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Abstract

Studies on motion control of robot manipulators with elastic joints are basically aimed at improving robot

performance in tracking or regulation tasks. In the interaction between robots and environment, instead, the

main objective of a control strategy should be the reduction of the vibrational and chattering phenomena that

elasticity in the robot joints can cause. This work takes into account working environments where unexpected

interactions are experienced and proposes a compliance control scheme in the Cartesian space to reduce the

counter effects of elasticity. Two theoretical formulations of the control law are presented, which differ for the

term of gravity compensation. For both of them the closed-loop equilibrium conditions are evaluated and asymp-

totic stability is proven through the direct Lyapunov method. The two control laws are applied to a particular

class of elastic robot manipulators, i.e. cable-actuated robots, since their intrinsic mechanical compliance can

be successfully utilized in applications of biomedical robotics and assistive robotics. A compared experimental

analysis of the two formulations of compliance control is finally carried out in order to verify stability of the

two closed-loop systems as well as the capability to control the robot force in the interaction.



1 Introduction

In many application fields, from industrial robotics up to biomedical or assistive robotics, where a very

close human-robot interaction is needed, one can resort to suitable mechanical solutions to increase the level

of safety and reliability in situations of unpredictable contacts of robot manipulators with the environment,

e.g. by adopting lightweight structures.

One approach to the mechanical design of lightweight manipulators is based on the use of low inertia

actuators, as in the distributed elastically coupled macro-mini parallel actuation [1]. This system has the

purpose of ensuring high performance in position tracking tasks as well as in interaction tasks, through a

micro system driven by stiff transmissions and low inertia actuators.

Using compliant elements in the mechanical transmission system can be regarded as another approach

to the design of safe robots. In particular, if the intrinsic compliance can be considered as concentrated at

the joints, the assumption of robots with elastic joints can be made. This is the case of robot manipulators

actuated through pulleys and steel cables, where the elasticity is determined by the elastic coefficient of the

cables. Cable actuation can ensure human-like dimensions of the artifact, lightness and also anthropomorphic

mass distribution, which are fundamental requirements for biomedical and assistive robotics [2]–[4].

Control algorithms conceived for completely rigid robots may guarantee a stable behavior even if a certain

degree of elasticity in the actuation system and motor transmission elements, or in the link structure, is

present [5], [6]. The price to pay, however, is a typical degradation of robot performance. In fact, elasticity

of mechanical transmissions induces position errors at the robot’s end effector because of static deformation

under gravity. In addition, it may generate lightly damped vibrational modes, which reduce robot accuracy in

tracking tasks [5]. Yet, it may become a source of instability in case of interaction between the robot and the

environment [7], possibly leading to undesirable effects of chattering during contact [8].

Several solutions have been proposed in the literature to cope with the control issue of robot manipulators

with rigid joints interacting with the working environment. They range from the concept of active compliance

to the concept of making the robot’s end effector to behave as a mechanical impedance (see e.g. [9] for a

survey), up to the hybrid position/force control approach [10].

On the other hand, the dynamic effects of elasticity in the joints have been extensively studied for improv-

ing robot performance in regulation and tracking tasks [11]. To this regard, classical techniques used for rigid
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robots, input-output decoupling, feedback linearization or else inversion control, have been revisited.

For trajectory tracking control, one has to resort to a nonlinear static state feedback or to an approximate

singular perturbation model of elastic joint manipulator dynamics [12] when a reduced model of the robot

can be used [13], whereas a nonlinear dynamic state feedback is needed in the case of a complete dynamic

model [14]. Whenever regulation is desired, instead, a simple PD control plus gravity compensation in the joint

space can be adopted, as proposed in [15].

The problem of controlling robot manipulators with elastic joints in situations of interaction with the work-

ing environment, instead, is not widely dealt within the literature.

The PD control proposed in [15] can be regarded as a feasible interaction control since it provides a sort of

compliance at joints if the feedback gains are properly adjusted. On the other hand, the singularly perturbed

model can be suitably exploited to achieve force control either in a hybrid position/force control or impedance

control framework [16], or when a constraint on the environment is present [17]. This control approach allows

compensating for joint flexibility by introducing a corrective torque input.

Nevertheless, it should be stressed that all the interaction control schemes for robots with elastic joints

proposed in the literature are validated by means of simulation tests on 2- or 3-degree-of-freedom (d.o.f.)

manipulators.

This paper is aimed at presenting a complete theoretical formulation of a compliance control in the Carte-

sian space plus gravity compensation for robots with elastic joints. The controller consists of a proportional-

derivative action plus gravity compensation, as for rigid robots, but a new position variable, named the

gravity-biased motor position, is introduced [18]. This allows using only the position and velocity information,

available from the position sensors on the rotors, to achieve an easy regulation of compliance in the Cartesian

space. Asymptotic stability is proven for two formulations of the control law, namely, compliance control with

constant gravity compensation (as in [15]), and compliance control with on-line gravity compensation.

Further, the two control laws are experimentally tested on an 8-d.o.f. cable-driven robot manipulator in

order to verify stability of the closed-loop system and also the capability of force accommodation, by measuring

the interaction force for different sets of proportional gains. A comparison of the experimental results is finally

provided.
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2 Robot dynamic model

Robot manipulators with n moving rigid links driven by electrical motors through n joints/transmissions

subject to small elastic deformations are considered.

Under the assumptions in [13], the dynamic model of a robot with elastic joints can be expressed as

M(q)q̈ + S(q, q̇)q̇ + g(q) + K(q − θ) = 0 (1)

Iθ̈ + K(θ − q) = u (2)

where q is the (n× 1) vector of link positions and θ is the (n× 1) vector of motor positions reflected through

the gear reductions. It is assumed that only the motor variables θ and θ̇ are measurable, or the latter are

possibly obtained by accurate numerical differentiation.

Figure 1: Elastic joint

In (1), M(q) is the (n×n) robot link inertia matrix, S(q, q̇)q̇ is the (n×1) vector of centrifugal and Coriolis

torques, K is the (n × n) diagonal matrix of joint stiffness coefficients, and g(q) =
(

∂Ug(q)
∂q

)T

is the (n × 1)

vector of gravitational torque, where Ug(q) is the potential energy due to gravity. Also, in (2) I is an (n× n)

constant diagonal matrix including the rotor inertia and the gear ratios.

The robot dynamic model (1), (2) presents three important properties which will be useful in the demon-

stration of asymptotic stability of the control law.

P1. The inertia matrix M(q) is symmetric and positive definite for all q.

P2. If a representation in Christoffel symbols is chosen for the elements of S(q, q̇), the matrix Ṁ − 2S is

skew-symmetric.

P3. A positive constant α exists such that

∥∥∥∥
∂g(q)
∂q

∥∥∥∥ =
∥∥∥∥

∂2Ug(q)
∂q2

∥∥∥∥ ≤ α (3)
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where the matrix norm of a symmetric matrix A(q) is given by λmax(A(q)), i.e., its largest (real) eigenvalue

at q1. Inequality (3) holds for all q and implies

‖ g(q1)− g(q2)‖ ≤ α ‖q1 − q2‖ , (4)

for any q1, q2. It should be explicitly remarked that this inequality holds whatever argument is used for

evaluating the gravity vector.

3 Compliance control with constant gravity compensation

Let x be the (m × 1) task vector (i.e. the Cartesian end-effector pose), with m ≤ n, and xd its desired

constant value. The direct and differential kinematics are, respectively,

x = x(q), ẋ = J(q)q̇ (5)

and depend on the link position variables only. The matrix J(q) is the analytical robot Jacobian matrix. If

m = n and away from singularities, a finite number of inverse kinematics solutions qd is associated with xd,

i.e., such that x(qd) = xd. Since, in general, singular configurations are to be avoided, i.e., detJ(qd) 6= 0, the

vector qd has to be selected in the same class of inverse kinematics solutions as the initial configuration q0. If

m < n, ∞n−m inverse kinematics solutions qd exist and some of them can be singular (rank J(qd) < m). Also

in this case, a nonsingular inverse kinematic solution has to be selected as qd.

In [15], a PD control in the joint space is proposed for regulation tasks of robots with elastic joints. Indeed,

it could be adapted to interaction situations if the matrix of joint proportional gains is varied to regulate robot

compliance. In what follows, the control is extended to the Cartesian space in order to perform regulation

tasks as well as to modulate robot compliance at the end effector.

The control law is

u = JT (θ̃)KP

(
xd − x(θ̃)

)
−KD θ̇ + g(qd), (6)

which provides the torque vector u of the robot dynamic model (1), (2) as a combination of a proportional

term, acting on the Cartesian error, a motor damping (derivative) term, and a constant compensation of

gravity at the desired qd. The (m ×m) matrix KP and the (n × n) matrix KD are positive definite and set

the proportional and derivative gains, while the (n× 1) vector

θ̃ = θ −K−1g(qd) (7)

1This is the matrix norm naturally induced by the Euclidean norm on vectors, e.g., ‖q‖ =
√∑n

i=1
q2
i .
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is a ‘gravity-biased’ modification of the measured motor position θ.

It is worth noting that the kinematic terms x(θ̃) (direct kinematics) and JT (θ̃) (Jacobian transpose) are

evaluated as a function of θ̃ (instead of the argument q); the rationale is that, as shown afterwards, these

expressions shall provide the correct values at steady state, even without a direct measure of q. As a matter

of fact, the control law (6) can be implemented using only motor variables.

3.1 Closed-loop equilibria

The equilibrium configurations of the closed-loop system (1), (2), (6) are computed by setting q̇ ≡ θ̇ ≡ 0.

This yields

g(q) + K(q − θ) = 0 (8)

K(θ − q) = JT (θ̃)KP

(
xd − x(θ̃)

)
+ g(qd). (9)

From (8) it follows that, at any equilibrium, θ = q + K−1g(q). Then, adding (8) to (9) leads to

JT (q + K−1(g(q)− g(qd)))KP

(
xd − x(q + K−1(g(q)− g(qd)))

)
+ g(qd)− g(q) = 0. (10)

Indeed

q = qd and thus θ = qd + K−1g(qd) := θd (11)

is a closed-loop equilibrium configuration. Moreover, in correspondence of this equilibrium, θ̃d := θd−K−1g(qd) =

qd and consequently x(θ̃d) = xd.

In the assumption of m = n, i.e., the robot is not kinematically redundant for the considered task, the

uniqueness of such equilibrium is now shown under a mild additional assumption. Adding to both (8) and (9)

the term K(θd − qd)− g(qd) = 0 leads to

K(q − qd)−K(θ − θd) + g(q)− g(qd) = 0 (12)

−K(q−qd)+K(θ−θd)+JT(θ̃)KP

(
x(θ̃)−xd

)
= 0 (13)

where the sign of the last equation has been changed. The following expansion holds true

x(θ̃)− xd = x (qd + (θ − θd))− xd = x(qd) + J(qd)(θ − θd) + o(‖θ − θd‖2)− xd

= J
(
θ̃ + (θd − θ)

)
(θ − θd) + o(‖θ − θd‖2) = J(θ̃)(θ − θd) + o1(‖θ − θd‖2).

Therefore, Equations (12) and (13) can be rearranged as



K −K

−K K + JT (θ̃)KP J(θ̃)







q − qd

θ − θd


 =




g(qd)− g(q)

o1(‖θ − θd‖2)


 . (14)
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Away from kinematic singularities, the smallest (real) eigenvalue λmin(K̄) of the symmetric matrix

K̄ =




K −K

−K K + JT (θ̃)KP J(θ̃)


 (15)

can be always bounded away from zero. In fact, in the above assumptions, a sufficiently large (diagonal) KP

can be always selected such that

λmin

(
K̄

)
> α. (16)

As a consequence, using the inequality (4) extracted by property P3 leads to
∥∥∥∥∥∥∥∥




K −K

−K K + JT (θ̃)KP J(θ̃)







q − qd

θ − θd




∥∥∥∥∥∥∥∥
≥ λmin

(
K̄

)
∥∥∥∥∥∥∥∥




q − qd

θ − θd




∥∥∥∥∥∥∥∥
≥ λmin

(
K̄

) ‖q − qd‖

> α ‖q − qd‖ ≥ ‖g(qd)− g(q)‖ (17)

and thus equality (14), neglecting o1(‖θ − θd‖2), holds true only for (q, θ) = (qd, θd).

Summarizing, locally around (q, θ)=(qd, θd) and away from kinematic singularities for a non-redundant

robot, (qd, θd) is a unique isolated equilibrium configuration of the closed-loop system (1), (2), (6). Indeed,

local validity is an over-conservative statement and uniqueness of such equilibrium holds in the whole joint

space region where qd is the only inverse kinematics solution associated to xd.

3.2 Proof of asymptotic stability

The stability of the proposed control law is proven by using the direct Lyapunov method and then invoking

La Salle’s Theorem.

Consider the auxiliary configuration-dependent function

P (q, θ) =
1
2

(q − θ)T
K (q − θ) +

1
2

(
xd − x(θ̃)

)T

KP

(
xd − x(θ̃)

)

+Ug(q)− θT g(qd). (18)

It is easy to see that this function, under the assumption (16), has a unique minimum in (qd, θd). In fact, the

necessary condition for a minimum of P (q, θ) is

∇P (q, θ) =



∇qP

∇θP


 =




K −K

−K K







q

θ


 +




g(q)

−JT (θ̃)KP

(
xd − x(θ̃)

)
− g(qd)


 = 0. (19)

7



Equation (19) is exactly in the form (8), (9). Using the same arguments of Section 3.1, it can be obtained that

∇P (q, θ) = 0 only at (qd, θd). Moreover,

∇2P (qd, θd) =




K −K

−K K + JT (θ̃)KP J(θ̃)


 +




∂g(q)
∂q 0

0 −∂JT (θ̃)
∂θ KP

(
xd − x(θ̃)

)




∣∣∣∣∣∣∣∣
q=qd,θ=θd

= K̄ +




∂g(q)
∂q 0

0 o1(‖θ − θd‖2)




∣∣∣∣∣∣∣∣
q=qd,θ=θd

(20)

where the expansion (14) has been used. The sufficient condition for a minimum, i.e.

∇2P (q, θ)|q=qd,θ=θd
> 0. (21)

is satisfied under the assumption (16).

The function derived from (18) as

V (q, θ, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇T Iθ̇ + P (q, θ)− P (qd, θd)

is zero at the chosen equilibrium state, q = qd, θ = θd, q̇ = θ̇ = 0, and positive for any other state in an open

neighborhood of this equilibrium, provided that condition (16) holds true. Hence, V is a candidate Lyapunov

function.

Along the trajectories of the closed-loop system (1), (2), (6), the time derivative of V becomes

V̇ = q̇T M(q)q̈ +
1
2
q̇T Ṁ(q)q̇ + θ̇T Iθ̈ +

(
q̇ − θ̇

)T

K (q−θ)− θ̇T JT (θ̃)KP

(
xd−x(θ̃)

)

+ q̇T

(
∂Ug(q)

∂q

)T

−θ̇Tg(qd)= q̇T

(
−S(q, q̇)q̇ − g(q)−K(q − θ)+

1
2
Ṁ(q)q̇ + K(q − θ) + g(q)

)

+ θ̇T
(
u−K(θ − q)−K(q − θ)− JT (θ̃)KP

(
xd − x(θ̃)

)
− g(qd)

)

= θ̇T
(
JT (θ̃)KP

(
xd−x(θ̃)

)
−KD θ̇ + g(qd)− JT (θ̃)KP

(
xd−x(θ̃)

)
− g(qd)

)

= −θ̇T KD θ̇ ≤ 0 (22)

where the skew-symmetry of matrix Ṁ − 2S and the identity ˙̃
θ = θ̇ have been used.

Since V̇ = 0 if and only if θ̇ = 0, when θ̇ ≡ 0 the closed-loop equations give

M(q)q̈ + S(q, q̇)q̇ + g(q) + Kq = Kθ = const (23)

Kq = Kθ − JT (θ −K−1g(qd))KP

(
xd − x

(
θ −K−1g(qd)

))− g(qd) = const. (24)

From (24), it follows that q̇ = q̈ = 0, which in turn simplifies (23) to
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g(q) + K(q − θ) = 0. (25)

It has already been shown in Section 3.1 that the system (24), (25) has a unique solution, around a nonsingular

(qd, θd), provided that condition (16) holds true. Therefore, q = qd, θ = θd, q̇ = θ̇ = 0 is the largest invariant

subset contained in the set of states such that V̇ = 0. By La Salle’s Theorem, asymptotic stability of the

desired set point can be concluded.

4 Compliance control with on-line gravity compensation

The control law (6) uses a constant gravity compensation at the desired closed-equilibrium. A better

transient behavior can be expected if gravity compensation is performed at any configuration during motion.

However, note that the gravity vector in (1) depends on the link variables q, which are not directly measurable.

This is similar to the dependence on q of the direct and differential kinematics of the robot —see (5)— and

therefore, by analogy, one can attempt using the ‘gravity-biased’ variable θ̃, defined in (7), in place of q also

for the on-line gravity compensation, i.e.,

u = JT (θ̃)KP

(
xd − x(θ̃)

)
−KD θ̇ + g(θ̃) (26)

where KP > 0 and KD > 0 are both symmetric (and typically diagonal) matrices.

In what follows it is shown that the control law (26) provides asymptotic stability of the closed-loop

equilibrium configuration (11), under the same assumption (16). The study of the closed-loop equilibria is,

however, slightly different and the stability analysis requires a modified Lyapunov function candidate.

4.1 Closed-loop equilibria

The equilibrium configurations of the closed-loop system (1), (2), (26) are computed by setting q̇ ≡ θ̇ ≡ 0.

This yields

g(q) + K(q − θ) = 0 (27)

K(θ − q)=JT (θ̃)KP

(
xd − x(θ̃)

)
+ g(θ̃). (28)

Following the same procedure as in Section 3.1 leads to

JT (q + K−1(g(q)− g(qd)))KP

(
xd − x(q+K−1(g(q)−g(qd)))

)
+g(θ̃)−g(q)=0 (29)

which has

q = qd and thus θ = qd + K−1g(qd) := θd (30)
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as a closed-loop equilibrium configuration. Moreover, in correspondence of this equilibrium, θ̃d := θd −

K−1g(qd) = qd and consequently g(θ̃d) = g(qd) and x(θ̃d) = xd.

Further analysis allows showing that such equilibrium is unique. Adding to both (27) and (28) the term

K(θd − qd)− g(qd) = 0 and recalling expansion (14), the equilibrium equations can be rearranged as



K −K

−K K + JT (θ̃)KP J(θ̃)







q − qd

θ − θd


 =




g(qd)− g(q)

g(θ̃)− g(qd) + o1(‖θ − θd‖2)


 . (31)

Assuming to be close enough to θd, the vanishing second-order terms can be neglected and, away from kinematic

singularities, condition (16) can be assumed valid. Consequently,

∥∥∥∥∥∥∥∥
K̄




q − qd

θ − θd




∥∥∥∥∥∥∥∥

2

≥ λ2
min

(
K̄

)
∥∥∥∥∥∥∥∥




q − qd

θ − θd




∥∥∥∥∥∥∥∥

2

= λ2
min

(
K̄

) (‖q − qd‖2 + ‖θ − θd‖2
)

(32)

can be written for the left-hand side of (31), while

∥∥∥∥∥∥∥∥

g(qd)− g(q)

g(θ̃)− g(qd)

∥∥∥∥∥∥∥∥

2

= ‖g(qd)− g(q)‖2 + ‖g(θ̃)− g(qd)‖2 ≤ α2
(‖q − qd‖2 + ‖θ − θd‖2

)
(33)

is obtained for the right-hand side, using inequality (4) and the identity θ̃ − qd = θ − θd. By comparing (32)

with (33), it follows that, when λmin

(
K̄

)
> α, the equality in (31) is possible only for (q, θ) = (qd, θd), which

is thus the unique equilibrium configuration of the closed-loop system (1), (2), (26).

4.2 Proof of asymptotic stability

Define the auxiliary configuration-dependent function

P (q, θ) =
1
2

(q − θ)T
K (q − θ) +

1
2

(
xd − x(θ̃)

)T

KP

(
xd − x(θ̃)

)
+ Ug(q)− Ug(θ̃). (34)

The sole difference between Eq. (18) and (34) is in the last term −Ug(θ̃) in place of −θT g(qd).

As in Section 3.2, it can be demonstrated that this function has a unique minimum in (qd, θd), provided

that condition (16) is satisfied.

Consider the candidate Lyapunov function

V (q, θ, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇T Iθ̇ + P (q, θ)− P (qd, θd) ≥ 0. (35)

Indeed, V is zero only at the desired equilibrium state q = qd, θ = θd, q̇ = θ̇ = 0.

10



Along the trajectories of the closed-loop system (1), (2), (26), the time derivative of V becomes

V̇ = q̇T M(q)q̈ +
1
2
q̇T Ṁ(q)q̇ + θ̇T Iθ̈ +

(
q̇ − θ̇

)T

K (q−θ)− θ̇T JT (θ̃)KP

(
xd−x(θ̃)

)

+ q̇T

(
∂Ug(q)

∂q

)T

−θ̇T

(
∂Ug(θ̃)

∂θ

)T

= q̇T

(
−S(q, q̇)q̇ − g(q)−K(q − θ)+

1
2
Ṁ(q)q̇ + K(q − θ)

)

+ q̇Tg(q)+ θ̇T
(
u−K(θ − q)−K(q − θ)− JT (θ̃)KP

(
xd − x(θ̃)

)
− g(θ̃)

)

= θ̇T
(
JT (θ̃)KP

(
xd−x(θ̃)

)
−KD θ̇ + g(θ̃)− g(θ̃)− JT (θ̃)KP

(
xd−x(θ̃)

))
= −θ̇T KD θ̇ ≤ 0 (36)

where, again, the identity ˙̃
θ = θ̇ and the skew-symmetry of matrix Ṁ − 2S have been used.

The time derivative V̇ vanishes if and only if θ̇ = 0. Substituting θ̇(t) ≡ 0 into the closed-loop equations

yields

M(q)q̈ + S(q, q̇)q̇ + g(q) + Kq = Kθ = const (37)

Kq = Kθ − JT (θ −K−1g(qd))KP

(
xd − x(θ −K−1g(qd))

)− g(θ −K−1g(qd)) = const. (38)

From (38), it follows that q̇(t) ≡ 0, which in turn simplifies (37) to

g(q) + K(q − θ) = 0. (39)

As shown in Section 4.1, the system (38), (39) has a unique solution, around a nonsingular (qd, θd), provided

that condition λmin(K̄) > α holds true. By La Salle’s Theorem, asymptotic stability of the desired set point

can be concluded.

Notice that the sufficient condition (16) involving the gain KP cannot be relaxed when passing from

constant to on-line gravity compensation. This is because the controller employs measured quantities at the

motor side, rather than the link quantities that would be needed to make independent of gravity the lower

bound on KP which is sufficient for convergence. Nevertheless, it is expected that the compliance control with

on-line gravity compensation continues to work even with lower position gains. Such a feature has been verified

in a number of simulations which are not reported here for brevity.

4.3 Accommodation of interaction force

In case of contact with the environment, the two control laws (6) and (26) achieve a compliant behavior

during interaction. In order to gain insight into the force accommodation properties of the system, a term

JT (q)h shall be added on the right-hand side of (1), where h is the vector of contact generalized forces exerted

from the environment on the robot’s end effector. Hence, the closed-loop system equations under control (26)
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become

M(q)q̈ + S(q, q̇)q̇ + g(q) + K(q − θ) = JT (q)h (40)

Iθ̈ + K(θ − q) = JT (θ̃)KP

(
xd − x(θ̃)

)
−KD θ̇ + g(θ̃). (41)

By considering a simple elastic model at the contact, i.e.,

h = Ke(xe − x)

where Ke ≥ 0 is the environment stiffness matrix and xe is the undeformed rest location, at steady state

(q̇ ≡ 0, θ̇ ≡ 0) it is

g(q) + K(q − θ) = JT (q)Ke (xe − x) (42)

K(θ − q)=JT (θ̃)KP

(
xd − x(θ̃)

)
+ g(θ̃). (43)

Assuming g(θ̃) ' g(q), J(θ̃) ' J(q) and x(θ̃) ' x(q) = x leads to

Ke (xe − x) + KP (xd − x) = 0.

The end-effector location at the equilibrium obviously differs from xd, while the proportional control action

KP (xd − x) balances the elastic force Ke (x− xe). Therefore, both x and h can be accommodated at steady

state by means of a suitable choice of the compliance K−1
P . From (42), the elastic torques due to joint defor-

mation K(q − θ) is the combined result of the achieved contact force and of the gravity torque.

5 Experimental results

Both formulations of compliance control in the Cartesian space (i.e. with constant and on-line gravity

compensation) have been tested on an 8-d.o.f. robot manipulator, named the Dexter arm [19], designed for

applications of rehabilitation robotics. The robot is cable-actuated and can be regarded as a manipulator with

elastic joints because of the non negligible elasticity of the cables. Experiments of regulation in the joint space

with both constant and on-line gravity compensation can be found in [20].

Table 1 reports the cable stiffness coefficients for the Dexter arm. Ideally, a joint is rigid whether the elastic

coefficient tends to infinity; in practice, values around 105 Nm/rad, as for the first two joints in Table 1,

indicate a minimum level of elasticity that can be neglected, in general. In the Dexter arm, this is due to the
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Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Joint 8

Elastic

coefficient 105 105 6.34 · 103 3.60 · 103 2.69 · 103 1.69 · 103 1.23 · 102 2.06 · 102

Table 1: Stiffness coefficients for the joints of the Dexter arm, expressed in Nm/rad

presence of the sole motor reduction gear box between the actuator and the link of joint 1 and joint 2. All the

other joints, instead, are to be regarded as elastic, in view of the cable motor transmission.

The actuation system for cable-actuated robot manipulators consists of electrical motors which are not

directly connected to the links, and a mechanical transmission system, after the gear reduction, realized by

pulleys and steel cables. The consequence of cable actuation is that a mechanical coupling among the joints is

present even though the number of actuators is equal to the number of d.o.f.’s, as in the Dexter arm (Fig. 2).

Figure 2: The Dexter mechanical structure

Figure 3: A cable-actuated joint

For the considered 8-d.o.f. robot arm, the position variables are 16, decomposed in 8 motor position values
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measured by incremental encoders and 8 link position values. In Fig. 3 they are indicated respectively as θ and

q, while Nm and NP represent the matrices of gear reduction ratios and mechanical coupling, respectively.

The purpose of the experimental session is twofold. On one hand, system stability in reaching the desired

position xd is demonstrated and a comparison between control laws (6) and (26) is carried out. On the other

hand, the capability of the compliance controller to modulate the level of force in the interaction is shown.

Since the robot is kinematically redundant, the effect of non-uniqueness of qd for a given xd on the control

algorithm convergence has to be evaluated. To cope with this issue, in order to realize the task of reaching

a desired position, a desired trajectory xd(t) of duration T = 10 s consisting of a straight-line path with a

quintic polynomial time profile (with zero velocity and acceleration boundary conditions) has been planned

from the robot initial Cartesian position x0 = [0.65 0 0.45 0 0 0]T (m, rad) to the desired position xd =

[0.75 − 0.06 0.35 0 − π/4 0]T (m, rad). A joint configuration trajectory qd(t) is computed off-line from xd(t)

through an inverse kinematics algorithm using the pseudo-inverse of the Jacobian matrix, and initializing the

scheme at the actual robot configuration at time t = 0. Further, the constant desired value qd to be used in

(6) or (26) and (7) is taken as qd = qd(T ).

The data reported in Figs. 4 and 5 correspond to position and orientation error in the case of constant

gravity compensation and on-line gravity compensation, respectively. Both figures draw the best case from the

viewpoint of accuracy, but the error of the control law (6) turns out to be larger than that of the control law

(26).

The proportional matrix used for the experiments is different in the two cases. For the control with on-

line gravity compensation KP =diag{330, 330, 330, 12, 12, 12}, while for the constant gravity compensation

case KP = diag{120, 120, 120, 12, 12, 12}. For both control laws, the derivative matrix has been chosen as

KD=diag{10, 10, 9, 3, 2.5, 2, 0.1, 0.1}.

The rationale for different values of proportional gains for the position is that, if the same KP matrix is

used for the two controllers, as the motion starts, the constant gravity torque g(qd) has a higher value than that

with the on-line gravity torque g(q). When added to the initial error multiplied by the proportional gain KP ,

this would lead to motor saturation. A reduction of KP is thus needed for the control law (6).

Conversely, proportional gains for the orientation are unchanged because in the Dexter arm the joints

responsible for the orientation have very low mass and their contribution to the gravitational torque is very
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small. In spite of that, the orientation error is larger when the control law with constant gravity compensation

is used, in view of the coupling with the position.

Experimental evidence shows that the closed-loop system (1), (2), (6) is stable for small displacements,

whereas it can become unstable for large displacements. Moreover, accuracy for displacements along the direc-

tion of the gravity acceleration vector is higher than for displacements in the opposite direction (Figs. 4 and

6).

On the other hand, the behavior of the closed-loop system (1), (2), (26) is always stable and not influenced

by the variation in magnitude or in direction of the displacement. Furthermore, the error converges asymptot-

ically to zero and the time course of the error, in particular of the orientation error, is smoother than the case

of constant gravity compensation (Figs. 4 and 5).

Figure 4: Position error and orientation error in the case of compliance control in the Cartesian space with constant gravity

compensation. The graph is related to a displacement in the negative vertical direction.

Figure 5: Position error and orientation error in the case of compliance control in the Cartesian space with on-line gravity

compensation.
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Figure 6: Position error and orientation error in the case of compliance control in the Cartesian space with constant gravity

compensation. The graph is related to a displacement in the positive vertical direction.

In order to analyze the robot behavior in situations of interaction with the environment, the experimental

setup has been equipped with an one-axis load cell, placed on an obstacle. A series of impacts have been

carried out in the direction of the load cell and the contact force has been measured and monitored by means

of an oscilloscope. The same procedure has been repeated for each Cartesian direction in order to evaluate the

capability of the robot arm to regulate compliance in the Cartesian space.

The experiments have shown that reducing the value of KP is a suitable means for reducing the value of

the interaction force for both control laws.

Figures 5, 7 and 8 are relative to the compliance control in the Cartesian space with on-line gravity com-

pensation and two values of KP (i.e. KP =diag{330, 330, 330, 12, 12, 12} and KP =diag{200, 200, 200, 6, 6, 6}).

Figure 7 shows that decreasing KP causes an increase of the position error, as expected. Instead, Figure 8

reports the force course during an impact in the z direction, as measured by the load cell. It is evident that a

reduction of KP corresponds to a reduction of the impact force, that is basically a regulation of robot compli-

ance.

Further experiments, which are not reported here for brevity, have demonstrated that compliance control

in the Cartesian space produces analogous results in the case of constant gravity compensation. It has been

observed that the robot behavior is about the same in all the other directions of motion.
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Figure 7: Position error and orientation error in the case of compliance control in the Cartesian space with on-line gravity

compensation and lower KP .

6 Conclusions

In designing an interaction control strategy, elasticity in the joint actuation system should not be neglected.

In fact, elasticity in the joints is one of the main causes of performance degradation in tracking tasks and,

whenever the robot works in contact with the environment, it is also one source of vibrational phenomena or

chattering effects.

This paper has proposed a compliance control in the Cartesian space for reducing the effects of joint elastic-

ity in the interaction. It has demonstrated that a PD action in the Cartesian space plus gravity compensation

can stabilize also robots with elastic joints, by using the same sensors required for the rigid case.

Figure 8: Impact force in the case of compliance control in the Cartesian space with on-line gravity compensation for higher

(left) and lower KP values (right).

Two formulations of the control law have been theoretically analyzed and experimentally tested. The first

formulation is based on a constant gravity compensation, while the second formulation proposes an on-line
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gravity compensation in order to improve robot behavior especially in the transients.

Experimental trials have been carried out on an 8-d.o.f. cable-driven robot manipulator. They have con-

firmed asymptotic stability of the two control laws as well as the expected improvement of transient behavior

when an on-line compensation instead of a constant compensation is used for the gravity.

Further, the experimental setup has been equipped with a load cell in order to measure the exerted force in

the interaction with the environment. The experimental data have revealed also the capability of compliance

regulation through a suitable choice of the proportional gains.
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