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PRISMA Lab, Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

Received 26 July 2005; accepted 23 May 2006

Available online 24 July 2006
Abstract

An algorithm for the real-time estimation of the position and orientation of a moving object of known geometry is presented in this

paper. An estimation algorithm is adopted where a discrete-time extended Kalman filter computes the object pose on the basis of visual

measurements of the object features. The scheme takes advantage of the prediction capability of the extended Kalman filter for the pre-

selection of the features to be extracted from the image at each sample time. To enhance the robustness of the algorithm with respect to

measurement noise and modelling error, an adaptive version of the extended Kalman filter, customized for visual applications, is

proposed. Experimental results on a fixed single-camera visual system are presented to test the performance and the feasibility of the

proposed approach.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Pose estimation; Vision; Motion tracking; Visual servoing; Extended Kalman filter
1. Introduction

During the last decade the use of visual systems for
robotics applications has become a viable option, which is
often capable to offer a good cost/performance tradeoff. In
fact, the effectiveness and autonomy of a robotic system
operating in unstructured environments can be significantly
enhanced if a visual system is adopted to achieve direct
measurements of the state of the environment and of the
task in progress.

Visual measurements can be directly used to perform
closed-loop position control of the robot end-effector and
several approaches have been proposed to the so called
robot visual servoing problem (e.g., Corke, 1996; Hashi-
moto, 1993; Hutchinson, Hager, & Corke, 1996; Kriegman,
Hager, & Morse, 1998; Vincze & Hager, 2000). Some visual
servoing techniques require the computation of a tracking
error defined directly in the space of the image features
(Espiau, Chaumette, & Rives, 1992), or adopt hybrid
solutions where some error components are defined in the
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image space and some others in the Cartesian space (Corke
& Hutchinson, 2001; Malis, Chaumette, & Boudet, 1999).
In contrast, the position-based visual servoing techniques
are based on position and orientation errors defined in the
Cartesian space (Thuilot, Martinet, Cordesses, & Gallice,
2002; Wilson, Hulls, & Bell, 1996), hence the (partial) 3-D
reconstruction of the environment or the estimation of
the pose of target objects from visual measurements is
required.
The problem of reconstructing the position and orienta-

tion of moving objects in real time from image measure-
ments has been largely investigated in the computer vision
literature (Broida & Chellappa, 1986; Harris, 1992; Philip,
1991) as well as in the robotic literature (Lee & Kay, 1990;
Wang & Wilson, 1992). Some of the proposed schemes are
able to reconstruct in real time both the motion and
the three-dimensional structure of a moving scene from
its two-dimensional images (e.g., Chiuso, Favaro, Jin, &
Soatto, 2002).
As a matter of fact, since visual measurements are

usually affected by significant noise and disturbances due
to temporal and spatial sampling and quantization of the
image signal, lens distortion, etc., the accurate estimation
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of the position and orientation of an object may be a
difficult task. For this reason, the extended Kalman filter
(EKF) is usually adopted to achieve noise and disturbance
rejection and to enhance estimation accuracy (e.g., Lee &
Kay, 1990; Wang & Wilson, 1992). Kalman filtering offers
many advantages over other estimation methods, e.g.,
temporal filtering, recursive implementation, possibility of
realizing a proper statistical combination of redundant
measurements, ability to change the measurement set
during the operation. Also, the prediction capability of
the filter allows setting up a dynamic windowing technique
of the image plane which may sensibly reduce the time
required for feature extraction.

If the quality of the camera sensors is good, the
illumination of the scene is stable, and the model of the
target object motion is accurate enough, then the use of a
classic formulation of the EKF may guarantee satisfactory
results. In fact, in the above scenario, it is reasonable to
assume that the statistics of the state noise and of the
observation noise are known a priori. On the other hand, if
one or more of the above conditions are not verified, it may
be convenient to adopt an adaptive extended Kalman filter
(AEKF) (Myers & Tapley, 1976). In the literature various
formulations of AEKF have been proposed, which address
the problem of the real-time adaptation of the statistical
parameters of the covariance matrices of the state and
observation noise in different applications, e.g., power
systems (Girgis & Peterson, 1990), mobile robots (Jetto,
Longhi, & Venturini, 1999; Jetto, Longhi, & Vitali, 1999),
visual pose estimation (Ficocelli & Janabi-Sharifi, 2001).
The adaptive laws for the Kalman filter can be designed
using different approaches, e.g., introducing additional
variables to be estimated by the filter, as the noise statistics
(Bai, Zhou, & Schwarz, 1998), using interacting multiple
models (Bradshaw, Reid, & Murray, 1997), or adjusting
the transition matrix of the Kalman filter (Wira &
Urban, 2000).

The EKF is the core of a visual motion estimation
algorithm presented in our previous works (Lippiello,
Siciliano, & Villani, 2002; Lippiello & Villani, 2003). This
algorithm can be effectively adopted for polyhedral objects,
typical of industrial applications, since it is based on the
use of point features (the object corners). In fact, point
features are easy to identify using small windows and can
be extracted with high robustness in various environmental
conditions (Janabi-Sharifi & Wilson, 1997). To reduce the
computational burden of the EKF and to improve
estimation accuracy, the algorithm employs a computa-
tionally efficient technique for the selection of an optimal
subset of feature points, among all the visible points, at
each sample time. The key feature of the algorithm is
the adoption of an efficient technique for representing
the object geometry, based on binary space partition
trees, which allows recognizing and discarding all the
feature points that are occluded with respect to the
camera (Drummond & Cipolla, 2002; Tarabanis, Tsai, &
Kaul, 1996).
In this work, the visual motion estimation algorithm
presented in Lippiello et al. (2002) and Lippiello and
Villani (2003) has been enhanced by using an adaptive
formulation of the EKF, to cope with uncertain or varying
noise statistics. It is well known that an optimal solution
for the adaptation problem of the statistical parameters of
the EKF does not exist. The solution presented in this
paper is based on the intuitive heuristic approach proposed
in Myers and Tapley (1976), which may be formulated
in a recursive manner to reduce computational time.
The adaptive algorithm computes the statistics of both the
state noise and the observation noise. With respect to the
original work of Myers and Tapley (1976), the main
contribution of this paper concerns with the adaptive law
for the observation noise statistics, which has been suitably
designed for a visual motion estimation problem based on
the use of a variable set of image features (Lippiello &
Villani, 2003). This aspect is not considered in previous
works on AEKF applied to visual motion estimation (e.g.,
Ficocelli & Janabi-Sharifi, 2001), where only an adaptive
law for the state noise covariance matrix is used.
To demonstrate the effectiveness of the proposed

approach, an experimental test-bed has been developed,
consisting of one fixed calibrated camera and of a robot
manipulator carrying an object of known geometry. The
robot allows moving the target object according to a
known position and orientation trajectory, in order to
measure the pose estimation error. A number of case
studies are presented, to compare the performance of the
EKF versus the AEKF using different object trajectories as
well as to appreciate the effects of the update laws for the
state and observation noise covariance matrices separately.
The paper is organized as follows. In Section 2, the pin-

hole model for a fixed camera and some relevant reference
frames are introduced. The basic equations of the EKF are
briefly reviewed in Section 3, while the equations of the
AEKF are presented in Section 4. The visual motion
estimation algorithm adopted in the paper is briefly
presented in Section 5. Finally, Section 6 presents the
experimental case studies and Section 7 reports the
conclusions. The equations used in the Kalman filter can
be found in the Appendix.

2. Modeling

Consider the pin-hole model of a video camera fixed with
respect to a base coordinate frame O-xyz represented in
Fig. 1. Let Oc-xcyczc be a frame attached to the camera
(camera frame), with the zc-axis aligned to the optical axis
and the origin in the optical center. In the following, a
superscript will be used to denote the reference frame of a
variable, when different from the base frame.
The sensor plane is parallel to the xcyc-plane at a

distance �f e along the zc-axis, where f e is the effective
focal length of the camera lens. The image plane is parallel
to the xcyc-plane at a distance f e along the zc-axis. The
intersection of the optical axis with the image plane defines
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Fig. 1. Pin-hole model of the camera and reference frames.
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the principal optic point O0c, which is the origin of the
image frame O0c-uv whose axes u and v are taken parallel to
the axes xc and yc, respectively.

A point P with coordinates cp ¼ ½cx cy cz�T in the
camera frame is projected onto the point of the image
plane whose coordinates can be computed with the
equation

u

v

� �
¼

f e

cz

cx
cy

" #
(1)

known as perspective transformation.
Consider an object frame O0-x0y0z0 attached to the

target object. The position and orientation of the object
frame with respect to the base frame can be expressed in
terms of the coordinate vector of the origin o0 ¼ ½x0 y0 z0�

T

and of the rotation matrix R0ð/0Þ, where /0 ¼ ½j0 W0 c0�
T

is the vector of the Roll, Pitch and Yaw angles.
Consider m feature points of the object. The coordinate

vector pj of the feature point Pj ðj ¼ 1; . . . ;mÞ can be
expressed in the base frame as

pj ¼ o0 þ R0ð/0Þ
opj, (2)

where opj is the coordinate vector of Pj expressed in the
object frame. Note that opj is a constant vector that is
assumed to be known, since it can be computed from a
CAD model of the object or via a suitable calibration
procedure. The coordinate vector cpj of Pj with respect to
the camera frame can be computed as

cpj ¼ RT
c ðpj � ocÞ, (3)

where oc and Rc are, respectively, the position vector and
the rotation matrix of the camera frame with respect to the
base frame. These quantities are constant, because the
camera is assumed to be fixed to the workspace, and can be
computed through a suitable calibration procedure (Weng,
Cohen, & Herniou, 1992).

By folding the 3m equations (2) and (3) into the
perspective transformation (1), a system of 2m nonlinear
equations is achieved. The equations depend on the
measurements of the m feature points in the image plane
of the camera, while the six components of the vectors o0

and /0 are the unknown quantities to be estimated. To
achieve a unique solution at least four non-aligned points
are required.
The computation of the solution is non-trivial and for

visual motion estimation and it has to be repeated at a high
sampling rate. The Kalman filter provides a computation-
ally tractable solution, which can also incorporate and
exploit redundant measurement information.
3. Extended Kalman filter

In order to estimate the pose of the object, a discrete-
time state space model of the object motion has to be
considered. The state vector of the model is chosen as the
ð12� 1Þ vector

w ¼ ½ x0 _x0 y0 _y0 z0 _z0 j0 _j0W0 _W0c0
_c0 �

T. (4)

For simplicity, the object velocity is assumed to be constant
over one sample time interval T. This approximation is
reasonable in the hypothesis that T is sufficiently small.
The corresponding dynamic modelling error can be
considered as an input disturbance ck. The discrete-time
dynamic model can be written as

wk ¼ Awk�1 þ ck, (5)

where the state transition matrix A is a constant ð12� 12Þ
block diagonal matrix of the form

A ¼ diag
1 T

0 1

� �
; . . . ;

1 T

0 1

� �� �
,

which is achieved using the well-known Euler method, i.e.,
computing the positions from velocities on the basis of a
first-order approximation to the Taylor series.
The outputs of the Kalman filter are chosen as the

vectors of the normalized coordinates of the m feature
points in the image plane of the camera

fu
k ¼

u1

f e

� � �
um

f e

� �T
k

, ð6aÞ

fv
k ¼

v1

f e

� � �
vm

f e

� �T
k

. ð6bÞ

In view of (1), the corresponding output model can be
written in the form

fu
k ¼ guðwkÞ þ mu

k, ð7aÞ

fv
k ¼ gvðwkÞ þ mv

k, ð7bÞ

where mu
k and mv

k are the observation noise vectors for the u

and v components of the normalized image plane, whereas
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the vector functions guðwkÞ and gvðwkÞ are defined as

guðwkÞ ¼

cx1
cz1

� � �
cxm
czm

" #T
k

, ð8aÞ

gvðwkÞ ¼

cy1
cz1

� � �
cym
czm

" #T
k

. ð8bÞ

The coordinates of the feature points cpj in Eqs. (8) are
computed from the state vector wk via Eqs. (2), (3).

The components of the disturbance quantities ck, mu
k

and mv
k are considered as independent, non-stationary,

Gaussian, white noise sequences with the statistical
properties

E½ck� ¼ qk, ð9aÞ

E½mu
k� ¼ ru

k, ð9bÞ

E½mv
k� ¼ rv

k, ð9cÞ

E½ðck � qkÞðcl � qlÞ
T
� ¼ Qkdkl , ð9dÞ

E½ðmu
k � ru

kÞðm
u
l � ru

l Þ� ¼ Ru
kdkl , ð9eÞ

E½ðmv
k � rv

kÞðm
v
l � rv

l Þ� ¼ Rv
kdkl , ð9fÞ

where E½�� indicates the statistical mean operator applied
to the components of a vector or matrix, and d is the
Kroneker symbol.

Since the output model is nonlinear in the system state,
the output equations must be linearized about the current
state estimate at each sample time. This leads to the so-
called EKF.

The following recursive algorithm is the best linear,
minimum variance, unbiased estimator of the state vector
for the system defined by Eqs. (5), (7).

The first step of the algorithm provides an optimal
estimate of the state at the next sample time according to
the recursive equations

wk;k�1 ¼ Awk�1;k�1 þ qk�1, ð10aÞ

Pk;k�1 ¼ APk�1;k�1AT
þQk�1, ð10bÞ

where wk;k�1 is the propagated state vector and Pk;k�1 is the
ð12� 12Þ covariance matrix conditioned on observations
prior to time k. The second step improves the previous
estimate by using the input measurements according to the
equations

wk;k ¼ wk;k�1 þ ½K
u
k K v

k�

fu
k � guðwk;k�1Þ � ru

k

fv
k � gvðwk;k�1Þ � rv

k

" #
, ð11aÞ

Pk;k ¼ Pk;k�1 � ½K
u
k K v

k�

Hu
k

Hv
k

" #
Pk;k�1, ð11bÞ

where Ku
k and K v

k are the ð12�mÞ Kalman matrix gains

Ku
k ¼ Pk;k�1Hu

k
T
ðRu

k þ Cu
kÞ
�1, ð12aÞ

K v
k ¼ Pk;k�1Hv

k
T
ðRv

k þ Cv
kÞ
�1, ð12bÞ
being Hu
k and Hv

k the ðm� 12Þ Jacobian matrices of the
output vector functions

Hu
k ¼

qguðwÞ

qw

����
w¼wk;k�1

, ð13aÞ

Hv
k ¼

qgvðwÞ

qw

����
w¼wk;k�1

, ð13bÞ

and Cu
k and Cv

k defined as

Cu
k ¼ Hu

kPk;k�1Hu
k
T, ð14aÞ

Cv
k ¼ Hv

kPk;k�1Hv
k
T. ð14bÞ

Eqs. (13) correspond to the linearization of the output
Kalman model about the last predicted value of the state
wk;k�1, as required in the formulation of the EKF (Lewis,
1986).
Note that a prior estimate of the state w0 and of the state

covariance P0 and a prior statistical information repre-
sented by Eqs. (9) are required. The analytic expressions of
Hu

k and Hv
k can be found in the Appendix.

It is worth remarking that the estimation error obviously
depends on the accuracy of the model of the object motion.
The main factors affecting performance are: the order of
the model (first order vs. second order), the selection of the
statistical parameters of the EKF, the number and the
spatial distribution of the feature points of the object on
the image plane (depending on the object dimension and on
its distance from the camera) as well as the value of the
sample time T compared to the object velocity.
In this paper, a reduced order model of the object

motion is adopted, in order to decrease the computational
complexity of the EKF equations. Moreover, the statistical
parameters of the filter are updated according to a suitable
adaptive algorithm. Finally, a dynamic selection strategy is
adopted to compute, at each sample time, an optimal and
minimal subset of feature points. This allows the sample
time to be set as the minimum value compatible with the
hardware constraint imposed by the camera frame rate.
4. Adaptive extended Kalman filter

If a high-quality camera sensor is used, the illumination
of the scene is stable, and the velocity of the tracked object
is nearly constant over a sample time T, then it is possible
to use constant statistical parameters with optimal results.
On the other hand, if these conditions are not satisfied, it
may be convenient to update in real time the statistical
parameters fqk;Qk; r

u
k; r

v
k;R

u
k;R

v
kg. This leads to the AEKF.

It is known that an optimal estimator of the statistical
parameters cited above does not exist, but many sub-
optimal schemes have been proposed. In this work the
intuitive approach proposed in Myers and Tapley (1976)
and revised in Girgis and Peterson (1990), Jetto, Longhi,
and Venturini (1999), Jetto, Longhi, and Vitali (1999) and
Ficocelli and Janabi-Sharifi (2001) is redefined for a visual
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motion estimation problem. The adaptive algorithm is
formulated in a recursive, limited memory format.

The basic hypothesis for this approach is the constant
value of the statistical parameters over N sample times
(Myers & Tapley, 1976).

Since not all the visual features are always available
during the motion and their location into the scene is
strongly variable, it may be reasonable to assume the
statistics of the observation noise to be equal for all
the measurements of the feature points in the scene at
time k. This assumption can be removed by computing
the statics for each visual feature separately, even
though better results may be not guaranteed. Hence the
quantities fru

k; r
v
k;R

u
k;R

v
kg are replaced by the quantities

fru
kim; rv

kim; su2
k Im;sv2

k Img, where im indicates a ðm� 1Þ

vector of components equal to 1 and Im indicates the ðm�
mÞ identity matrix. Moreover, the samples of the observa-
tion noise sequences mu

i ðm
v
i Þ are independent for i ¼

1; . . . ;N and have a Gaussian distribution with mean ruim

ðrvimÞ and variance su2Im ðsv2ImÞ, where the parameters ru,
rv, su and sv are constant over N sample times.

In view of the nonlinear relation (7), an intuitive
approximation of the observation noise sample vectors at
time k is given by the quantities

qu
k ¼ fu

k � guðwk;k�1Þ, ð15aÞ

qv
k ¼ fv

k � gvðwk;k�1Þ, ð15bÞ

which can be considered as independent and identically
distributed over N samples. It can be shown (Myers &
Tapley, 1976) that an unbiased estimator for ru and rv can
be taken as

r̂u ¼
1

N

XN

i¼1

ru
i , ð16aÞ

r̂v ¼
1

N

XN

i¼1

rv
i , ð16bÞ

where r u
i and r v

i are scalar quantities equal to the mean
values of the components of the vectors qu

i and qv
i ,

respectively. Moreover, an unbiased estimator for su2 and
sv2 may be obtained as

ŝu2 ¼
1

mðN � 1Þ

XN

i¼1

kqu
i � r̂uimk

2 �
N � 1

N
trðCu

i Þ

� �
; ð17aÞ

ŝv2 ¼
1

mðN � 1Þ

XN

i¼1

kqv
i � r̂vimk

2 �
N � 1

N
trðCv

i Þ

� �
: ð17bÞ

where the function trð�Þ is the trace of the input matrix.
For the state noise statistics, in view of the linear

dynamic state relation at time k given by (5), an intuitive
approximation for the state noise vector at time k is

.k ¼ wk � Awk;k�1, (18)

which may be considered independent and identically
distributed over N samples. As before, it can be shown
that an unbiased estimator for the mean value q of the state
noise may be obtained as

q̂ ¼
1

N

XN

i¼1

.i, (19)

while an unbiased estimator for the covariance matrix Q is
given by

Q̂ ¼
1

N � 1

XN

i¼1

ð.i � q̂Þð.i � q̂ÞT �
N � 1

N
Di

� �
, (20)

where Di ¼ APi;i�1AT
� Pi;i.

In sum, Eqs. (15)–(20) provide a heuristic unbiased
estimator for the statistical parameters of a EKF used for
visual motion estimation, on the assumption that the last N

samples are statistically independent and identically
distributed.

5. Recursive AEKF

Using the previous results, a recursive limited memory
formulation of the AEKF may be designed. The required
prior knowledge information is represented by an
initial estimate of the quantities w1;0, P1;0, q̂0, Q̂0, r̂u

0, r̂v
0,

ŝu
0 and ŝv

0.
For generality, it is assumed that the observation noise

statistical parameters are constant over Nr time samples
while the state noise statistical parameters are constant
over Nq time samples.
The first step of the recursive algorithm is the lineariza-

tion of the output Kalman model about the last predicted
value of the state wk;k�1, according to (13), and the
computation of the matrices Cu

k and Cv
k in (14).

Starting from the time Nr, the second step is the
evaluation of the current noise vector and the computation
of the estimated observation noise statistics as follows:

qu
k ¼ fu

k � guðwk;k�1Þ, ð21aÞ

qv
k ¼ fv

k � gvðwk;k�1Þ, ð21bÞ

r̂u
k ¼ r̂u

k�1 þ
1

Nr

ðru
k � ru

k�Nr
Þ, ð21cÞ

r̂v
k ¼ r̂v

k�1 þ
1

Nr

ðrv
k � rv

k�Nr
Þ, ð21dÞ

ŝu2
k ¼ ŝu

k�12
þ

1

mðNr � 1Þ
kqu

k � r̂u
kimk

2 � kqu
k�Nr
� r̂u

kimk
2

�

þ
1

Nr

kqu
k � qu

k�Nr
k2 þ

Nr � 1

Nr

trðCu
k�Nr
� Cu

kÞ

�
, ð21eÞ

ŝv2
k ¼ ŝv

k�12
þ

1

mðNr � 1Þ
kqv

k � r̂v
kimk

2 � kqv
k�Nr
� r̂v

kimk
2

�

þ
1

Nr

kqv
k � qv

k�Nr
k2 þ

Nr � 1

Nr

trðCv
k�Nr
� Cv

kÞ

�
. ð21fÞ

The third step consists in the evaluation of the Kalman
gains

Ku
k ¼ Pk;k�1H

u
k
T
ðCu

k þ ŝu2
k ImÞ

�1, ð22aÞ

Kv
k ¼ Pk;k�1H

v
k
T
ðCv

k þ ŝv2
k ImÞ

�1, ð22bÞ
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while the fourth step is the state correction on the basis of
the current measurements

wk;k ¼ wk;k�1 þ ½K
u
k K v

k�

qu
k � r̂u

kim

qv
k � r̂v

kim

" #
, ð23aÞ

Pk;k ¼ Pk;k�1 � ½K
u
k K v

k�

Hu
k

Hv
k

" #
Pk;k�1. ð23bÞ

Starting from the time Nq, the fifth step is the evaluation
of the current state noise vector and the computation of the
estimated state noise statistics as follows:

.k ¼ wk;k � Awk;k�1, ð24aÞ

Dk ¼ APk;k�1A
T
� Pk;k, ð24bÞ

q̂k ¼ q̂k�1 þ
1

Nq

ð.k � .k�Nq
Þ, ð24cÞ

Q̂k ¼ Q̂k�1 þ
1

Nq � 1
ð.k � q̂kÞð.k � q̂kÞ

T

�
� ð.k�Nq

� q̂kÞð.k�Nq
� q̂kÞ

T

þ
1

Nq

ð.k � .k�Nq
Þð.k � .k�Nq

Þ
T

þ
Nq � 1

Nq

ðDk�Nq
� DkÞ

�
. ð24dÞ

The sixth and last step consists in the evaluation of the
predicted state for the next sample time

wkþ1;k ¼ Awk;k þ q̂k, ð25aÞ

Pkþ1;k ¼ APk;kAT
þ Q̂k. ð25bÞ

Note that the update of the noise statistics starts from time
Nr for the observation noise and from time Nq for the state
noise. Before such times, those quantities are constant and
equal to the initial values.
6. Visual motion estimation algorithm

The accuracy of the estimate provided by the Kalman
filter depends on the number of the available feature
points. Inclusion of extra points may improve the estima-
tion accuracy but increases the computational cost. It has
been shown that a number of feature points between four
and six, if properly chosen, may represent a good trade-off
(Wang & Wilson, 1992). Automatic selection algorithms
have been developed to find the optimal feature points
(Feddema, Lee, & Mitchell, 1991; Janabi-Sharifi & Wilson,
1997). In the following, an efficient selection technique
proposed in Lippiello et al. (2002) is adopted, which
exploits the prediction of the object pose provided by the
Kalman filter to perform a pre-selection of the points that
are visible to the camera at the next sample time. A detailed
presentation of the algorithm, which is based on the binary
space partitioning (BSP) tree structure to represent the
object geometry, can be found in Lippiello et al. (2002) and
Lippiello and Villani (2003).
In this paper, only a short description of the algorithm,
which is sketched in the closed loop estimation scheme of
Fig. 2, is provided. It can be seen that the prediction of
object pose at next sample time ðwkþ1;kÞ provided by the
Kalman filter is fed back to the pre-selection algorithm
which, on the basis of a BSP representation of the object, is
capable to find and locate all the feature points which are
expected to be visible from the camera. Then, an optimal
selection algorithm is used to choose an optimal subset of
feature points and compute the size and location of the
corresponding windows on the image plane to be grabbed
for image processing. Finally, the feature extraction
algorithm provides the effective position of the feature
points on the image plane of the camera to be input to the
Kalman filter which computes the actual object pose wk;k.
The above algorithm allows the nice features of Kalman

filtering to be fully exploited. In fact, the AEKF provides
robustness with respect to visual measurement noise and
changing in the lighting conditions. Moreover, the closed
loop structure allows achieving robustness with respect to
the loss of feature points caused by occlusion or exit from
the visible space of the camera. Finally, the use of point-
type features combined with the optimal selection and
windowing algorithms allows minimizing the computa-
tional time required for image processing.
7. Experiments

The effectiveness and the performance of the proposed
visual motion estimation algorithm have been experimen-
tally tested using a single-camera visual system.
The experimental set-up is composed by a PC with

Pentium IV 1.7GHz processor equipped with a MATROX
Genesis board, a SONY 8500CE B/W camera, and a
COMAU Smart3-S robot. The MATROX board is used as
frame grabber and for a partial image processing (e.g.,
windows extraction from the image). The PC host is also
used to realize the whole BSP structure management, the
pre-selection algorithm, the selection algorithm, the dy-
namic windowing and the Kalman filtering. Some steps of
image processing have been parallelized on the MATROX
board and on the PC, so as to reduce computational time.
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The robot is used to move an object in the visual space
of the camera; thus the object position and orientation
with respect to the base frame of the robot can be
computed from joint position measurements via the direct
kinematic equation. In order to test the accuracy of the
estimation provided by the Kalman filter, the camera was
calibrated with respect to the base frame of the robot using
a suitable calibration procedure presented in Weng et al.
(1992), where the robot is used to place a calibration
pattern in some known pose of the visible space of the
camera.

The camera resolution is 576� 763 pixels and the
nominal focal length of the lenses is 16mm. The camera
is disposed at a distance of about 130 cm from the object.
The sample time used for estimation is T ¼ 0:04 s, which is
the minimum time allowed by the camera frame rate
(about 26 fps). This time is more than enough for feature
extraction and pose estimation. A simple neon illumination
has been used, in order to test the robustness of the setup in
the case of noisy visual measurements. In fact, during the
object motion, the local illumination conditions of the
windows of the image plane selected for feature extraction
are quite variable due to reflections or shadows.

The image features are the corners of the object, which
can be extracted with high robustness in various environ-
mental conditions. The feature extraction algorithm is
based on Canny’s method for edge detection (Canny, 1986)
and on a simple custom implementation of a corner
detector. The object used in the experiment has 40 corners,
which are all candidate for feature extraction. Fig. 3 shows
the stereo vision system and the robot carrying the object.
Note that only the left camera is used in the experiments.

For both EKF and AEKF, the initial value of the matrix
P1;0 has been chosen as the null matrix; moreover, the
initial value of the state vector w1;0 has been set null for the
Fig. 3. COMAU Smart3-S robot carrying the moving object and SONY

8500CE camera.
velocity components, while the pose components have been
roughly estimated through direct measurements.
The covariance matrix Q has been chosen as a diagonal

matrix, both in the non-adaptive and in the adaptive case;
moreover, to prevent some typical implementation pro-
blems of Kalman filters, some of the modifications used in
Myers and Tapley (1976) have been adopted.
The values of the statistical parameters used for the EKF

are set as initial values for the AEKF; they are:

r̂u
0 ¼ r̂v

0 ¼ 0,

ŝu2
0 ¼ ŝv2

0 ¼ 9:0,

q̂0 ¼ 0,

Q̂0 ¼ diagf0; 5; 0; 5; 0; 5; 0; 20; 0; 20; 0; 20g � 10�6.

The physical dimensions are: pixel and pixel2, respectively,
for the mean and variances of the observation noise; mm,
mm/s, rad and rad/s for the components of the mean of the
state noise; mm2, ðmm=sÞ2, rad2 and ðrad=sÞ2 for the
corresponding covariances.
The initial values of the observation noise covariances

have been evaluated during the camera calibration
procedure while the initial values of the state noise
covariances have been set on the basis of the acceleration
range of the object trajectories. In fact, in view of the
hypothesis that the velocity is constant over a sample time
T, modelling errors are mainly due to the change of
velocity. These values have been further tuned on the basis
of a set of experiments carried out using the EKF, to
achieve satisfactory tracking performance.
Note that all the elements of the covariance matrix Q̂0

corresponding to the position components of the state have
been considered initially zero for the AEKF and constantly
zero for the EKF. Moreover, the values Nq ¼ Nr ¼ 30
have been chosen by trial and error as a result of a trade-off
between significance of statistical information (requiring
the maximum number of samples) and adaptation cap-
abilities (requiring the minimum number of samples).
Two different case studies are considered. The first is

aimed at comparing the performance of the EKF to that of
the AEKF considering different object trajectories. The
second is aimed at evaluating the effects of the update laws
for the matrix Q and R separately, using the same object
trajectory. It should be remarked that the adoption of the
AEKF in lieu of the EKF causes only a modest increase of
the computational cost that, in terms of overall processor
time, is about 16%. This result is in accordance to those
reported in Myers and Tapley (1976) and Ficocelli and
Janabi-Sharifi (2001).

7.1. First case study: EKF vs. AEKF

Three different object trajectories are considered, both
for the EKF and the AEKF:
�
 TrajP: The object position varies according to the time
history reported in Fig. 4(a) and (c), while the object
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Fig. 4. Time history of the object trajectory TrajPO: (a) position vector; (b) RPY angles; (c) linear velocity; (d) time derivative of RPY angles.

Table 1

Comparison of the pose errors for EKF and AEKF in the first case study
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orientation is left constant. The norm of the maximum
linear velocity is about 10 cm/s.

�

EKF AEKF Improvement

Mean StD Mean StD Mean (%) StD (%)
TrajO: The object position is left constant while the
object orientation varies according to the time history
reported in Fig. 4(b) and (d). The norm of the maximum
velocity for the RPY angles is about 20 deg/s.
TrajP eP (mm) 13.71 11.16 12.59 10.89 8.2 2.4

�
 eO (deg) 3.50 3.20 2.29 1.58 34.6 50.6

TrajO eP (mm) 11.23 8.66 9.15 6.13 18.5 29.2

eO (deg) 5.95 5.26 4.78 3.33 19.7 36.7

TrajPO eP (mm) 13.58 8.70 11.92 8.06 12.2 7.4

eO (deg) 7.19 6.86 3.65 3.43 49.2 50.0
TrajPO: The object position and orientation varies
according to the time history of Fig. 4.

Note the trajectory TrajPO is the composition of TrajP

and TrajO, but the resulting trajectories of the feature
points on the image plane are different in the three cases.
Hence the considered trajectories represent a significant
test base to make a comparison.

The results of the experiments are summarized in Table 1
where the mean value and the standard deviation of the
norm of the position error eP and orientation error eO are
reported, together with the relative improvement achieved
using the AEKF with respect to the EKF. The pose
estimation error is defined as the difference between the
‘‘true’’ object pose computed from the robot forward
kinematics and the object pose estimated by the Kalman
filter. It can be seen that the use of the AEKF allows a
general improvement of the tracking performance, espe-
cially for the mean value and the standard deviation of the
orientation error components.

For the trajectory TrajPO, the time history of the
components of the pose estimation errors in the base frame
are shown in Fig. 5. It can be seen that the initial values of
the errors are the same in the case of the EKF and the
AEKF. In particular, there is an initial offset for the
x-component of the position error, due to the initial
misalignment between the real initial position and the
initial state of the Kalman filter. This error is recovered by
the Kalman filter during the first 5 s, in the absence of
motion. During the motion, the position errors keep
limited for all the components, but is higher for the
x-component. In fact, in the experimental set up, the x-axis
is aligned to the optical axis of the camera, thus the
evaluation of the x-component of the object position, for a
single-camera system, is more sensitive to measurements
and modelling errors with respect to the position compo-
nents lying on the image plane (Wang & Wilson, 1992). In
general, the peaks on the errors happen when the
acceleration is higher, due to the modelling error for the
EKF. These errors are partially recovered by the AEKF, in
reason of the adaptive law of the state noise covariance
matrix Q.
The time histories of some of the statistical parameters

which are updated on-line in the AEKF are also reported.
In particular, the time histories of the elements of the
(diagonal) covariance matrix of the state noise are shown in
Fig. 6 while the time history of the observation noise for
the u and v components is shown in Fig. 7. It can be
observed that all the updated parameters keep limited
values; moreover, it can be recognized that there exists a
correlation between the values of the elements of the Q
matrix and the object trajectory. In particular, the peak
values of the elements of Q corresponding to the position
and orientation components can be related to the peak
values of the linear and angular velocity of the object.
Analogously, the peak values of the elements of Q
corresponding to the linear and angular velocity can be
related to the object accelerations.
For completeness, in Fig. 8 the output of the feature

selection algorithm for the trajectory TRajPO is reported.
For each of the 40 feature points, two horizontal lines are
considered: a point of the bottom line indicates that the
feature point has been classified as visible by the pre-
selection algorithm at a particular sample time; a point of
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Fig. 6. Time history of the elements of the state noise covariance matrix for the trajectory TrajPO in the first case study: (a) position; (b) orientation;
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the top line indicates that the visible feature point was
chosen by the selection algorithm. Note that nine feature
points are selected at each sample time, in order to
guarantee at least 5–7 measurements in the case of fault
of the extraction algorithm for some of the points. Also,
some feature points are hidden during all the motion
(points 4; 12; 20; 28; 36; 40) and some points are visible only
over partial time intervals (points 1; 3; 5; 9; 13; 17; 25; 33).
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Finally, the image seen by the camera during motion is
reported in Fig. 9; it is possible to recognize the seven
windows effectively used for feature extraction at a given
sampling time as well as the small circles inside the
windows, corresponding to the measured positions of the
feature points.
Fig. 9. Image seen by the camera.

Table 2

Comparison of the pose estimation errors for EKF, AEKF-Q, AEKF-R,

and AEKF in the second case study

EKF Improvement

Mean StD Mean (%) StD (%)

EKF eP (mm) 13.58 8.70

eO (deg) 7.19 6.86

AEKF-Q eP (mm) 11.94 8.42 12.1 3.2

eO (deg) 6.00 4.29 16.6 37.5

AEKF-R eP (mm) 12.01 9.64 11.6 �10.8

eO (deg) 5.82 5.56 19.1 19.0

AEKF eP (mm) 11.92 8.06 12.2 7.4

eO (deg) 3.65 3.43 49.2 50.0
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7.2. Second case study: updating Q and R separately

In this case study, only the trajectory TrajPO has been
used. The EKF has been compared to two partial adaptive
versions of the EKF: the AEKF-Q, where only matrix Q is
updated, and AEKF-R, where only matrix R is updated.
The results are summarized in Table 2 in terms of the

mean value and the standard deviation of the norm of the
position error eP and orientation error eO (the values for
the EKF and AEKF are the same reported in Table 1 for
the trajectory TrajPO). Note that the relative improvement
is referred to the values achieved using the EKF. It can be
seen that, using the AEKF-Q, good results can be achieved
with respect to the EKF, but worse than the complete
AEKF, especially for the orientation error. On the other
hand, the AEKF-R allows improving all the errors except
the standard deviation of the mean value of the position
error. This means that the main role to guarantee good
tracking performance is played by the matrix Q; however, a
further improvement can be achieved if both Q and R are
updated.
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The time histories of the elements of the (diagonal)
covariance matrix of the state noise for AEKF-Q are
shown in Fig. 10 while the time history of the observation
noise for AEKF-R is shown in Fig. 11.

8. Conclusion

In this paper, an algorithm for the visual motion
estimation of the position and orientation of a moving
object of known geometry has been proposed. The
algorithm fully exploits the prediction capability of the
extended Kalman Filter for the pre-selection of the object
features to be extracted from the image. An adaptive version
of the EKF has been designed, which is capable of
automatically tuning the statistics of the observation noise
and of the state noise. The experimental results on a single-
camera visual system confirm the effectiveness of the
AEKF. In fact, the effects on the pose estimation error of
the modelling error and of the measurement noise are
reduced with respect to the non-adaptive formulation, at the
expense of a small increase of computational load. Future
work will be devoted to extend the adaptive approach to a
multi-camera visual system as well as to the problem of
visual estimation of the motion of multiple objects.

Appendix

The computation of the ðm� 12Þ Jacobian matrices Hu
k

and Hv
k in (13) gives

Hu
k ¼

qgu

qx0
0

qgu

qy0
0

qgu

qz0
0

qgu

qj0
0

qgu

qW0
0

qgu

qc0
0

h i
k
,

Hv
k ¼

qgv

qx0
0

qgv

qy0
0

qgv

qz0
0

qgv

qj0
0

qgv

qW0
0

qgv

qc0
0

h i
k
,

where 0 is a null ðm� 1Þ vector corresponding to the partial
derivatives of gu and gv with respect to the velocity
variables, which are null because functions gu and gv do not
depend on the velocity.

Taking into account the expressions of gu and gv in (8),
the non-null elements of the Jacobian matrices Hu

k and Hv
k

have the form:

q
ql

cxj

czj

 !
¼

q cxj

ql
czj �

cxj

q czj

ql

� �
ðczjÞ

�2, ð26aÞ

q
ql

cyj

czj

 !
¼

q cyj

ql
czj �

cyj

q czj

ql

� �
ðczjÞ

�2, ð26bÞ

respectively, where l ¼ x0; y0; z0;j0;W0;c0 and j ¼

1; . . . ;m.
The partial derivatives on the right-hand side of (26a)

and (26b) can be computed as follows.
In view of (2) and (3), the partial derivatives with respect

to the components of vector o0 ¼ ½x0 y0 z0�
T are the

elements of the Jacobian matrix

qcpj

qo0
¼ RT

c .
In order to express in compact form the partial derivatives
with respect to the components of the vector
/0 ¼ ½j0 W0 c0�

T, it is useful to consider the following
equalities

dR0ð/0Þ ¼ Sðdx0ÞR0ð/0Þ ¼ R0ð/0ÞSðR
T
0 ð/0Þdx0Þ, ð27aÞ

dx0 ¼ T0ð/0Þd/0, ð27bÞ

where Sð�Þ is the skew-symmetric matrix operator, x0 is the
angular velocity of the object frame with respect to the base
frame, and the matrices R0 and T0, in the case of Roll,
Pitch and Yaw angles, are of the form

R0ð/0Þ ¼

cj0
cW0 cj0

sW0sc0
� sj0

cc0
cj0

sW0cc0
þ sj0

sc0

sj0
cW0 sj0

sW0sc0
þ cj0

cc0
sj0

sW0cc0
� cj0

sc0

�sW0 cW0sc0
cW0cc0

2
664

3
775,

T0ð/0Þ ¼

0 �sj0
cj0

cW0

0 cj0
sj0

cW0

1 0 �sW0

2
664

3
775,

with ca ¼ cos a and sa ¼ sinðaÞ. By virtue of (27a), (27b),
and the properties of the skew-symmetric matrix operator,
the following chain of equalities holds

dðR0ð/0Þ
opjÞ ¼ dðR0ð/0ÞÞ

opj

¼ R0ð/0ÞSðR
T
0 ð/0ÞT0ð/0Þd/0Þ

opj

¼ R0ð/0ÞS
T
ðopjÞR

T
0 ð/0ÞT0ð/0Þd/0

¼ ST
ðR0ð/0Þ

opjÞT0ð/0Þd/0,

hence

qR0ð/0Þ

q/0

opj ¼ ST
ðR0ð/0Þ

opjÞT0ð/0Þ. (28)

At this point, by virtue of (2), (3) and (28), the following
equality holds

qcpj

q/0

¼ RT
c

qR0ð/0Þ

q/0

opj

¼ RT
c ST
ðR0ð/0Þ

opjÞT0ð/0Þ.
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