
An Open Architecture for Sensory Feedback
Control of a Dual-Arm Industrial Robotic Cell

Contributed paper for the Industrial Robot Special Issue on Control and Programming
Editor: Clive Loughlin

Abstract— An open architecture for real-time sensory feed-
back control of an industrial robotic cell is presented in this
paper. The experimental setup is composed of two industrial
robot manipulators equipped with force/torque sensors and
pneumatic grippers, a vision system and a belt conveyor. The
original industrial robot controllers have been replaced by a
single PC with software running under a real-time variant
of the Linux operative system. The new control architecture
allows advanced control schemes to be developed and tested
for the single robots and for the dual-arm robotic cell, includ-
ing force control and visual servoing tasks. An advanced user
interface and a simulation environment have been developed,
which permit fast, safe and reliable prototyping of planning
and control algorithms.

Index Terms— Real-time operating systems, sensory feed-
back control, industrial robots, cooperative manipulators,
rapid prototyping.

I. INTRODUCTION

The development of advanced control algorithms for
industrial robots requires open control architectures where
software modules can be modified and exteroceptive sen-
sors like force/torque sensors and vision systems can be
easily integrated. As a matter of fact, rapid prototyping,
i.e., the capability of designing and testing new control
and supervision algorithms in short time and with limited
costs, is becoming a fundamental issue in industrial robotic
applications. Hence, the availability of flexible and highly
reconfigurable robotic setups is of the utmost importance.

Various open control architectures for industrial robots
have already been developed by robot and control manufac-
turers as well as in research labs (see, e.g., [1], [2]). Notice
that the “degree of openness” in a robot controller may vary
from one system to the next. Usually some components
of the system (e.g., the power system, the low level
control) are proprietary and cannot be modified by the user,
others may be considered open (e.g., the communication
interface hardware, the higher level control), i.e., are based
on standard hardware and software with open interface
specifications.

Most of the existing open robot architectures are based
on a standard PC hardware and a standard operating
system. In fact, a PC-based controller can more easily
integrate many commercially available add-on peripherals
such as mass storage devices, ethernet card and other I/O
devices. Moreover, standard software development tools
(e.g., Visual C++, Visual Basic, Delphi, etc.) can be uti-
lized.

An important issue of control software architectures
deals with real-time operating systems. In recent years
the real-time variants of the Linux operating system are
becoming widely adopted, especially in research labs [3],
[4]. This choice is motivated by the fact that Linux op-
erating system and its two main real-time variants (RT-
Linux [5] and RTAI-Linux [6]) are distributed under the
GNU public licence [7], so that they are freely available
and configurable to meet desired requirements. Moreover,
all the source codes, as well as powerful development tools
and detailed documentation, are available.

In this paper, an environment for open real-time control
of the industrial cell of PRISMA Lab [8], based on two
robots Comau SMART-3 S, is presented. The control
architecture is based on the open version of the industrial
Comau C3G 9000 controller [9], produced by Tecnospazio
SpA, which allows controlling the robot using a standard
PC working with MS-DOS operating system. In the new
open controller, named RePLiCS, the software running on
the PC was completely replaced by a real-time control
environment based on RTAI-Linux operating system [11].

RePLiCS allows advanced control schemes to be de-
signed and tested, including force control and visual servo-
ing. An advanced user interface and a simulation environ-
ment have been also developed, which permit fast, safe and
reliable prototyping of planning and control algorithms.

A noticeable feature of RePLiCS, which is an enhance-
ment of the existing industrial multi-robot controllers, is
that it allows not only the time synchronization of the
sequence of operations executed by each robot, but also
real cooperation between the robots. Namely, two kinds
of cooperation are possible, loose cooperation and tight
cooperation. Loose cooperation means that the robots do
not physically interact during the task execution, e.g., one
robot moves a workpiece while the other perform laser
welding process on it. Tight cooperation means that the
robots physically interact through a common manipulated
object, e.g. two or more robots transport the same heavy
or large object.

Moreover, an enhanced visual system named VESPRO
has been developed and interfaced with RePLiCS, which
is able to manage a multi-camera visual system [12].
This system is oriented to perform visual pose (position
and orientation) estimation of moving object with known
geometry.

Fig. 1. The dual-arm industrial robotic cell

II. THE EXPERIMENTAL SETUP

The setup in the PRISMA Lab consists of two industrial
robots Comau SMART-3 S (see Fig. 1). Each robot manip-
ulator has a six-revolute-joint anthropomorphic geometry
with nonnull shoulder and elbow offsets and non-spherical
wrist. One manipulator is mounted on a sliding track which
provides an additional degree of mobility. The joints are
actuated by brushless motors via gear trains; shaft absolute
resolvers provide motor position measurements.

Each robot is controlled by the C3G 9000 control unit
which has a VME-based architecture with 2 processing
boards (Servo CPU and Robot CPU) both based on a Mo-
torola 68020/68882. The Servo CPU has an additional DSP
and is in charge of trajectory generation, direct and inverse
kinematics, micro-interpolation of the joint references and
joint position servo control; independent joint control is
adopted where the individual servos are implemented as
standard PID controllers. The Robot CPU is responsible for
the man-machine interface and for interpreting the user’s
programs written in the PDL 2 programming language.
This board includes also a shared memory area accessible
by the other boards connected to the VME bus.

Upon request, COMAU supplies the proprietary con-
troller unit with a BIT3 bus adapter board, which allows
the connection of the VME bus of the C3G 9000 unit to the
ISA bus of a standard PC with MS-DOS operating system,
so that the PC and C3G controller communicate via the
shared memory available in the Robot CPU. In this way the
PC can be used to implement control algorithms [9], and
time synchronization is achieved by means of a flag set by
the C3G and read by the PC. A closed proprietary C library
(PCC3Link produced by Technospazio SpA) is available to
perform communication tasks, e.g., reading shaft motor po-
sitions and/or writing motor reference currents or reference
positions from/to the shared memory.

A schematic of the open control architecture for one
robot is sketched in Fig. 2.

Seven different operating modes are available in the
C3G control unit, allowing the PC to interact with the
original controller both at trajectory generation level and
at joint control level. The most useful operating modes are

PC
CPU

Parallel
interface

Serial
interface

Smartlab
interface

ISA BUS

BIT 3
Adapter

VME BUS

BIT 3
Adapter

Robot
CPU

Servo
CPU

Motor currents

Joint readings

Force
sensor
readings

Visual
system
readings

Gripper and
belt conveyor
communications

PC

C3G 9000

Fig. 2. Schematic of the C3G open control architecture for one robot

Trajectory
planner

Inverse
kinematics

Micro
interpolator

PID
controller

C3G-9000

PC

Operating mode n.6 Operating mode n.4

Fig. 3. The two operating modes of the C3G open controller

number 4 and number 6, that are conceptually represented
in Fig. 3.

In Operating Mode 4, the joint position servos managed
by the C3G are opened and the PC is in charge of acquiring
data from the resolvers, computing the control algorithm
and passing the references to the current servos at 1 ms
sampling time. Hence, the C3G controller is only used
as an interface between the PC and the resolvers and the
brushless motors of the robot.

In Operating Mode 6, the PC computes the joint position
references for the micro-interpolator of the Servo CPU
of the C3G controller at 2 ms sampling time. Therefore,
the PC is in charge of trajectory planning and kinematic
inversion, while the native joint position servos of the C3G
controller are used to move the robot.

The sensing capabilities of the robotic cell are completed
by force/torque sensors and a stereo vision system. In
detail, a six-axis force/torque sensor ATI FT30-100 with
force range of ±130 N and torque range of ±10 N·m can
be mounted at either arm’s wrist. The sensor is connected
to the PC by a parallel interface board which provides
readings of six components of generalized force at 1 ms.
The vision system is composed of a PC with Pentium

IV 1.7GHz processor and Windows XP operating system,
equipped with two MATROX Genesis boards and two
SONY 8500CE B/W cameras. The MATROX boards are
used as frame grabbers as well as for a partial image
processing (e.g., windows extraction from the image),
while the PC host is in charge of executing vision-based
algorithms and guarantees communication with the PC per-
forming robot control via a standard serial and/or parallel
connection.

Each robot can be also equipped with a pneumatic
gripper with two parallel jaws. The completion of the open
and close operations are detected using Hall-effect sensors.
The grippers can be directly commanded by the C3G
industrial controller using PDL2 instructions, or by the PC
through a SMARTLAB ISA interface board. Through this
board it is also possible to operate a belt conveyor installed
from one side of the cell, parallel to the two robots, which
can be driven in the two directions and is equipped with
an optical presence sensor at the two sides and a magnetic
sensor that can be used for the identification of particular
pieces carried by the belt.

Notice that, in Fig. 2, the complete control architecture
for one robot, including force/torque sensor, vision, gripper
and belt conveyor is described. In the case of the dual-
arm robotic system, a single PC is used, controlling the
whole cell. Hence, on the ISA bus of the PC are connected
two different BIT3 boards, which allow connection with
the two separate VME buses of the C3G 9000 controllers,
two parallel interfaces for the two force/torque sensors, one
serial interface for the vision system and one SMARTLAB
interface for the two grippers and the belt conveyor.

The above experimental setup, thanks to the open control
architecture, allows advanced control algorithms to be de-
signed and tested, both for the single robot and for the two
cooperative robots. In fact, a large amount of experimental
tests have been carried out during the last years, which
include kinematic control [10], resolved acceleration con-
trol [13], force/position control [14], dual-arm manipulators
control [15], visual servoing and tracking [16].

It should be pointed out, however, that the above system
suffers from many problems due, essentially, to the limits
of MS-DOS operating system. The main drawbacks are:
• the RAM available for programs and data storage is

limited to 512 Kbyte;
• the integration of advanced sensing capabilities, like

vision, is not easy;
• the coordination between the two robots is difficult

because a tight time synchronization between the two
control units cannot be realized;

• the system is not multitasking and it is not possible
to realize a user interface to visualize data or input
commands while the controller is running;

• the robotic cell cannot be connected to Internet.
In view of the above limitations, a new real-time control
system has been designed for the cooperative cell available
at PRISMA Lab. The aim was the creation of a flexible
experimental set-up that allows using the robots in different

tasks involving one single robot, time synchronization of
the two robots, the grippers and the conveyor belt, as well
as loose and tight cooperation of the dual-arm system.
Further requirements were the possibility of executing
interaction tasks or tight cooperation using force control as
well as visual servoing tasks. Last but not least, a crucial
point was the development of an advanced user interface for
monitoring the system during the experiment as well as for
rapid prototyping of task planning and control algorithms.

III. REPLICS

The new control software, named RePLiCS (REal-time
PrismaLab LInux Control System), was developed using
RTAI-Linux, which is a real-time variant of the Linux
operating system.

RePLiCS can be structured into a real-time module,
which is a driver for the kernel of RTAI-Linux, and a set of
non real-time applications that provide a user interface for
the real-time module. The real-time module is periodically
activated by an external interrupt signal generated by the
C3G 9000 controller. Suitable communication channels ex-
ist between the real-time module and the user applications.

A. RePLiCS real-time module

The real-time module of RePLiCS implements all the
real-time functions required for the control of the robotic
cell. All those functions are collected in a API (Application
Programming Interface) software library written in the C
language. These functions can be grouped in:
• communication with the C3G-9000 controllers,
• force sensors reading,
• synchronization for cooperative control
• safety checks,
• robot kinematics,
• robot control,
• trajectory planning,
• serial and parallel communication,
• data storage,
• I/O functions (file or console).

The functions for the communication with the C3G-9000
controllers implement the drive on/off commands and have
access to the shared memory area of the Robot CPUs
to read the joint positions and write the current set-
points or the position set-points, depending on the selected
operating mode. For example, in Operating Mode 4, the
C3G executes the following operations:
• set the synchronization flag IntActive (interrupt

sygnal),
• write the values of the motor shaft angular positions,
• read the desired values for the motor current set-

points;
while the PC is in charge of the following operations:
• reset the synchronization flag IntActive,
• read the values of the motor shaft angular positions,
• compute the current set-points for the next time inter-

val,

1 ms

0.7 ms

clock
ticks

t

0

1

IntActive

read motor positions
start computation

start force data acquisition

end computation
write current set-points
set watchdog flag

read force data

Fig. 4. Timing diagram of the real-time control loop

• write the desired values for the motor current set-
points,

• set the watchdog flag.

To fulfill the real-time constraint at 1 ms sampling time,
the PC must execute the above steps within 0.7 ms. In the
remaining 0.3 ms time window, called “forbidden window”,
the PC must not access to the shared memory. The sequence
outlined above is depicted in Fig. 4. The watchdog flag im-
plements a watchdog timer mechanism, which is aimed at
preventing harmful consequences of unpredictable events,
e.g., when the PC crashes and thus is no longer able to write
a correct current set-point to be actuated. If this situation
happens, the system reaches an alarm state, the robot drives
are switched off and brakes are activated.

To obtain the force measurements, the PC has to send
a data acquisition request, which starts the data A/D
conversion on the sensor conditioning electronics; after
a time lapse of about 0.25 ms, the six components of
the force and torque are available in a memory buffer.
Since the conversion is executed on remote hardware,
during the conversion time interval, the PC can continue
its elaboration. Hence, to avoid simply waiting for the
end of conversion, it is convenient to ask for the start of
conversion at the beginning of the control cycle, perform
all the computations not requiring force measurements,
e.g. kinematics, dynamic model compensation, then read
the force data and, finally, complete the control algorithm.
The timing of these operations is outlined in Fig. 4.

To implement cooperative control of the two robots, the
PC should write the positions or the current set-points for
both robots at the same time, on the basis of the motor
angular positions read at the same time. This ideal behavior,
however, is difficult to achieve because the two C3G
controllers have two separate clocks. Hence the temporal
windows for reading and writing on the shared memory, as
well as the forbidden windows, are usually not aligned.
Moreover, since the two clock frequencies are slightly
different, a time drift between the two trains of clock ticks
is experienced. To solve this problem the synchronization
module of RePLiCS, in a preliminary phase, checks the

Leader

Follower

Write

Fig. 5. Timing diagram of the leader and follower clocks

LeaderFollower

Write miss for leader

Leader Follower

Fig. 6. Exchange of role between leader and follower

state of the IntActive flags and of the watchdog flags
of the two C3G controllers and defines one robot as leader
and the other as follower. The follower is the robot whose
clock tick does not arrives during the forbidden window of
the other robot (see Fig. 5, where the forbidden windows
for the two clock trains are in red color).

At this point, the control loop can start and the following
operations are executed:
• write the desired values for the motor current set-

points of both the robots,
• read the values of the motor shaft angular positions

of both the robots,
• set the watchdog flags,
• compute the current set-points for the next time inter-

val.
Due to the time shift between the two clocks, a situation
like that represented in Fig. 6 may occur, where the clock
tick of the follower arrives during the forbidden window
of the leader. In this case, the role of the leader and of
the follower are exchanged, so that the computed current
set-points are written when the clock tick of the new leader
arrives. This implies that the previous leader loses the
reference only for one time interval, which is irrelevant.
Particular solutions must be adopted for handling singular
cases, e.g., when the clocks of the leader and the follower
are almost aligned.

Besides the watchdog timer, several safety checks can be
carried out to monitor the system functioning and prevent
damage, for example, set and check joint limits, maximum
joint velocities, maximum instantaneous currents, maxi-
mum sustained currents, maximum forces and torques.

Two different decisions can be taken in case one of the
above checks fails, namely immediately stop the robot by
invoking a special emergency routine, or set an error flag to
exit from the main control loop and switch off the drives.
The former approach is faster and thus safer, but requires a
complete reboot of the system. The latter approach implies
a delay of one sampling period, but leads the system to a
less critical state, which does not require a complete reboot.

The best policy is to decide on the particular safety check
which failed, e.g., if one of the motor currents exceeded
the maximum sustained value, an immediate stop is not
necessary; on the contrary, if the force is over the maximum
allowed value, an immediate stop is advisable.

The functions used for robot kinematics allow the com-
putation of the direct kinematics of the robots and their
Jacobians. The inverse kinematics is computed by means
of CLIK algorithms [15]. The damped least-squares inverse
Jacobian is adopted to cope with singularity problems.
Several utility functions are available, e.g., for the unit
conversion of the joint variables (degrees, radians, Bit
resolvers), for the coordinate conversion between different
frames, for the representation of the orientation (Euler
angles, angle/axis, quaternion). The kinematic library is
still under development to include modules for redundancy
resolution and inverse kinematics for dual-arm systems.

The robot control functions implement decentralized
joint control as well as centralized control, e.g., inverse
dynamics or resolved acceleration in the task space [13].
Interaction control strategies [14] based on force measure-
ments are also implemented. Moreover, software modules
that realize loose and tight cooperation [17] are available.
New control schemes can be easily programmed by modi-
fying the control module of a template program file (written
using the standard C language), which includes the API
library of RePLiCS.

As for trajectory planning, a set of functions are avail-
able for the point-to-point motion, both in the joint and
in the task space (along straight lines for the position)
which use time laws with trapezoidal velocity profile.
A function which allows generating a path (in the joint
space or in the task space) through assigned via points
is also implemented. Special functions have been realized
to achieve synchronization of the two robots at trajectory
planning level, and generate smooth trajectories when the
target is not known in advance (e.g., in visual servoing
applications).

The serial and parallel communications allow the con-
troller to communicate with an external device (e.g., the PC
used for the vision system) using the standard serial and
parallel port. A set of functions have also been developed
to command the two grippers and the belt conveyor through
the SMARTLAB interface board.

The storage of the time history of significant variables
in a given experiment is managed by suitable functions of
the API library. It should be pointed out that, because of
the real-time constraints, the values are saved in the RAM
memory of the PC with an assigned sample time and are
saved on the hard disk only at the end of the experiment.
This procedure can be guided by using suitable facilities
of the user applications.

Finally, the real-time module of RePLiCS includes also
I/0 functions on file or console. These functions cannot be
executed while the robot control is active, because they
my cause a watchdog alarm. A special monitor application
of RePLiCS suspends these instructions and allows their

Fig. 7. A screen-shot of all the RePLiCS GUI

Fig. 8. A screen-shot of the GUI of the main user application

execution only in the absence of real-time constraints.
All the real-time functions are compiled in a kernel

module and dynamically linked to the real-time kernel
of the operating system. Since the user needs to interact
with the robot, some communication channels between the
kernel space and the user space are used.

From the user space it is possible, e.g., to send the drive
on/off command, to change the joint limits and the other
safety checks, to open or close the grippers. The real-time
RePLiCS module can receive information about the desired
joint or end-effector set-points and send back information
about the current value of the robot internal variables
(positions, velocities, motor currents, contact force). In this
manner, it is possible to move the robots by a virtual teach-
pendant or to visualize the internal variables on the screen
while the robots are moving.

B. RePLiCS user applications

The applications in the user space are essentially aimed
at helping the human user to communicate with the dual-
arm robotic cell through a Graphical User Interface (GUI).
In Fig. 7 all the GUI windows are collected in the same
graphical page.

The window on the top-left of Fig. 7, which is also
reported in Fig.8, is the GUI of the main user application

Fig. 9. 3D representation of the dual-arm system

of RePLiCS, which allows performing the most important
operations on the system. In particular, by using the menu
bar or the toolbar, it is possible: to select one of both the
robots, to select the operating mode (4 or 6), to send drive
on/off commands, to select the type of motion (joint space
or task space) and to select the real or the virtual mode of
operation for RePLiCS. This latter feature is of the utmost
importance, because it allows testing all the functionalities
of the controller on a simulation environment which re-
spects the real-time constraint and includes the C3G 9000
controllers, the robot dynamics and the interaction with a
virtual environment. Hence, the whole control prototyping
process can be developed off-line in a very fast, safe and
reliable way; moreover, the same code developed in the
virtual mode can be executed in the real mode without
any modification, also using the real measurements of the
exteroceptive sensors, if connected.

From the main window, it is also possible to set the joint
limits, the maximum currents and other safety checks, to
select a point-to-point motion in the joint space or in the
task space, to set the parameters of the velocity profile time
law, to start the selected motion, to pause the motion before
completion and resume it. For task space motions, the GUI
allows selecting the parameters of the CLIK algorithm
that computes the corresponding joint motions. All the
parameters can be set by using the window Controller (on
the middle-left of Fig. 7). This window implements also
a virtual teach pendant to move the robots in the joint
space or in the task space; moreover, it allows selecting
the variables to be recorded in the RAM memory of the
PC. These variables are visualized in the Plot window (the
window on the bottom of Fig. 7) during the execution of
the task and can be stored in the hard disk at the end of
the motion.

A 3D graphical representation of the dual robot system
is available, which allows changing dynamically the point
of view and zooming in and out; the graphical window is
continuously updated during task execution (see Fig. 9).

From the main window it is also possible to compile

Fig. 10. A screen-shot of the GUI of VESPRO

and to execute the control modules (linked to the real-time
kernel) written by the user. The consolle input/output of
the control modules is realized through Monitor windows
(on the middle-right of Fig. 7).

In order to facilitate the interaction of the user with the
robotic cell, a simple programming language named RPL
(RePLiCS Programming Language) has been developed,
and an RPL interpreter has been realized. The RPL in-
structions can be directly input through the console of the
RePLiCS main window (see Fig. 8), or can be grouped
in script files that are executed as batch programs. These
instructions also allow programming synchronized tasks for
the two arms of the cell, the grippers and the belt conveyor.
Further details on the RPL language and on RePLiCS
software can be found in [18].

C. VESPRO

VESPRO (Visual Enhanced System for PrismaLab
Robot Operation) is a software environment able to manage
a multi-camera visual system, oriented to perform visual
pose estimation of moving objects with known geometry.
It is structured into a low level driver (entirely written in
C and in C++ languages) and a GUI for Windows NT
operating system (Fig. 10).

This visual system may be used to perform both position
based and image based visual servoing tests. For brevity,
only position based visual servoing is considered in this
paper. This approach requires the estimation of the pose of
a target object with respect to a reference frame by using
a vision system; the estimated pose is then used by a pose
controller. Hence, the two main operations to be performed
are pose control and pose estimation.

Notice that the pose estimation is a computationally
demanding task, because it requires processing of the
measurements of some geometric features extracted from
the images of one or more cameras. Hence, the sampling
time of the pose estimation algorithm is usually higher than
the sampling time of the pose control loop. In the best case,
the pose estimation can be performed at the camera frame

Pose Control (RePLiCS)

(VESPRO)

Dynamic
Trajectory

Planner

Motion
Control

Robot

Joint feedback

()500Hz

Visual feedback

()26Hz

Desired
Task

Pose
Estimation

Fig. 11. Position based visual servoing scheme

rate (between 25 Hz and 60 Hz).
A schematic representing the position based visual ser-

voing algorithm implemented in the experimental setup is
represented in Fig. 11.

The pose control is performed through an inner-outer
control loop. The inner loop, running at 2 ms sampling
time, implements motion control (independent joint control
or any kind of joint space or task space control). The block
named dynamic trajectory planner computes, depending
on the desired task, the trajectory for the end-effector on
the basis of the current object pose. The output of this
block is available at 500 Hz frequency, while the input
is updated only at 26 Hz frequency, corresponding to the
frame rate of the employed cameras. Obviously, RePLiCS
implements the pose control. The pose estimation algorithm
implemented by VESPRO, which running under Windows
NT operating system on a dedicated PC, provides the
measurements of the target object pose at 26 Hz frequency.

The vision system can be based on eye in hand cameras,
i.e., one or two cameras mounted on the robot end-effector,
or a system of multiple fixed cameras. Hybrid configura-
tions, including both eye in hand and fixed cameras may
represent a good solution, which integrates the advantages
of both kinds of configuration.

The use of a multiple camera system requires the adop-
tion of intelligent and efficient strategies for the manage-
ment of highly redundant information (a large number of
image object features from multiple points of view). This
task has to be realized with hard time constraints and
thus the extraction and interpretation of all the available
visual information is not possible. To solve this problem,
an efficient technique has been developed which is able to
improve the accuracy and robustness of the visual system
by exploiting a minimal set of significant information suit-
ably selected from the initial redundant set. This technique,
implemented in VESPRO, is described in [16].

The software architecture of VESPRO is represented in
Fig. 12. It can be recognized that the driver is composed
by a collection of software modules that can be activated
and configured by a Module Manager which translates the
high level commands form the GUI.

The Hardware Interface module allows interfacing with
the two MATROX Genesis boards, used as frame grabbers

RePLiCS

MATROX
Genesis
Board

MATROX
Genesis
Board

Hardware Interface

Feature
Extraction

Object
Recognition

Motion
Estimation

Feature
Selection

Driver Manager

Modelling Data

VESPRO GUI

Visual Task
Module

FS

Communication

VESPRO

Driver

Fig. 12. Schematic of the VESPRO software architecture

and image pre-processing. In particular, the low level
functions for the control of the boards are organized in high
level functions that allows, for example, the image acqui-
sition, image windows extraction, image preprocessing as
binarization, convolution, etc. This is the unique VESPRO
module that is hardware dependent (i.e., depends on the
boards used as frame grabbers). Moreover, it includes a
software library for the characterization of the cameras,
the compensation of the main geometrical distortion phe-
nomena. Notice that VESPRO allows managing both fixed
cameras and eye-in-hand cameras.

The Modelling modules is in charge of managing a
library of CAD model of objects and building BSP-tree
presentations of a single objects or a set of objects.

IV. CONCLUSION

In this work an open architecture for real-time sensory
feedback control of an industrial robotic cell based on
RTAI-Linux has been described. The environment allows
fast prototyping of advanced control algorithms, both for a
single robot and for two cooperative robots. Force/torque
sensors and vision sensors can be used too. Future work
will be devoted to further improve the features of the
current system, e.g., build a library of advanced control
modules, enrich the RPL language of more powerful in-
structions, develop Internet tools for programming and
operating the robotic cell from a remote location.

ACKNOWLEDGMENTS

The authors wish to thank Nello Grimaldi for the
significant support to the development of RePLiCS. The
contribution of Fabrizio Caccavale on the dual-arm robotic
cell is gratefully acknowledged as well.

REFERENCES

[1] http://www.mitsubishielectric.com
[2] http://www.robot.lth.se

[3] http://www.gnu.org
[4] A. Macchelli, C. Melchiorri,“Real time control system for industrial

robots and control applications based on real time Linux,” Proc. 15th
IFAC World Congress, Barcelona, Spain, July 2002.

[5] http://www.rtlinux.org
[6] http://www.rtai.org
[7] http://www.orocos.org
[8] http://www.prisma.unina.it
[9] F. Dogliani, G. Magnani, and L. Sciavicco, “An open architecture

industrial controller,” Newsl. of IEEE Robotics and Automation Soc.,
vol. 7, no. 3, pp. 19–21, 1993.

[10] F. Caccavale, S. Chiaverini, B. Siciliano,“Second-order kinematic
control of robot manipulators with Jacobian damped least-squares in-
verse: Theory and experiments,” IEEE/ASME Transactions on Mecha-
tronics, vol. 2, pp. 188–194, 1997.

[11] F. Caccavale, V. Lippiello, B. Siciliano, L. Villani, “RePLiCS:
An environment for open real-time control of a dual-arm industrial
robotic cell based on RTAI-Linux,” Proc. 2005 IEEE/RJS International
Conference on Intelligent Robots and Systems, Edmonton, Canada,
Aug. 2005.

[12] V. Lippiello, B. Siciliano, L. Villani, “An experimental setup for
visual servoing applications on an industrial robotic cell,” Proc.
2005 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Monterey, CA, July 2005.

[13] F. Caccavale, C. Natale, B. Siciliano, L. Villani, “Resolved-
acceleration control of robot manipulators: A critical review with
experiments,”Robotica, vol. 16, pp. 565–573, 1998.

[14] S. Chiaverini, B. Siciliano, L. Villani, “A survey of robot interaction
control schemes with experimental comparison,” IEEE/ASME Trans-
actions on Mechatronics, vol. 4, pp. 273–285, 1999.

[15] F. Caccavale, C. Natale, B. Siciliano, L. Villani, “Achieving a
cooperative behaviour in a dual-arm robot system via a modular control
structure,” Journal of Robotic Systems, vol. 18, pp. 691–700, 2001.

[16] V. Lippiello and L. Villani, “Managing redundant visual measure-
ments for accurate pose tracking,” Robotica, vol. 21, pp. 511-519,
2003.

[17] F. Caccavale, L. Villani, “Impedance control of cooperative manip-
ulators,” Machine, Intelligence & Robotic Control, vol. 2, pp. 51–57,
2000.

[18] N. Grimaldi, RePLiCS ver. 2.0, PRISMA Lab internal report, 2004.

