
mented, thus reducing the computational complexity.

Furthermore, it is worth noting that the computational
complexity of the proposed estimator (model) is linear with
respect to the number N of the (virtual) objects and not in
terms of the number of observed feature points. This con-
siderably downscales the problem. In addition, the different
computations for the estimation can be optimized. Indeed,
each of three phases corresponding to the computation, prop-
agation, and projection of the [2(3+ 9N ) + 1] sigma points
of the UKF can be performed in parallel (multi-threading).
This means that the computational complexity related to the
sigma points would not be substantially affected when larger
number of (virtual) objects is considered. Only two parts of
the pipeline can not be readily parallelized: the computation
of the state covariance matrix square root at each of the pre-
diction and update phases.

4 Virtual contour extraction

There are different ways to approach the issue of segment-
ing an object from an image. To our knowledge, in most
of the state-of-the-art works the segmented section corre-
sponds to an image of a physical object or a part of it. In the
present work, we propose a different approach that consists
of extracting contours of virtual objects. The algorithm fits
contours (polygons, more precisely) to sets of the detected
visual features (corners in this work). These corners do not
necessarily belong to a same physical object and thus the
corresponding polygon delimits a virtual object. There are at
least two advantages of doing so. The first one is that the pro-
posed estimation can handle any image provided of course
that some feature points (contrast) are present. The second
advantage is the reduced computational complexity. Simply
extracting corners is clearly faster than segmenting the con-
tours of physical objects from the scene. After the contour
has been extracted, image moments are then computed for
the image section delimited but that contour.

cm−1

I

Z4Z3

Z6

Z9

Z8

Z5

Z7

Z1Z0 Z2

C9

c0 = cm

c2C0
ck

c1

Fig. 4 Sketch of the proposed contour extraction principle. The current
image frame, I, is partitioned into N zones, denoted by Zi ’s. Here
we consider N = 10 zones. The first nine zones are delimited by the
vertical and horizontal red-dashed lines, while the 10th is indicated
with the rectangle in magenta. The detected features are represented
with black dots (tiny filled circles). Note that a feature point might be
assigned to different zones, such that in our example zones Z0 and Z9
share three features. Then, each zone’s set of features is fitted with a
contour, denoted by C. Specifically, the contour consists in a convex
polygon (plotted in green), whose vertexes are defined by the most
external points of the considered zone (convex-hull). Only two contours
are sketched for the sake of illustration (Color figure online)

The algorithm principle and data flow is presented with
more details in the sequel.

Firstly, the acquired image frame is divided into different
zones as sketched in Fig. 4. In this work, we choose to define
10 zones, denoted by Zi ’s, with i = 0, . . . , 9. Nine of them
correspond to rectangles resulting from dividing the image
height and width into three equivalent columns and rows.
The tenth zone corresponds to a larger rectangle centered
in the image, so as to capture more feature points. Another
possibility is to merge adjacent zones if few features were
detected, yet a large number of further possibilities could be
considered.

Assume that feature points have been detected in the cur-
rent image frame. Then, each of these points will be assigned
to one of the defined zones according to its image coordi-
nates, as sketched in Fig. 4. Next, for each zone a contour C
is evaluated by considering the convex hull of the observed
points in the region. We use OpenCV for the purpose. The
points lying on the polygon are denoted by ck in Fig. 4, with
k = 0, . . . ,m, and are sorted counter-clockwise. Recall that
such points have already been introduced earlier and were
similarly denoted by c, as depicted in Figs. 2 and 3.

In this work we adopt ORB detector for contour extrac-
tion (Rublee et al. 2011), which is reported to feature both
the performance of SIFT and the speed of FAST. The extrac-
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Fig. 5 Flow chart of the
proposed image contours
extraction and tracking

has a contour point been lost?

First image?

Yes

No

Corner extraction

  (ORB)

Assign points to pre−defined zones

No

Yes

Current image frame

Image acquisition

No

Compute image moments of each zone

Nbr. of valid zones > threshold?

Extract  (convex) contours for each zone

KLT corner tracking of the 

     contour points

Yes
Discard ZiFor each zone Zi,

tion process is performed only at the initial time and when
the number of detected points for a region drops under a
defined threshold. Indeed, once a contour is extracted, it
is then only tracked through the subsequent frames with a
well-known Kanade–Lucas–Tomasi (KLT) feature tracker
(Lucas and Kanade 1981). It is worth pointing out that by
performing tracking instead of image detection, the algo-
rithm considerably gains in terms of speed. Moreover, in our
implementation the tracking of all the contours is performed
in parallel (multi-thread), which again speeds up the algo-
rithm. Finally, contour points c’s are then readily used to
compute the image moments using formula (27).

A flowchart summarizing the different steps of the whole
image contours extraction and tracking is drawn inFig. 5. The
whole algorithm is written in C++ using OpenCV, and ROS2

and is open-source. Figure 6 shows a real image sequence
on which the contours obtained with the described algorithm
are displayed.

2 http://www.ros.org.

5 Simulation results

The algorithm proposed in this paper contains two main and
subsequent phases: the image elaboration part wherein vir-
tual objects (polygons) are assigned to the collected image
corners as described in Sect. 4; and the KF phase that uses
the image moments computed in the previous phase to get an
estimate of the linear velocity as described in Sect. 3.5. It is
worth recalling that these two phases are not strictly linked
in the sense that the image elaboration can be performed
according to different techniques. For instance, a user might
prefer to directly segment physical objects from the scene
and then compute their moments. Though, this requires that
real-physical objects be present in the scene; a constraint
that has been relaxed with our approach such that only visual
points would suffice, even if they do not correspond to the
same object.

In this section we report numerical simulation results to
verify the validity of the KF phase. As for the image elabo-
ration part, it is tested instead directly in the real scenario as
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Fig. 6 Image frame from the onboard fisheye camera on which are
displayed four extracted contours (polygons in green) by the proposed
algorithm (Color figure online)

reported in the next section. We assume that physical objects
are in the scene. For simplicity, each object is described by
its contour, which consists in a polygon whose vertexes are
pre-defined. The objects are motionless. The images of these
objects are simulated by perspective projection of the differ-
ent vertexes. Then image moments are computed and fed to
the proposed UKF.

5.1 Camera frame rate of 25 Hz

We first consider the case where the images are provided
at the rate of 25 Hz. Each observed object has its vertexes
lying on the ground, thus respecting the coplanar constraint
given by (3). Each of the involved measurements is relayed
with a bias and an additive white Gaussian noise (AWGN) of
a certain standard deviation (SD). In details, the roll, pitch,
and yawEuler angles of theUAVattitudemeasurements from
the onboard IMU are each corrupted with a bias of 1◦, and an
AWGN of 1◦ SD. Likewise, the components of the angular
velocitymeasurements from the IMUgyro are corruptedwith
a bias of 0.57 ◦/s , and anAWGNof 2◦/s SD. Since the current
version of the algorithm uses the value of the commanded
thrust (as more described in Sect. 6), the latter is assumed
corrupted with a bias of 2 % the nominal value (that equal
for hovering, i.e. m g), and an AWGN of 2 % the nominal
value as SD. Finally, the image coordinates are corrupted
with an AWGN of SD 5 % the nominal value.

It is assumed that six planar objects lie on the ground
and are observed buy the camera onboard the vehicle. The
objects have been defined and positioned randomly in the
scene.While the vehicle achieves a sinusoidal motion around
a position high by 6m from the ground, the proposed estima-
tor is fed with the images of these six objects. Corresponding
results are shown in Fig. 7.We can see that the proposed algo-

rithm yields good estimates of the linear velocity, though the
presence of large noise. As can be seen indeed from Fig. 7d,
e, and f, the measurements errors on the attitude exceed 5◦ at
least. Likewise, Fig. 7g, h, and i reveal that themeasurements
error on the angular velocity exceed 7◦/s at least. The large
measurements error corrupting the force (i.e. acceleration)
applied to the vehicle and given by (32) can be appreciated
from Fig. 7j–l. The evolution of the state covariance matrix’s
diagonal elements are shown in Fig. 8.

5.2 Camera frame rate of 100 Hz

Now we consider the same scenario of Sect. 5.1, except that
the camera is 4 times faster; generating images at 100 Hz.
This allows us to check that the performance of the estimator
is correlated to the images streaming rate. Corresponding
simulation results are provided in Fig. 9. We can see from
Fig. 9a–c that the filter yields indeed better velocity estimates
than in the previous case of 25 Hz.

5.3 Non-coplanar feature points

Finally, we consider the scenario where the (virtual) objects
are no longer planar; that is, the vertexes defining the object
contour are not coplanar. This violates constraint (3) based
on which the transition function (20) relating the image
moments time variation has been derived. It is however worth
remarking that doing so can in fact be seen as equivalent to
applying an EKF to a nonlinear system. Indeed, model (3)
would represent a linearization of the true nonlinear model
of the scene. Nevertheless, in contrast to EKF where all
the involved dynamics are linearized, the UKF adopted in
this work keeps the other states with their original nonlinear
model; only a subset would be concerned by the lineariza-
tion. To summarise, our algorithm would still hold in case
the scene is not planar, similarly as an EKF would behave
when applied to a nonlinear system, except that the former
would better handle the overall nonlinearities.

The simulations reported in this section allow to verify
the above statement. The same scenario as in the precedent
simulation is considered, except that the vertex points no
longer lie on the same plane but are at different elevations
(up to 4 m of difference in height). Corresponding results
are shown in Fig. 10. We can see indeed that the estimator
still yields good estimates of the linear velocity, although the
non-planarity of the objects is severe.

6 Experimental results

This section reports results obtained using the proposed
method on a real hardware system. The objective is to esti-
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Fig. 7 Simulation results obtained with the proposed estimator fed
with images at 25 Hz. The simulation scenario and conditions are
described in Sect. 5.1. Six planar objects lie in the scene observed
by the onboard camera. a–c Estimated v̂ vs. actual velocity v. Vec-
tor rxyz ∈ R

3 corresponds to the XYZ Euler orientation of the vehicle
attitude. Vector f0 corresponds to f/m, where force f is given by (32).
Remark that except for velocity v, â denotes the measurement used

by our estimation algorithm while a denotes instead the actual (true)
value. n 3D view, where both the path followed by the UAV and the
observed objects lying on the ground are depicted. The relative altitude
of the UAV from the ground is indicated with the palette on the right
of the figure.m Image frame from the onboard camera. The estimation
state-covariance matrix is shown in Fig. 8
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Fig. 8 State covariance matrix’s diagonal elements; following results
of Fig. 7. The first three elements (i.e. those related to linear velocity v)
can be distinguished with their green color (Color figure online)

mate the linear velocity of a UAV quadrotor using only
onboard sensing: vision aided by IMU.

6.1 Experimental setup

In these experiments we employ a Pelican quadrotor3 (see
Fig. 1), of roughly 1.5 kg total mass, flying in a GPS-
denied and poorly-textured environment (see Fig. 6). A
UI-1221LE uEYEvideo camera equippedwith a fisheye lens
is attached to the bottom of the vehicle. The video cam-
era streams images at the rate of 16 Hz with a resolution
of 640× 480. Note that no prior knowledge of the scene has
been considered in the estimation. The validity of the pro-
posed method is highlighted by comparing to ground truth
velocity extracted from an Optitrack motion capture system,
consisting of 20 infrared cameras covering the UAV opera-
tional space.

Since the accelerometer at our possession does not provide
measurements with enough reliability, we employ instead the
value of the commanded thrust as a substitute. We propose
indeed to leverage the equations of motions modeling the
dynamics of the vehicle. Specifically, a vehicle of mass m
would have its acceleration expressed in terms of the actual
total thrust u ∈ R applied to the vehicle. We would have
(Shakernia et al. 1999; Hamel and Mahony 2002):

v̇ = −ω × v + 1

m
f, (31)

where f ∈ R
3 corresponds to the total force applied to the

vehicle. It can be indeed expressed as a function of total thrust
u applied to the vehicle as follows:

f = −u e3 + m gR� e3 ∈ R
3, (32)

3 http://www.asctec.de.

where R is the rotation matrix defining the orientation of the
Cartesian frame attached to the body frame of the vehicle
with respect to inertial frame {i}, g is the gravity term, while
e3 = (0 0 1)�. Next, applying first-order Euler integration
to (31), time-discrete update vk of velocity v at time k writes

vk+1 = vk + �t

(
− [ωk]× vk + 1

m
fk

)
, (33)

where ωk and fk correspond to the discrete updates of ω and
f , respectively. Finally, the estimation model is obtained by
only substituting gv involved in (29) with the following:

gv = vk − �t [ωk]× vk + �t
1

m
fk ∈ R

3. (34)

The gains of the UKF have been empirically tuned as fol-
lows. The parameters α, β, and κ are set to 1e−3, 2, and 0,
as classically considered. The state covariance matrix is set
to Rv = diag(1e−3 I3, Rv1, Rv2, . . . , RvN ), with Rvi =
diag(1e−8 I3, 1e−8 I6), such that i = 1, . . . , N . The mea-

surement covariance matrix is set to Rn = diag
(
Rn1, Rn2,

. . . , RnN

)
, such that Rni = 5e−5 I6, with i = 1, . . . , N .

As for the initial values, the state covariance matrix is
set to P = diag(5e−4 I3, P1, . . . , PN ), such that P i =
diag(1e−6 I3, 1e−6 I6), with i = 1, . . . , N . The initial esti-
mate of the state vector is set to x̂t0 = 03+9N . To compute the
square root of the covariance matrix during run time, we use
Cholesky decomposition. TheGSLC++open source library4

is used for that purpose.
Regarding corner extraction, ORB detector is assigned

with amaximum number of 100 features. The extraction pro-
cedure is repeated each time the number of valid contours
(contours being tracked) of a region drops under a certain
threshold. A contour (a polygon more precisely) is declared
valid when: i) the number of its vertexes is higher than three
(to fully define an object); ii) all its vertexes are being cor-
rectly tracked. If only one vertex is lost during KLT tracking,
then the corresponding contour is declared invalid and a new
contour is searched in the region. A total number of roughly
40 corners (vertexes) were tracked in this experiment.

6.2 Planar scene

A scene almost planar is initially considered. Corresponding
estimation results are shown in Fig. 11. We can see from
Fig. 11a and b that the proposed algorithm is able to estimate
relatively well the velocities along the image plane vx and
vy . The algorithm is also able to recover velocity vz along
the image optical axis (which also corresponds mainly to
the elevation velocity), but not as well as for vx and vy (see

4 GSL - GNU Scientific Library: http://www.gnu.org/software/gsl/.
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Fig. 9 Simulation results obtained with the proposed estimator fed with images at 100 Hz as described in Sect. 5.2
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Fig. 10 Simulation results in case of non-planar objects. The images are provided at the rate of 100 Hz

Fig. 11c). This is mainly due to the errors from estimating
the acceleration based on the actuated thrust.

Amore sophisticated and accurate estimation of the actual
thrust taking care for example of the battery charge level
could improve the performance of the proposed velocity esti-
mator. For example, the two instants where the algorithm did
not estimate well vz are around time 20 s and time 43 s. At
those instants, in fact, the vehicle was randomly and pur-
posefully shoved up by pulling on the rope attached to its
frame from top to inject disturbances into the system. Thus,
the generated motion is due to the external force of the pull,
instead to the commanded thrust as our algorithm assumes.
However, whenever the rope is freed and the UAV is in a
descent manoeuvre, the algorithm yields a good estimate of
vz , since in this case themotions are due to the actuated thrust.
These results highlight the shortcoming of relying only on
the thrust value. A high-quality accelerometer would instead
capture all these motions and would yield better results.

We also notice some spikes on the estimated velocity,
especially on v̂x and v̂y . We owe this mainly to the image
tracking, more precisely to the shakiness of the tracked con-
tours. Indeed the KLT tracker keeps jumping around the area
of some corners. This is likely due to the low quality of the
relayed images, in addition to the change in brightness due
to illumination. Note that for each iteration it took roughly 4

ms to achieve the KF phase (after image elaboration) on an
Intel CORE i3 processor.

6.3 Non-planar scene

Though the transitionmodel relating the imagemoments time
update has been derived upon assumption that the scene is
planar, it is expected that the update phase of the algorithm
that uses only image information would correct the estimate
from any errors due to the non-satisfaction of that constraint,
as has been described in Sect. 5.3. In this sense, we test the
proposed method on an object non-planar. A box of roughly
0.6 m height has been added to the originally horizontal
scene, leading locally to a non-planar scene (see the box at
the top left of Fig. 6). Corresponding estimation results are
reported in Fig. 12 where one can see that the linear velocity
is still recovered. This confirms that the proposed algorithm
is applicable to a not perfectly planar scenario, i.e. that the
sensibility of the algorithm to the planarity of the scene is
small.

6.4 Final considerations

Finally, andmore remarkably, it is worth pointing out that the
proposed estimator is able to recover the scale of the linear
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Fig. 11 Estimate v̂ of linear velocity v compared to ground truth from
optitrack motion capture system in case of planar scene

velocity without any knowledge or explicit estimation of the
depth. This confirms that the algorithm is independent of the
scale factor, as analytically proved from the obtained model
used for Kalman estimation. This positive trait is indeed the
result of involving the image area (moments) as a state and
measurement element in the estimator. The area variations,
to recall, are indeed mainly correlated to the motions along
the image depth.

The current formulation of the estimator assumes cali-
brated IMU measurements: attitude as well as acceleration.
This might be convenient for a user desiring to employ
specific calibration tools of the IMU. Notice also that the
experimental results reported here are obtained with our esti-
mator fed with only raw IMU data. In the next works, we will
augment the estimator state and measurements in such a way
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Fig. 12 Estimated velocity from a non-planar scene (i.e. non coplanar
points)

that both the accelerometer and gyroscope have their biases
estimated and their signals filtered in real time. We also plan
to recover even the camera position based on this formula-
tion.

Finally, shakiness of the tracked contours would lead to
noisy image moments, especially for those of second order,
which would be reflected negatively on the estimator perfor-
mance. Change in brightness (due mainly to light reflection)
makes the situation worse. The spikes would also be caused
by UKF re-initialization, which is triggered by each corner
extraction. We need to smooth the change in brightness, han-
dle appropriately the transition phases, and reject the outliers.
This will be the subject of our next works.
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7 Conclusion

In this work we developed a novel method for estimating the
unavailable linear velocity of a UAV equipped with onboard
vision and IMU, in aGPS-denied and unknown environment.
The algorithm is general in the sense that it only requires
that visual corners be detected and tracked for a certain time
interval. We proposed a combination of image moments as
the sole feedback for the estimation, such that aUKFhas been
adopted for the propose. The light computational complexity
of the algorithm has been highlighted, making it appealing
for autonomous robotics. Both simulation and experimental
results on a real hardware system equipped with only a low-
cost IMU confirmed the validity of the proposed approach.
The proposed algorithm is independent of the scale factor.

In the near future, we will employ a better quality IMU
and the algorithms will be fed with measurements from cali-
brated sensors. In addition, we will rely on an accelerometer,
in contrast to the present work where only an approximate
from the commanded thrust has been injected. We will then
benchmark the proposed algorithm with respect to the state-
of-the-art.
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