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Task Space Dynamic
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Abstract

The aim of this article is to provide a systematic method
to perform dynamic analysis in the task space for a sys-
tem composed of multiple arms holding a rigid object.
The dynamic manipulability ellipsoid is introduced to
obtain quantitative indices of the system’s capability, in
each configuration, of performing object accelerations
along given task space directions. The ellipsoid is derived
on the basis of the mapping of object accelerations onto
joint driving torques via the proper kineto-static and
dynamic equations of the system. The maximum joint
torque limits are taken into account, and the effects of
gravitational loads onto the ellipsoid are evidenced. Anal-
ysis of multiarm system configurations is carried out in a
number of case studies.

1. Introduction

A great deal of attention has been directed toward
the adoption of robotic systems having more than
one single manipulation arm cooperating to the exe-
cution of a certain task. Pioneering works date back
to the 1970s (Nakano et al. 1974; Fujii and Kurono
1975; Ishida 1977). Current research in the field cov-
ers different topics, including analysis of close kine-
matic chains (Luh and Zheng 1987), synchronization
of multiple robots (Luh and Zheng 1986), collision
avoidance between arms (Zapata, Fournier, and
Dauchez 1987), coordinated control (Hayati 1986;
LTchiyama et al. 1987; Nakamura et al. 1989), and
programming environment (Nilakantan and Hayward
1989).
Multiple arms offer enhanced potential over a sin-

gle arm if an effective coordination of their actions

is accomplished. It is not possible to directly utilize
the results available for single arms, but it is neces-
sary to regard the system (arms plus the manipu-
lated object) from an integrated standpoint. For this
purpose, the formulation established in Dauchez and

Uchiyama (1987) proves very adequate, as it allows
a symmetric description of motion and force at the
object level.

Well-established tools for analysis of single robot
arm configurations are represented by the so-called
manipulability ellipsoids. These give quantitative
indices of the ability of the structure to arbitrarily
perform force/motion in each task direction. Alterna-
tively, a manipulator can be reconfigured to the
most favorable posture to execute an assigned task
by taking advantage of the above measures.

Kineto-static and dynamic manipulability ellip-
soids have been introduced in the literature. The for-
mer (Yoshikawa 1985b) are based on the kineto-
static mappings that (1) relate joint velocities to end-
effector velocities by means of the manipulator Jaco-
bian and (2) relate dually end-effector forces to joint
torques by means of the transpose of the Jacobian.
On the other hand, the latter (Asada 1983; Yoshi-
kawa 1985a) take the arm dynamics into account and
these are based on the relationship between joint
actuator torques and end-effector accelerations

through the manipulator Jacobian and inertia.
In view of the increasing interest in cooperative

robot manipulation, we believe that the determina-
tion of suitable manipulability measures for multiple
arm systems is of crucial importance to perform task
space analysis of multiarm systems. Previous
research contributions can be found in Lee (1989),
Chiacchio et al. (1989, 1991) and Li et al. (1989),
where static manipulability ellipsoids have been
introduced.
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The present work is aimed at providing a system-
atic method to perform task space analysis of mul-
tiarm systems based on the definition of a suitable

dynamic manipulability ellipsoid; this is derived by
expressing the joint driving forces of the multiple
arms as a function of the object acceleration (Chi-
acchio et al. 1991). The proposed ellipsoid explicitly
accounts for the joint maximum driving torques.
Furthermore, unlike the previous work on dynamic
manipulability ellipsoids for single arms (Yoshikawa
1985a), the static torques caused by gravitational
loads are seen to produce a translation of the center
of the ellipsoid. With this method, it is possible to
evaluate the effects of the configuration of each sin-
gle manipulator on the cooperative system. A num-
ber of case studies are developed for planar multi-
arm systems that illustrate the effectiveness of the
approach.

2. Modeling of Multiple Single Robots
For the purpose of the present work, we regard a
cooperative robot system as a system constituted by
multiple arms manipulating together a common
object. The aim of a task space dynamic analysis for
such a system is to characterize the relationship
between the driving torques available at the joints of
each manipulator and the absolute accelerations
achievable for the manipulated object.

It can be recognized that the derivation of the
above relationship goes through the modeling of the
kinematics and dynamics relative to each arm. This
section is devoted to the aggregation of the kinemat-
ics and dynamics in a compact form; this turns out
to be very useful for the modeling of the coopera-
tion, which is the subject of the following section.

2.1. Kinematics

Consider a number of K manipulators; let qi be the
(n; x 1) vector of joint displacements for each
manipulator. These vectors can be suitably arranged
in an (N x 1) joint vector q, which is defined as

where N = 2:~ 1 n; is the dimension of the
extended joint space.
Let vi denote the (m~ x 1) vector of (linear and

angular) end-effector velocities for each manipulator.
This can be related to the vector of joint velocities
4i by the (mi x ni) Jacobian matrix ,1i(Qi)· According

to the formalism used in (1), the (M x 1) end-effec-
tor velocity vector v can be defined as

where M = L~ rn; is the dimension of an
extended task space, which we refer to in the’ fol-

lowing as contact task space. Therefore the differen-
tial kinematic equation mapping the joint velocity
vector q onto the end-effector velocity vector v can
be established as

where

is the (M x N) extended Jacobian matrix.
In order to obtain end-effector accelerations, eq.

(3) is differentiated with respect to time, leading to

where a = v is the extended vector of end-effector

accelerations.

2.2. Dynamics

By adopting the Lagrangian formulation, the joint
space dynamic model of a single manipulator in con-
tact with the environment can be written in the well-

known closed form

where Mi is the (n; x ni) symmetric positive definite
inertia matrix, ci is the (n; x 1) vector of Coriolis
and centrifugal torques,~ g; is the (ni x 1) vector of
gravitational torques, hi is the (m; x 1) vector of
end-effector contact forces exerted on the environ-

ment, 1’¡ is the (ni x 1 ) vector of joint driving
torques, and Ji is the above-defined Jacobian matrix.

According to the formalism introduced in the kine-
matics modeling, the dynamic equations of K manip-
ulators in the extended joint space can be suitably
aggregated into the form

1. In the remainder, the terms torque and force are often used as
synonyms of generalized force.
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the (N x 1) vectors c, g, and T are respectively
defmed as

and the (M x 1) vector h is defined as

The problem now is to properly relate the acceler-
ations in (5) and the forces in (9), defined in the con-
tact task space, to the resulting accelerations on the
object being manipulated by the multiple arms.

3. Modeling the Cooperation
In the previous section we considered a number of
K manipulators, each having n; joints and described
with respect to an mi-dimensional task space. If the
manipulators are required to cooperate, a global
object task space has to be considered; let m be the
dimension thereof. Thus modeling the cooperation
demands the definition of quantities characterizing
the object task space, which then are to be related
to the quantities characterizing the contact task
space.
The relation between the end-effector contact

forces and the resulting force on the object can be
established following the formulation proposed in
Dauchez and Uchiyama (1987) for dual-arm systems
and later generalized in Chiacchio et al. (1989) for
multiple arms. Furthermore, the object dynamics
must be incorporated to relate external forces to
object accelerations.

In what follows, we assume that the cooperative
arm system manipulates an object constituted by a
single rigid body of known characteristics. Also, we
suppose that the end effector of each manipulator
has a rigid contact with the object.

3.1. Force and Acceleration Composition

Consider the multiarm system illustrated in Figure 1.
Let ho denote the (m x 1) vector of external forces
applied at the center of mass of the object. The
force composition equation can be formally charac-
terized as

where h is defined in (9), and W is an (m x M)

Fig. 1. A robotic system of multiple cooperating arms.

matrix that can be determined once the grasp
geometry is assigned. The matrix W attains a simple
expression if described with respect to a coordinate
frame fixed on the object. In particular, in that
frame, in the cases of tight grasp or rolling contact,
the matrix W is constant, whereas in the case of

sliding contact, the matrix W is variable.
Nonetheless, for our analysis it is opportune to

study the absolute motion of the object with respect
to a common frame attached at the base of the
whole system. This implies that we have to express
all quantities in this base frame. Thus the matrix W,
when referred to the base frame, will depend not
only on the location of contact points, but also on
the current location of the center of mass of the

object.
If one desires to identify the contributions of the

contact forces of each arm to the external forces on
the object, the matrix W can be suitably partitioned
as

where the matrix W; , i = 1, ... , K, has dimension
(m x me).
By virtue of the duality between forces and veloc-

ities that follows from the principle of virtual work
in mechanics, it can be shown that

where v 0 is the (m x 1) vector of absolute velocities
of the object. Differentiating (12) with respect to
time yields the acceleration composition equation in
the form

where ao is the vector of absolute object accelera-
tions.
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3.2. Object Dynamics

The dynamic equations of motion for the held object
can be expressed in the form

where M, is the (m x m) object inertia matrix, Co
and go are, respectively, the (m x 1) vectors of
velocity-dependent forces and gravitational forces,
and ho is given by (10). 

’

4. Task Space Dynamic Analysis
An effective tool to perform task space dynamic
analysis for a single arm is offered by the dynamic
manipulability ellipsoid introduced in Yoshikawa
(1985a). This gives the magnitude of the end-effector
acceleration vector, in a certain task space direction,
that can be obtained by applying joint driving torque
vectors of fixed magnitude.
For the case of a cooperating arm system, there-

fore, it is appropriate to derive the mapping of the
object space accelerations onto the extended joint
space torques. This can be performed by suitably
combining eqs. (5), (6), (10), (13), and (14).

Similarly to Yoshikawa (1985a), we regard the
case when both the arms and the object are standing
still (4 = 0, v, = 0) as the fundamental one for con-
sidering the dynamic manipulability; this implies that
j4 = 0 in (5), c = 0 in (6), WTvo = 0 in (13), and c,
= 0 in (14).
Using the preceding assumption, the following

equations are obtained in which the dependence on
q is omitted for notation compactness:

These, together with (10), will yield the sought map-
ping. Indeed, solving (5’) for q and using (13’) for a
gives

where jl denotes the Moore-Penrose pseudoinverse
of J that is defined as J’ = J(JJ’)-’ when J is full
rank. Notice that J~ yields the minimum-norm joint
acceleration solution at each configuration.
On the other hand, solving (10) for h and using

(14’) for ho yields

..... --, 1 -1

Observe that W’ performs equal load sharing

between the multiple arms; a weighted generalized
inverse can be used in lieu of W’ if different load
sharing is desired (Uchiyama and Yamashita 1989).

Finally, plugging (15) and (16) into (6’) gives

where

and

It should be pointed out that A~ is formed by the
contributions of the inertias of the single manipula-
tors and of the object inertia. This is accomplished
via a sequence of suitable transformation matrices

deriving from the basic equations (15) and (16) that
map object accelerations onto joint accelerations and
end-effector contact forces, respectively. In the
same fashion, ~t, is formed by the contributions of
the gravitational loads of the single manipulators and
of the object; the latter is obtained via the transfor-
mation matrix derived from equation (16) that maps
the object gravitational forces onto end-effector con-
tact forces.
At this point, it is convenient to normalize the

joint torques with respect to the different torque lim-
its on the joint actuators. Let i i = 1, ... , N,
denote the maximum (positive) driving torque at
each joint of the robotic system; without loss of gen-
erality, we suppose that the upper and lower torque
limits are of equal magnitude.
The normalized torque vector can be introduced

as

with zi = 1/T;~~, ! i = 1, ... , N.
The unit sphere in the joint space of the normal-

ized torques

T~T = 1 (22)

maps onto the ellipsoid in the object space of the
absolute accelerations

where Ao = ZA, and Ao = Z/Lo, which is defined
here as the dynamic manipulability ellipsoid for the
multiarm system.
Notice that when the effects of gravitational loads

are neglected (i.e., wo = 0), the ellipsoid has its cen-
ter at the origin of the reference base frame.
Remarkably, in this case, the result obtained in
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Yoshikawa (1985a) for a single arm can be
recovered. On the other hand, when gravity is con-
sidered, the center of the ellipsoid no longer coin-
cides with the frame origin as a result of the two
additional terms in (23), which are a function of JLo.

It must be stressed that the way we account for

gravitational load is conceptually different from pre-
vious works on dynamic ellipsoid for single arms. In
fact, in Yoshikawa (1985a), the absolute value of the
gravitational load is subtracted by the torque limit at
each joint; we argue here that such method always
penalizes the available torques in the joint space and
does not properly describe the effects of gravity on
the possible task space accelerations, as does our
approach.
The preceding ellipsoid provides a systematic,

direct tool to perform task space dynamic analysis
of multiarm system configurations. In fact, the shape
and orientation of the ellipsoid give a measure of the
capability of the system to accelerate the object in a
certain task space direction. Furthermore, if the sys-
tem possesses some kinematic redundancies, it is

possible to reconfigure it in a more effective posture
to execute the given task.

Potentially, the dynamic manipulability ellipsoid
can also be employed as an aid in the design of a
multiarm system in which dimensions of the arm
structures and their mass distributions are optimized
to obtain, for instance, dynamic isotropic configura-
tions over the cooperative robotic system work
space.

Furthermore, a scalar manipulability measure can
be derived by computing the volume of the ellipsoid
and then using the result to detect singular configu-
rations of the system (the volume becomes zero)
(i.e., when it is not possible to accelerate the object
in some direction).

Finally, it is possible to analyze the effects of the
configuration of each single manipulator on the
cooperative system, as done for the static case in
Chiacchio et al. (1989); numeric studies are carried
out in the following section.

5. Case Studies

A number of case studies are developed in this sec-
tion to provide further insight into the potential
offered by the multiarm system dynamic ellipsoid for
task space analysis of system configurations.

Planar robotic systems composed of two or three
arms manipulating a rigid object are considered. All
the quantities are referred to a base frame, which is
located at the base of one arm. For each arm, we
have taken the three-degree-of-freedom geometry of
the MANUTEC R3 industrial robot (Otter and Tiirk

1988), which can be obtained by considering the two
parallel pitch joints of the shoulder and of the elbow
and the pitch joint of the spherical wrist when the
roll joint of the forearm is locked in the zero posi-
tion.
For the sake of simplicity, in all case studies, the

dynamic analysis is performed in a two-dimensional
global object task space (m = 2), and only linear
object accelerations are of interest. Similarly, the
end-effector task space of each arm is assumed to be
two-dimensional (mi = 2), and only pure forces are
considered. Thus the matrices Wi in (11) are (2 x 2)
identity matrices.

Therefore for the two-arm system we have a six-
dimensional extended joint space (N = y + n2 =
6) and a four-dimensional contact space (M =. mi +
m2 = 4). On the other hand, for the three-arm sys-
tem we have a nine-dimensional extended joint
space (lV = ni + n2 + n3 = 9) and a six-dimen-
sional contact space (M = mi + m2 + m3 = 6).
The three-link planar structure is characterized by

the Jacobian matrix whose elements are:

by the symmetric inertia matrix whose elements are:

and by the gravitational force vector whose elements
are:
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where li is the link length, l~~ is the distance of the
link center of mass from the joint, mi is the link
mass, li is the link moment of inertia about the joint
axis, go is the value of the gravity acceleration, and
Si..J, C¡..J are the shorthand notations for sin(qi + ...
+ q,), cos (qz + °°° + q,~).
The object is a disk of radius ro characterized by

the symmetric inertia matrix whose elements are:

and by the gravitational force vector whose elements
are:

where m, is the object mass.
The numeric values of the arm and object param-

eters are the following (in SI units):

Notice that the object mass has been chosen as the
maximum load that can be lifted by a single MANU-
TEC R3 arm (Otter and Turk 1988).

In each of the following illustrations, the ellipsoids
are plotted in the same scale (i.e., with reference to
the axes of the larger ellipsoid in the picture).

In the first case study, a two-arm system is ana-
lyzed in a symmetric configuration. The effect of
gravitational loads has been neglected here (g, = 0;
i.e., the system is supposed to be in the horizontal
plane). The dynamic ellipsoid for each single arm
holding the object has been computed in order to
evidence the composition of the single arm ellipsoids
into the ellipsoid for the overall system. The results
in Figure 2 show the existence of preferred direc-
tions to perform linear accelerations at the end
effectors of each arm. The ellipsoid of the two-arm

Fig. 2. Dynamic manipulability ellipsoid for the two-arm
system in a symmetric configuration.

system instead reveals that the system is in a near-

isotropic configuration because of the constraints
imposed by the cooperation.

In the second case study, a third arm is added to
the previous system in the same configuration. The
shape of the ellipsoid for the single third arm reflects
on the shape of the global ellipsoid (Fig. 3). This
indicates that the system is no longer in a near-iso-
tropic configuration, and the figure shows preferred
directions to perform object accelerations that are,
in turn, dictated by the third arm.
The final case study is aimed at analyzing the

Fig. 3. Dynamic manipulability ellipsoid for the three-arm
system.
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Fig. 4. Effects of gravitational loads on the dynamic manipulability ellipsoid for the two-arm system in five different
configurations.

effects of gravitational loads on a two-arm system.
Five different configurations have been considered,
with and without the inclusion of gravitational loads
(Fig. 4). As anticipated in theory, the center of the
ellipsoid translates when gravity is considered. The
displacement is dominant in the downward direction;

in fact, the &dquo;asymmetric&dquo; effect of gravity in the
vertical direction implies that feasible object acceler-
ations are decreased upward and increased down-
ward. Notice also that the center of the ellipsoid lies
exactly on the vertical axis only in the case of a
symmetric system configuration (Fig. 4C), as one
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could have expected. Instead, in the other configura-
tions a slight horizontal shift also occurs; this effect
is symmetric with regard to each pair of configura-
tions (Fig. 4A vs. Fig. 4E and Fig. 4B vs. Fig. 4D,
respectively).

6. Conclusions

The dynamic manipulability ellipsoid for cooperating
arms holding a rigid object has been introduced in
this article as an effective tool to perform task space
analysis of system configurations. It describes the
system capability of performing object accelerations
along given task space directions for joint torques
belonging to a given set.
The theory has been validated in a number of case

studies for planar multiarm systems. The contribu-
tions of the single arm ellipsoids to the global sys-
tem ellipsoid have been evidenced. Further, the
effects of gravitational loads of the arms and object
have been analyzed in different configurations.

In conclusion, we believe that the dynamic ma-
nipulability ellipsoid, together with the force and
velocity ellipsoids we have recently proposed, not
only allows the user to completely analyze multiarm
system configurations, but may also be utilized to
define suitable manipulability constraints on the
reconfiguration of the system in optimal task-ori-
ented postures. This will be the subject of further
investigation.
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