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Abstract-Coordinate transformation is one of the most important issues in robotic manipulator control. 
Robot tasks are naturally specified in work space coordinates, usually a Cartesian frame, while control 
actions are developed on joint coordinates. Effective inverse kinematic solutions are analytical in nature; 
they exist only for special manipulator geometries and geometric intuition is usually required. Compu- 
tational inverse kinematic algorithms have recently been proposed; they are based on general closed-loop 
schemes which perform the mapping of the desired Cartesian trajectory into the corresponding joint 
trajectory. 

The aim of this paper is to propose an effective computational scheme to the inverse kinematic problem 
for manipulators with spherical wrists. First an insight into the formulation of kinematics is given in order 
to detail the general scheme for this specific class of manipulators. Algorithm convergence is then ensured by 
means of the Lyapunov direct method. The resulting algorithm is based on the hand position and 
orientation vectors usually adopted to describe motion in the task space. The analysis of the computational 
burden is performed by taking the Stanford arm as a reference. Finally a case study is developed via 
numerical simulations. 

1. INTRODUCTION 

Robotic manipulators consist of a series of n+ 1 rigid bodies linked together by n 
actuated joints. Depending on the structure of the kinematical chain, the basis for all 
advanced manipulator control techniques is the relationship between the Cartesian 
coordinates of the end effector and the joint coordinates of the manipulator. It is usual 
to distinguish between direct_ kinematics, or simply kinematics, and inverse kinematics 
of the manipulator. The former is concerned with expressing the external Cartesian 
coordinates of the end effector in terms of the internal joint coordinates; that is, 
passing from the so-called drive oriented space to the so-called task oriented space. 
The latter involves the inverse transformation of the external coordinates into the 
internal coordinates. 

The method of characterizing direct kinematics is straightforward since the position 
and orientation of the end effector are completely specified once all the joint 
coordinates are given. The point at issue in this paper is the inverse kinematic 

problem; that is, determining the joint coordinates corresponding to a given Cartesian 

position and orientation of the manipulator's end effector. While there is only one end 
effector state for a given set of joint coordinates, there are a number of different 

configurations which all place the end effector in the same position and orientation 

'Present address: Istituto di Elettrotecnica, Università di Pisa, Via Diotisalvi 2, 56100 Pisa, Italy. 
tTo whom correspondence should be addressed. 
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[1]. If one is concerned with computing the joint variable trajectory corresponding to 
a given Cartesian trajectory, only one of the possible solutions for each kinematic 

configuration is desired. In particular, the joint trajectory must be congruent with the 
initial arm configuration. 

The paper is organized as follows. First the coordinate transformation problem is 
stated and a concise review of analytical [2] and computational methods [3, 4] is 

given. Then the kinematics of a class of manipulators whose wrist position is 

independent of the hand orientation is formulated; the orientation is specified in terms 
of unit vectors, and the structural kinematical properties of the hand orientation are 

fully investigated. The general idea first presented in ref. 3 and later in ref. 4 of 

adopting a dynamical scheme to solve the inverse kinematic problem is followed here. 

By taking into account the structural kinematic properties, an effective conversion 

algorithm is presented. No geometric intuition is required since the resultant al- 

gorithm is based on direct kinematics. Simulation results are shown for the six-degree- 
of-freedom Stanford manipulator (Fig. 1). 

Figure 1. The Stanford arm [2]. 

1.1. Statement of the problem and previous work 

For any given robot with known geometrical dimensions the kinematics can be 
written as [5] . 

where q is the vector of joint coordinates, x is the vector of Cartesian coordinates, and 
f is a non-linear vector valued function. Differentiating with respect to time gives 

which relates the joint velocity vector q to the Cartesian velocity vector x through the 
Jacobian matrix J(q)=8f/8q. 
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Obtaining a solution for the joint coordinates, that is, inverting (1), is of the utmost 

importance in order to provide the manipulator, controlled in the joint space, with a 

target trajectory q(t), or else (q(t), q(t)). (See refs. 3, 6-8 for some joint based control 

schemes). An alternative approach leads to Cartesian-based control schemes [9-11]. 
Here, the joint variables are sensed and then transformed into the Cartesian variables. 
The trajectory conversion problem is replaced by some kind of coordinate conversion 

inside the servo loop. The disadvantage of these techniques is that the resulting system 

may run at a lower sampling frequency compared with joint-based control systems. 
This would, in general, degrade the stability and disturbance rejection capability of 

the control system. Consequently, in this paper attention will be focused on the 

inverse kinematic problem with the purpose of generating a joint trajectory for joint- 
based control schemes. 

The most popular method of providing a controlled manipulator with reference 

joint coordinates is the one proposed by Paul [2] based on homogeneous transforms 

[12]. In short, the Cartesian state vector x in (1) is rearranged in a compact matrix 

notation [5] which identifies a coordinate frame of the end effector with reference to 

the base coordinate frame. The solution method is trigonometric in nature as there is a 

set of non-trivial equations given by the above transforms. For a six-degree-of- 
freedom manipulator, for instance, 12 equations will yield the required six joint 
coordinates. The solution is then obtained in a sequential manner, isolating each 

variable by pre-multiplication-in some cases post-multiplication-by a certain num- 
ber of transforms in each equation, thus requiring geometric intuition [2]. It should be 

mentioned, however, that the above equations must be combined with the use of the 

arctangent function of two arguments in order to avoid inherent problems of angle 
quadrant ambiguity. This solution technique is apparently valid for kinematically 
simple manipulators whose geometry is well understood in advance [13]. 

Efficient procedures for performing transformations from the position and velocity 
of the end effector to the corresponding joint angles and velocities have been 

established by Featherstone [14]. An iterative type solution for a robot with any type 
of configuration has been proposed by Takano [15]. 

In view of the above, computational solution techniques for the inverse kinematic 

problem have recently been proposed for general robot structures [3, 4]. A simple 
closed-loop dynamical system is used which, when driven by the desired Cartesian 

trajectory X(t), yields not only a joint trajectory q(t), but also q(t), such that 

q(t)--.f-1(x(t))=q(t). The dynamical system is shown in Fig. 2. By adopting a very 
simple structure of the gain block (a constant positive definite matrix) in ref. 4 it is 

shown that the error q(t)-q(t) can be made arbitrarily small. A slight modification is 

then suggested to generate joint accelerations 4(t) if required. In ref. 3, convergence of 
the error to zero is assured by using a more complicated non-linear q-dependent 

Figure 2. The general inverse kinematic scheme. 
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feedback gain. Both schemes are only general since they require that the position and 
orientation of the end effector be uniquely determined by means of six paramters. As a 
matter of fact, an explicit dependence of any three scalar orientation parameters (e.g. 
Euler angles, RPY angles) on the joint variables cannot be achieved, so the direct 
kinematic function (1) cannot be directly computed [16]. 

In this paper, manipulators with spherical wrists are considered and the hand 
orientation is defined by means of the usual unit vector hand frame [2]. An accurate 

analysis of the kinematical properties is performed with the purpose of reducing the 
overall computational burden. 

2. KINEMATICS 

A robot task is naturally specified in terms of end effector Cartesian coordinates. As 
shown in Fig. 3, the position of the end effector is described by a position vector p(t), 
whereas the orientation is defined through a unit approach vector a(t), a unit sliding 

Figure 3. (a) Wrist position and hand orientation vectors; (b) Euler angles of the hand orientation [10]. 

vector s(t), and a normal unit vector n(t)=s(t) x a(t). All these vectors are defined with 
reference to the base frame of the manipulator [2]. If non-redundant manipulators 
with spherical wrists are involved, the vector q in (1) can be partitioned since the wrist 

position is independent of the hand orientation. Let 

be the partition, where q?eR° are the joint coordinates which determine the position 
of the wrist and qh are the other joint coordinates which, together with the previous 
ones, specify the orientation of the hand. Under this assumption, the kinematics of the 
wrist are obtained simply via the following set of equations: 

where fp denotes the non-linear vector valued function which defines the direct 
kinematics of the wrist and Jp is the associated Jacobian matrix Ofp/Oqp which relates 

joint velocities 4. to Cartesian velocities p of the wrist. 
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Progressing similarly for the hand, but observing that the kinematics of the hand 
also depend on the wrist, we obtain the following set of equations for the hand unit 
vectors: 

.., , 1 

In (6), fs, f,,, fn indicate the non-linear vector valued functions which uniquely define 
the direct kinematics of the hand in terms of the unit vectors s, a, n, respectively. In (7), 

Jsp, Jap, Jnp are the associated Jacobian matrices and Ofn/Oqp which 
relate the contributions of joint velocities 4p to the Cartesian velocities of the hand 
unit vectors, and finally J,, Ja, Jn are the associated Jacobian matrices 8f5/aq," 8fa/aq," 
8f"/8qh which relate the proper contributions of joint velocities 4h to the Cartesian 
velocities of the hand unit vectors. 

The kinematics of the hand can be further clarified on the basis of the structural 

relationship existing for the hand unit vectors s, a, n and their derivatives. Indeed, 
while there is no restriction on the value of p in (4), provided that the manipulator can 
reach the desired position, the vectors s, a, n must always be so that 

where ( denotes the transpose. Differentiating (8) and (9) with respect to time 

yields 

On reduction of (7) and (10) the set of equations involving the hand associated 
Jacobians can be written in compact form as , 

Since each of (12) must hold for any 4p, qh, being Jju independent of the joint 
velocities, both members of ( 12) must be null. To this end, only two cases are possible: 

where JV(A) denotes the null space of matrix A. For the same reason as above, (i) 
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cannot hold for any qp, thus the following set of characteristic relations is obtained: 

Furthermore, on reduction of (7) and (11), the orthogonality conditions yield 

and proceeding as above gives 

On the basis of the above equations relating the Jacobians associated with the hand, 
additional analysis on the geometrical meaning of the generic Jacobian can be carried 
out. Referring to the generic hand unit vector u and assuming the wrist to be at rest for 

simplicity (q? = 0), the vector a=J"qh must be able to span the whole plane orthogonal 
to u. As Ju establishes the physical relationship between the joint velocities 4h and the 
Cartesian velocities u, rank(J")=2 2 and r!ll (Ju)' where denotes the range of 
matrix A, is the plane orthogonal to u. Since, moreover, M(Ju)' :=X(Ju), where 1 
denotes the orthogonal complement, the null space of J,' , is spanned only by the 
direction of u. Thus, in short 

The same lines can be followed to derive similar properties for Jsp, JaP and Jnp. 
Last but not least, the vectors in (16) (JS a, Jrn, J§s) can be shown to be linearly 

independent, thus building up a base in R3. Denoting the above vectors as kl, k2, k3 
and accounting for (16), they must be such that 

If it were, for instance, k (J$ )*k (J.), k2 would be parallel to k3, i.e. k2 =(Xk3, 
resulting in the absurdum J§(as-a)=0; in fact, as-a is a vector in the plane 
orthogonal to n, whereas J§ has its null space only in the direction of n. Now it is 
understood that the three ranges of JS , Jr, respectively, do not coincide and, 
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moreover, they cannot have a line in common, as in such a case the above three 

vectors kl, k2, k3 would all be along that line; this never happens since the vectors do 

not result parallel two by two. Consequently, the three vectors k1, k2, k3 are linearly 

independent and actually form a base of R3. 

3. INVERSE KINEMATIC SOLUTION TECHNIQUE . 

In the following, the inverse kinematic problem is solved by constructing a dynamical 
system whose input is the target trajectory in the task space and whose outputs are the 

corresponding joint position and velocity trajectories. This approach only requires 
the computation of direct kinematics. For manipulators with spherical wrists, a two- 

stage cascade solution algorithm is considered (Fig. 4). The inverse kinematic problem 
is divided into two subproblems: first the determination of qp, then the determination 
of qh' 

Figure 4. Two-stage coordinate transformation scheme. 

3.1. Wrist position 

Formulating the coordinate transformation problem for the wrist position as a result 
of the convergence of the state variables qp to the desired variables qp of a dynamic 
system allows the following definition of a position error in the task space: 

where p is the desired position vector corresponding to qp, and similarly p to qp, both 
via (4). In order to ensure the above convergence, error dynamics must be taken into 

account, i.e. via (5), 

The point then is to relate 4p to ep so as to guarantee that the position error ep goes 
asymptotically to zero and consequently q,-4,. Let 

be a positive definite Lyapunov function associated with ep. Differentiating with 

respect to time and accounting for (21) yields 
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Up to now, 4p can be chosen as 

with 7p taken such that Up is negative definite. To this end, the following choice for Tp is 

easily seen to prove suitable: 

The corresponding scheme is shown in Fig. 5. The convergence rate and precision 
attainable for a given settling time are directly proportional to the gain ap when 

It could be argued that vanishes when however, observing 
that /(J§) is only in that direction along which a Cartesian force applied to the wrist 
is completely neutralized by the mechanical constraints of the manipulator, it is 
reasonable to assume that the target trajectory is planned consistently with the 
mechanical constraints. Then, from the implementation viewpoint, it is always 

Figure 5. Coordinate transformation scheme for the wrist. 

A further remark can be made about (25). Provided that ep(O) = 0, since (25) always 
guarantees a null tracking position error, it naturally introduces, in the neighborhood 

of eP=0, an equivalent gain, dependent on state variables, which tends to 00. This 

point leads to the generation of a qP rich in harmonics, whose effect on qp, however, is 
cut off by the filtering nature of the integrators. Therefore, whenever joint velocities 
are also needed, either additional filtering on 4p must be introduced or finite tracking 
position errors must be admitted via the purely proportional control law 

With this choice Up is negative definite only outside a region in the error space which 
contains ep=0 0 that is attractive for all trajectories. Obviously the maximum tracking 
position error will depend directly on 11 ^pull and inversely on atp; it must be emphasized, 
however, that the steady-state (p=0) position error is identically zero. 

An alternative coordinate transformation algorithm can be conceived by con- 

sidering 
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where Mp is a positive definite matrix whose eigenvalues affect the position error 

convergence rate to zero. If the Jacobian degenerates, (27) can still be used by 
considering an appropriate reduced order Jacobian. The control law (27) recalls a 
solution similar to the inverse Jacobian control [16]; it should be emphasized, 
however, that the main goal outlined in ref. 16 is on-line Cartesian-based control and 
not explicitly solving the inverse kinematic problem. 

3.2. Hand orientation 
' 

As far as the hand orientation of the manipulator is concerned, a convergent 
algorithm similar to the one proposed for the wrist position can be synthesized, but 
with some substantial modifications. In actual fact, one must take into account the 
structural constraints due to the choice of the orthogonal unit vectors as the 
orientation variables. The point here is to define unambiguously an orientation error 
between the desired unit vectors (s, A, and the actual unit vectors (s, a, n) which 
describes the orientation of the actual frame with respect to the desired one. To this 

end, the orientation error can be defined as 

then error dynamics, via (7), are described by 

Similarly to the wrist position algorithm, 4h must be related to eh so as to ensure that 
the orientation error e,, goes asymptotically to zero (s=s, a=a, and obviously n=A) 
and consequently qh to 4h, where 4h are the desired joint variables to be tracked. For 
this purpose let - 

be a positive-definite Lyapunov function associated with e,,. Differentiating with 

respect to time and accounting for (14) gives 

which, by means of (7), yields 

It can first be observed that, in virtue of ( 10) and (14), Vh = 6h = 0 as s = and a = a, as 

may be expected. In order to investigate better the last term in (32) related to 4h, i.e. 
the control to be synthesized, projecting S and i on the frame (s, a, n) and taking into 
account (14) yields 

where the scalar quantities with the subscripts denote the components of 5 and i along 
the axes of the frame (s, a, n). On the basis of (16), (33) can be rewritten as 

By observing that the vectors (sTJa, aT In, nTJs) give a base in R3 [see vectors (ki, k2, 
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k3) in Section 2], (34) vanishes if and only if 

Related to the conditions (35), two possible indeterminacies of the mutual orientation 
of the two frames arise: 

In the first case (36), it results that II eh where 11 - denotes the Euclidean norm of 

the vector, whereas in the second case (37), Ilenll = Ilehmaxll the occurrence of 
these situations is apparently of no interest for a convergent algorithm. In other 

words, provided that the algorithm starts with the same initial conditions (s=s, a = 9 ), 
or eventually with Ilehll <2, realizing a locally negative definite eh always guarantees 
that the algorithm works, ensuring a good tracking accuracy and avoiding the above 
indeterminacies. 

'i'o this extent, since the first terms in (32), as s-9 and a-fi, go to zero as (34), the 

following choice for 4. proves adequate: 

where sgn w:=(sgn wl ... sgn w,), wER', with 

where A(A) and a (A) denote the maximum and the minimum eigenvalue of matrix A, 
respectively. 

For this algorithm similar remarks as for the wrist are in order. Indeed, if one 
admits finite tracking orientation errors, once eh(0)=0, the purely proportional 
control law (Fig. 6). 

Figure 6. Coordinate transformation scheme for the hand. 
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ensures the convergence of the algorithm with zero errors at the steady state (s=a=0 0 
and qp=0), while the tracking errors will depend directly on the velocities 11 A 11, 11 A and 

114PI1, and inversely on the gain yh. 
Incidentally, it can be observed that augmenting the orientation error space 

dimension by introducing an additional component n-n would lead to a positive- 
definite Lyapunov function 

whose derivative, accounting for (14) and (16) and projecting as above, would give 

Even in this case, of course, eh would suffer at least from the same indeterminacies as 

above; thus, from the implementation viewpoint, selecting only two components of the 
orientation error, as in (28), will suffice. This point stems from the fact that n is 

uniquely determined as the vector product n = s x a. In summary, the orientation error 

(28) serves the purpose of determining a simple algorithm which assures the asymp- 
totic stability of the constructed dynamical system (Fig. 6) for the solution of the hand 
orientation problem. Other techniques of defining the orientation error [10] are more 

complicated from a computational viewpoint since they do not allow a coordinate 
conversion algorithm as simple as the one proposed to be found. 

4. ANALYSIS OF DIGITAL IMPLEMENTATION AND A NUMERICAL EXAMPLE 

The Stanford arm (Fig. 1) was selected as a reference to evaluate the digital implemen- 
tation performance of the coordinate transformation algorithm set forth in this paper. 
The kinematics of the Stanford arm are fully reformulated in the Appendix. 

For this manipulator the trigonometric closed-form solution for the inverse trans- 
formation of equations (Al) and (A2) does exist; adopting the solution proposed by 
Paul [2] requires 14 transcendental function calls, 31 floating point multiplications, 15 5 

additions, together with the use of the arctangent function of two arguments. An 
increased number of mathematical computations are required if joint velocities are 
needed as well [2]. 

The method described in this paper requires a greater number of mathematical 

computations (10 transcendental function calls, 86 floating point multiplications and 
46 additions). No additional computations are required, however, either to generate 
the joint velocities, if needed, or to select a joint solution among the feasible ones. To be 
more specific regarding the latter point, the analytical method [2] requires that the 
robot programming language be provided with a set of instructions allowing the user 
to choose the joint solution congruent with the desired kinematical configuration of 
the arm (e.g. elbow up or elbow down, etc.). The computational method proposed 
above overcomes this drawback since, once the initial configuration of the arm has 
been specified, the solution algorithm progresses with continuity along the given 
trajectory, the tracking errors always being very small. The algorithm has also been 

digitally implemented on a single dedicated microprocessor system [17]. 
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In order to show the effectiveness of the algorithm, a numerical example was 
simulated. The target trajectory in the Cartesian space consisted of: 

(a) a straight line from point 00 --_ (0.3, -0.3, 0.2) m to point of =(0.4, 0.05, 0.04) m; and 

(b) Euler angle excursions from (&o, fio, Yo)=(45, 75, 105)° to (af, l1r, 165, 
195)°. 

Two different velocity profiles were imposed for both the wrist position and the hand 
orientation: 

(a) the triangular one (acceleration, deceleration) of Fig. 7a; and 

(b) the trapezoidal one (acceleration, cruise, deceleration) of Fig. 7b, with very small 
acceleration times. 

Four pairs of values for the maximum velocities Vmax in Fig. 7 were chosen in order to 

investigate the influence of velocity on the tracking accuracy (see Table 1); the slower 

trajectories are typical of those tasks where the robot is required to perform some 

work, whereas the faster ones refer to material handling tasks. 

Figure 7. Velocity profiles in the work space: (a) triangular; (b) trapezoidal. 

Table 1. 
Selected parameters for the velocity profiles of Fig. 7 
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Since the simulated system is a sample data system with a solution sample period of 

2 ms, if the discontinuous solutions for the control laws qp and 4h [(24) and (38) 

respectively] are adopted, finite tracking errors will be expected. As a consequence, 
the proportional control laws (26) and (40) were chosen to consider the worst case 

since finite tracking errors are already expected for the continuous time system. The 

inherent advantage with this choice, however, is that smooth joint velocity trajectories 
are also generated directly at no additional cost. The values ap in (26) and Yh in (40) at 

the designer's disposal were set at 950 and 450 respectively. 
Figures 8 and 9 show the tracking position errors Ilep II for the slowest and the 

fastest trajectories, respectively, while in Figs 10 and 11 are reported the maximum 

tracking orientation errors, in this case ea, which are evaluated as the arc-cosine of the 

Figure 8. Tracking position errors for the fastest trajectories: (a) triangular profile; (b) trapezoidal profile. 

Figure 9. Tracking position errors for the slowest trajectoires: (a) triangular profile; (b) trapezoidal profile. 
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Figure 10. Tracking orientation errors for the fastest trajectories: (a) triangular profile; (b) trapezoidal 
profile. 

Figure 11. Tracking orientation errors, for the slowest trajectories: (a) triangular profile; (b) trapezoidal 
profile. 

scalar products aTa. Since the same initial conditions occur [eP(0)=e,,(0)=0], the 

tracking errors are very small along all the trajectories, whereas at the steady state 

they vanish in virtue of the closed-loop structure of the coordinate transformation 
schemes of Figs 5 and 6. Finally, in Fig. 12, for the two different velocity profiles, the 
maximum position errors are reported vs. the four values of the maximum wrist 
velocities of Table 1. It is apparent that there is a strict direct proportionality between 
these errors and the velocities as anticipated in Section 3. This result is acceptable in 

practice, since a higher tracking performance is expected for slow assembly and 

processing tasks than in fast material handling tasks. 
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.-- ._, - .- '"0'" 

Figure 12. Maximum tracking position errors vs. maximum wrist velocities: (a) triangular profile; (b) 
trapezoidal profile. 

5. CONCLUSIONS 

This paper has presented a computational method for solving the inverse kinematic 

problem for robotic manipulators with spherical wrists. The approach is based on a 

general closed-loop dynamic scheme which, once the target trajectory in the task 

space is given as input, gives the joint trajectories (position + velocity) as its output. 
The main advantages of this technique are: 

(a) it is based only on direct kinematics and does not require any geometric intuition; 

(b) the use of the transpose of the Jacobian may avoid problems in correspondence of 

kinematic singularities; and 

(c) given the initial arm configuration, uniqueness of the solution is ensured, since the 

algorithm generates, at each step, solutions which are adjacent to the preceding 
ones. 

The structural properties of the kinematics of the unit vectors defining the orien- 

tation of the end effector were investigated with the purpose of achieving a two-stage 
algorithm which decreases the overall computational burden. As a matter of fact, the 

hand orientation algorithm is even simpler than the wrist position algorithm. It was 

also shown how the joint velocities can be generated directly on condition that very 
small tracking errors are permitted. Finally, a case study was developed and the 

simulation results for the Stanford arm show the effectiveness of the scheme proposed 
with two different velocity profiles. 
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Current research developments are dedicated to the application of this compu- 
tational technique to more complicated manipulator geometries. The case of two-by- 
two intersecting axes at the end effector has already been developed [18, 19]. Non- 

converging axes are treated in refs 20 and 21. The extension to the case of redundant 

manipulators is also being currently investigated [21, 22]. 
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APPENDIX 

Figure 1 shows the six-degree-of-freedom Stanford arm [2]; starting from the base 
there are two revolute joints (01, (}2) and one prismatic joint (d3) which identify 

qp, then another three revolute joints (B4, 0s , B6), i.e. qh- Using the short notations 
sin 0; = S; and cos 0; = C;, equations (4) and (6) can be written respectively as 

Differentiating p, s, a, and n with respect to q yields the Jacobian matrices defined in (5) 
and (7) which can be written in compact form as 

- .r - -. - - ,.. _. - _ . - 

where z=(0 0 1)T, t=(-S1 C1 0)T, r=(C1S2 S1S2 C2 )T and 0=(0 0 O)T. 
It must be emphasized that some handy reductions have been carried out in deriving 
the above Jacobians since, for a given kinematic configuration, p, s, a, and n are 

already known from (Al) and (A2); in this way, the computation time can be 

conveniently reduced. 
For the sake of peculiarity, equations (12), (16), (17), and (18) together with the 

property that (kl, k2, k3) represent a base of R3 can all be easily verified by the 

expressions given in (A2) and (A4). 
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