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Inversion-Based Nonlinear Control of
Robot Arms with Flexible Links
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The design of inversion-based nonlinear control laws solving the problem of accurate trajectory tracking for
robot arms having flexible links is considered. It is shown that smooth joint trajectories can always be exactly
reproduced preserving internal stability of the closed-loop system. The interaction between the Lagrangian/as-
sumed modes modeling approach and the complexity of the resulting inversion control laws is stressed. The
adoption of clamped boundary conditions at the actuation side of the flexible links allows considerable simpli-
fication with respect to the case of pinned boundary conditions. The resulting control is composed of a nonlinear
state feedback compensation term and of a linear feedback stabilization term. A feedforward strategy for the
nonlinear part is also investigated. Simulation results are presented for a planar manipulator with two flexible
links, displaying the performance of the proposed controllers also in terms of end-effector behavior.
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Nomenclature
= system matrices in closed-loop flexible

dynamics
= acceleration input vector
= sub-blocks of inertia matrix
= modal damping matrix
= /th link flexural rigidity
= input matrix in modified rigid dynamics
= jth natural frequency of /th link
: Coriolis and centrifugal force vectors
= identity matrix
= /th hub inertia
= /th link inertia about relative joint axis
= tip payload inertia
= modal stiffness matrix
= derivative feedback gain matrix
= proportional feedback gain matrix
= /th link length
= number of deflection variables
= /th hub mass
= /th link mass
= tip payload mass
= number of joint variables
= compound vector in flexible dynamics
= null matrix
= input weighting matrix
= factorization matrix for h5
•• factorization matrix for he
• trajectory traveling time
= time
= input torque
= feedforward input torque
= computed torque for modified rigid dynamics
= Lyapunov function
= /th link deflection
= position along /th link
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Pi

= vector of deflection variables
= vector of desired deflection variables
= yth modal coefficient of /th link
= vector of initial deflection variables
= vector of joint variables
= vector of desired joint variables
= /th joint variable
= number of modes of /th link
= /th link density
= yth mode shape of /th link
= forcing vector term in closed-loop flexible

dynamics

Superscripts
T
-1

= matrix (vector) transpose
= matrix inverse
= spatial derivative
= time derivative
= estimate

I. Introduction

T HE increasing use of robot manipulators in space applica-
tions has been recognized as offering both mission cost

reduction and enhanced task capabilities. Lightweight materi-
als are adopted in the construction of mechanical manipula-
tors, as well as of large spacecraft, to have smaller in-orbit
weight. In addition, lighter robots are capable of executing
faster motions for a given actuator size. However, maneuver-
ing time and accuracy are limited by the vibrations induced by
structural flexibility, mainly distributed in the links. Indeed,
for systems of large dimensions link flexibility prevails over
elasticity of the transmission elements which may be thought
of as concentrated at the joints.1

An effective control system for high-performance light-
weight robots should necessarily consider link flexibility as
well as handle the typical nonlinearities of multibody dynam-
ics. In this respect, the modeling issues play a relevant role in
the derivation of all advanced model-based control tech-
niques.2 Although for simulation purposes the need for accu-
rate dynamic models of flexible manipulators is crucial, usu-
ally emphasis is given to model simplicity when designing
control laws. The availability of explicit closed-form—rather
than numerical—equations of motion allows a tradeoff be-
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tween model completeness and compactness. In the modeling
phase, general purpose symbolic manipulation packages be-
come indispensable when the complexity of the system in-
creases,3 but customizing the model to the specific structure
under investigation is certainly helpful for reduction of dy-
namic terms.4

The energy-based Lagrangian approach provides a natural
framework for deriving the dynamic model of mechanical sys-
tems undergoing structural deformations.5 A critical point is
the method used to obtain a finite-dimensional approximation
to the distributed flexibility.6 In fact, if no model discretization
is undertaken, mixed ordinary/partial differential equations
would result, with considerable complexity even in simple
cases.7 The most common approximate descriptions of manip-
ulator link deflection are based on assumed modes,8 finite
elements,9 or Ritz-Kantorovich expansions.10 In any case, link
elasticity is usually characterized as a linear effect in that sec-
ond-order deformation terms are neglected.

Early linear control laws for flexible manipulators were
aimed purely at point-to-point motion, accompanied by vibra-
tion damping.11'12 To impose a desired motion both in space
and time, the trajectory tracking problem was then addressed
by a number of methods, including linear pole assignment,13

linear quadratic Gaussian control,14 model reference adaptive
control,15 and singular perturbation techniques.16"18

When high accuracy in task execution is a strict requisite,
exact trajectory tracking can be accomplished only by resort-
ing to the inversion of the input/output map of the given
system,19 where nonlinear state feedback is used to compensate
for coupled nonlinear terms. Controllers of this kind were
developed for the cases of a one-link flexible arm,20 of a multi-
link rigid robot with a single flexible boom,21'22 and of a planar
manipulator with two flexible links.23 The same strategy was
also applied to spacecraft or satellites with24 or without25 flex-
ible appendages. The common feature of all of these schemes
is that the joint (rigid body) variables are taken as the system
outputs to which the inversion process is applied.

The ultimate goal is to control the motion of the robot end
effector, without introducing additional actuation devices be-
sides those naturally located at the manipulator joints. How-
ever, when the control objective (the output) is the end-effec-
tor location, an inversion-based strategy in the presence of link
flexibility would normally lead to instability in the closed
loop.26'27 The instability problem arising in this case is the
counterpart of the nonminimum-phase phenomenon occur-
ring in linear systems when high-gain control is performed
using a measured output which is not collocated with the con-
trol input.28 On the other hand, the relevance of actuator/sen-
sor collocation is well known in the field of control of large
flexible spacecraft.29'30

In the nonlinear setting, the concept of zero dynamics,19 i.e.,
the dynamics left in the system when the output is forced to be
zero (or constant), is useful to investigate stability of tracking
control. It can be shown that any meaningful output definition
related to the end effector of a flexible robot arm leads to
unstable zero dynamics.31 The trajectory tracking problem for
systems with unstable zero dynamics—both in the linear and
the nonlinear cases—can be treated by resorting either to regu-
lation schemes, which achieve only asymptotic output track-
ing,32'33 or to noncausal solutions,34 requiring the whole tra-
jectory to be known in advance. In the latter case, only a
feedforward solution can be generated. In the former case,
feedback stabilization asks for the computation of the inter-
nal deformation associated with the desired end-effector mo-
tion; this requires the solution of a set of partial differential
equations.

In view of these difficulties, we believe that in many cases it
is convenient to pursue a joint-based control strategy, possibly
combined with practical damping of link deflections. It will be
shown that this approach always preserves stability, even in the
face of the relative simplicity of the resulting nonlinear control
laws. Moreover, joint-based inversion is of straightforward
application to any multilink flexible structure, and the use of

nonlinear feedback overcomes the typical performance limita-
tions of linear feedback of the joint variables.35

In this paper, the assumed modes method is adopted for
modeling deflection of flexible arms. This approach leads to
closed-form equations of motion that are general enough to
accurately handle complex robotic structures. The analysis is
focused on constrained modal eigenfunctions arising with two
types of boundary conditions at the joint actuator locations;
namely, clamped or pinned.6'36 The structure of the dynamic
model may change considerably in the two cases but, for our
purposes, the relevant difference lies in the form taken by the
input matrix. Improved precision could be obtained by consid-
ering unconstrained mode expansion, i.e., analyzing deforma-
tion in the presence of time-dependent motion of each link
base.37'40 We point out that the control results presented here
hold also when unconstrained modes replace the more com-
monly used constrained ones.

The consequences of the pinned/clamped alternative are
exploited within the design of inversion-based controllers,
rather than for model accuracy.41 It will be shown that the
clamped assumption leads to appealing simplifications in the
control law, useful for real-time implementation. As opposed
to more computationally demanding formats of previous
works,21'23 here inversion is required only of the sub-block of
the system inertia matrix which pertains to the accelerations of
the flexible variables within the flexible dynamics. Moreover,
a feedforward strategy for the compensation of system nonlin-
earities and interactions will be discussed.

The performance of the joint-based inversion controllers
will be illustrated by numerical simulation of trajectory track-
ing tasks for a detailed model of a two-link planar flexible
manipulator.4

II. Dynamic Modeling
Consider a robotic manipulator composed of a serial chain

of TV flexible links connected by rigid rotary joints, each giving
one degree of freedom to the arm. Each link is assumed to
undergo bending deflections in the plane orthogonal to its
driving joint axis, i.e., the plane of rigid body motion. Other
types of link deflections can be considered, e.g., coupling of
torsional and bending deflections42 or spatial bending, but the
model structure essentially remains the same as far as inversion
control design issues are concerned.

The Lagrangian technique can be used to derive the dynamic
model, through the computation of the global kinetic and
potential energy of the system.5 In view of the application of
these robotic structures in space, gravity is not considered.

Because of link flexibility, the dynamic model is indeed of
distributed nature. Links can be modeled as Euler-Bernoulli
beams satisfying proper boundary conditions at the actuated
joint and at the link tip.6 In the case of uniform density p/ and
constant flexural rigidity (£/)/, the normal deflection w/(*/,0
of the /th link with respect to its neutral axis, at a distance jc/
from the frame placed at the /th joint, satisfies a partial differ-
ential equation of the type

dxf dt2 = !,..., TV (1)

where t denotes time.
As for the boundary conditions needed to solve Eq. (1), it is

customary to consider two sets of conditions at the link base:
Clamped base:

w/(0,0 = 0, w/'(0,0 = 0, / = ! , . . . ,TV (2)

Pinned base:

w/(0,0 = 0, w,"(0,0 = 0, i - 1, . . . , N (3)

where the primes denote spatial derivatives with respect to x f .
Concerning the coordinate frame in which bending deforma-
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tion is described, in the clamped case the frame is aligned with
the direction of the undeformed link at the joint location
(Fig. la), whereas in the pinned case the frame points at the
instantaneous center of mass of the deformed link (Fig. Ib). It
is obvious that w/ assumes a different meaning in the two cases.

Notice that the conditions are of the so-called constrained
type and are good approximations of reality when the inertia
of a lightweight link is small compared to the hub inertia. The
two choices lead to different eigenfrequencies and assumed
modes of deformation.36 Unconstrained boundary conditions
would be the correct ones,37"40 involving the balance of shear
forces and moments at the joint side of each link; this is
impractical for multilink flexible manipulators, though. In-
deed, Eqs. (2) or (3) have to be complemented with the proper
equations representing boundary conditions at the other end
of the link.

A finite-dimensional model (of order /*/) of link flexibility
can be obtained exploiting separability in time and space of the
assumed modes solutions to Eq. (1),

(4)

where 6//(0 are the modal coefficients associated with the
assumed spatial mode shapes 0/y(JC/) of link /. Accordingly, a
set of Lagrangian generalized coordinates is given by (0,6)
€ (RN+M, where Fig. 1 Coordinate frame assignment: a) clamped case and b) pinned

with 0/ the /th joint variable and M = E/l i/*/ the total number
of flexible variables used to describe the robot deformation.

Following the usual steps of the Lagrange-Euler derivation,
the closed-form equations of motion of the manipulator can be
written as N + M second-order nonlinear differential equa-
tions in the general form4'41

BeeOJ) B68(6,d) /0
B$>(0,d) Bdd(6,d)\\d

0 \ / /
+

K5 + D6 (5)

where the B are blocks of the (N + M) x (N + M) positive
definite symmetric inertia matrix, partitioned according to the
joint (rigid) and link (flexible) coordinates. Similarly, the h
contain Coriolis and centrifugal forces, which can be com-
puted via the Christoffel symbols,43 i.e., via differentiation
of the inertia matrix elements; each component of these terms
is a quadratic form in the velocity vector (0,6). The positive
definite—typically diagonal—matrices K and D describe
modal stiffness and damping of flexible links, respectively.

Incidentally, the equivalent rigid body system, i.e., for in-
finitely stiff links, is recovered by setting 6 = 0 in the upper part
of Eq. (5) leading to

(6)

The terms in Eq. (5) assume different analytical expressions
and numerical values, depending on the choice of boundary
conditions. From the model structure point of view, the MxN
matrix Qd that weights the TV x 1 vector of joint input torques
u in the lower equations takes on different forms. In particu-
lar, using the principle of virtual work, it can be shown that in
the clamped case

65-0

whereas in the pinned case

Q5 = block

(7)

(8)

In the following, it is understood that whenever Qs is chosen
as in Eq. (7) or in Eq. (8), the dynamic model terms involved
will be the ones corresponding to the clamped or the pinned
situation, respectively.

At this point, a series of remarks are in order.
Remark 1. Although Eqs. (5) are in general highly nonlin-

ear, it is not difficult to show that the left-hand side can be
given a linear factorization in terms of a vector containing all
precomputable parameters depending on the mechanical pro-
perties of the arm, e.g., masses, inertias, deformation mo-
ments, elasticity coefficients, etc.4

Remark 2. The assumption of small link deformations is
usually made to derive the dynamic model. However, the equa-
tions of motion attain the same form as Eqs. (5) even when
second-order terms in 6 are included.

Remarks. The off-diagonal block Bed represents the cou-
pling between the rigid body and the flexible body dynamics.
Various levels of simplification can be obtained neglecting
terms in this block.

Remark 4. A rather common approximation is to evaluate
the total kinetic energy of the system in the undeformed con-
figuration 6 = 0. This implies that the inertia matrix, and thus
hd and hd as well, are independent of 6 (Ref. 43). Using the
Christoffel symbols, it can be shown that the velocity terms h8
will lose their quadratic dependence on 6. Moreover, if Bd8 is
constant, he also loses its quadratic dependence on 6, whereas
each component of hd becomes a quadratic function of 0 only.
Finally, if Bed is also approximated by a constant matrix then
hd = 0 and he = Sed(6,d)6, i.e., a quadratic function of 0 only.44

Remark 5. The inclusion of gravity does not substantially
modify the structure of the dynamic equations, in that only the
gradient of the gravitational potential energy has to be added
to Eqs. (5). In this case, however, Eq. (1) characterizing the
link deformation should be properly modified.

Remark 6. If the exact orthogonal eigenfunctions </>// are
used in Eq. (4), i.e., those satisfying the actual boundary con-
ditions, the block Bdd conveniently collapses into a constant
diagonal one. This involves the cumbersome computation of
time-vary ing boundary conditions39 as well as the overall sys-
tem deformation modes.14

Remark 7. In the widely investigated case of a single flex-
ible link,8'11'13'15'20'38 the small deformation assumption leads
to a constant inertia matrix and thus to a linear dynamic
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model. Further, diagonalization of the inertia matrix can be
achieved by means of a suitable coordinate transformation.40

If high rotational speeds are involved, however, the assumed
modes expansion may lead to incorrect results even for the
one-link case.

Explicit expressions of the single terms in Eqs. (5) have been
recently reported for particular flexible manipulators.4'14

For the purpose of control derivation, it is convenient to
extract the flexible accelerations from Eqs. (5) as

6 = B88
l[Q8u - (hs + Kd + Dd)-BQ66\ (9)

which, substituted into the upper part of Eqs. (5), gives

= Fu (10)

(U)

with

Notice that Eq. (10) describes the modification that takes place
in the rigid body dynamics equation (6) due to the effects of
link flexibility.

Remark 8. The N x N matrix Bee - BebB^B^ has full rank
as can be seen from the following identity:

Bee B6
T D

I O
-B^B? i O

B(

B8d.
(12)

and the positive definiteness of the inertia matrix.
Remark 9. Physical arguments can be used to show that the

NxN matrix F in Eq. (11) has full rank. For instance, con-
sider the arm in an undeformed rest configuration, i.e.,
d = d = Q, 6 = 0. If F were singular, a nonzero input torque u
would exist that yields # = 0 thus keeping the arm at rest; this
is clearly in contrast with mechanical intuition.

III. Inversion Control
Trajectory tracking in multi-input/multi-output nonlinear

systems is usually achieved by input-output inversion control
techniques.19 Once a meaningful output has been defined for
the system, a nonlinear state feedback is designed so that the
resulting closed-loop system is transformed into a linear and
decoupled one, with the possible appearance of unobservable
internal dynamics. Under the assumption of stability of the
resulting closed-loop system, exact reproduction of smooth
desired output trajectories is feasible.

In the robotic case, inversion can be applied directly to the
second-order differential form of the mechanical system (5),
defining the vector of joint variables 6 as the system output.
Following the inversion algorithm, the output needs to be
differentiated as many times as needed to have the input ex-
plicitly appearing. Inspection of Eq. (10) suggests that the
joint accelerations 6 (the second time derivative of the output)
are at the same differential level as the torque inputs u. There-
fore, the so-called relative degree19 is uniform for all outputs
and equal to two. Moreover, in view of Remarks 8 and 9, the
input u can be fully recovered from Eq. (10).

Let a denote a joint acceleration vector. Setting 0 = a in
Eq. (10) and solving for u yields the nonlinear feedback law

*»'>

with

ns = hs + K8 + D5

(13)

(14)

The closed-loop implementation of Eq. (13) requires the mea-
surement of 0, 0, <5, and <5.

Remark 10. The matrix (Bee-B^B^B^Y^F is the so
called decoupling matrix19 of the system and is nonsingular.

so-

In the clamped case (Q8 = O) matrix F reduces to the iden-
tity, and no inversion thereof is needed in Eq. (13). On the
other hand, a computationally efficient expression for F"1

when Q8?± O, e.g., in the pinned case, is45

(15)

requiring only the inversion of an M x M matrix.
Remark 11 . The advantage of evaluating F ~ l using Eq. (15)

exists in any case, but it is more striking when TV >M; in fact,
when TV <M, the inversion of an M xM block is needed any-
way in Eq. (11).

The control (13) transforms the closed-loop system into the
input-output linearized form

= a

8=

where
ur=

(16)

iur (17)

(18)

is the well-known computed torque control46 for the equivalent
rigid system (6).

At this point, one can recognize that in the clamped case
Eq. (13) becomes

)a +he-

and Eqs. (16) and (17) simplify to

5= -B8~8
l(Bd

T
8a+n8)

(19)

(20)

(21)

Remark 12. It follows immediately from Eq. (19) that only
the inversion of the M x M block on the diagonal of the inertia
matrix relative to the flexible variables is required for control
law implementation in the clamped case. This computational
saving was not present in previous works on inversion-based
controllers for flexible manipulators.21"23 Therefore, the com-
plexity of this nonlinear feedback strategy increases only with
the number of flexible variables; in the limit, no inertia matrix
inversion is required for the rigid case. Furthermore, if B88 is
constant (see Remark 6) its inverse can be conveniently com-
puted offline.

To achieve tracking of a desired joint trajectory specified by
0des(0» the control design is completed by choosing the new
input as

D(6fes - 0) des - 0) (22)

where KP>0 and KD>0 are feedback gain matrices that allow
pole placement in the open left-hand complex half-plane for
the linear system (16). From Eq. (22) it is clear that the desired
trajectory must be at least twice differentiable for having exact
reproduction.

As mentioned, the applicability of the inversion controller
(13) [or (19)] is based on the stability of the induced unobserv-
able dynamics (17) [or (21)]. In the following, the discussion is
concentrated on the clamped case only. However, similar ar-
guments could be used in the pinned case, just resulting in
more involved developments which are omitted.

The stability analysis can be carried out by studying the
so-called zero dynamics associated with the system (20) and
(21). This is obtained by constraining the output 0 of the
system to be a constant, and without loss of generality, zero.
Hence, from Eq. (21) we obtain

(23)

where all terms are evaluated for 0 = 0.
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A sufficient condition that guarantees stability of the overall
closed-loop system is that the zero dynamics (23) are asymptot-
ically stable.19 The following result holds.

Theorem. The state 6 = 6 = 0 is an asymptotically stable
equilibrium point for the system (23). D

Proof. Applying the Lyapunov direct method, define the
energy-based candidate function

V = V2 dTKd + Vi dTB88d

Time differentiation of Eq. (24) gives

V = dTKd + dTB88d + 1/2 5TB88d

and substitution of Eq. (23) into Eq. (25) yields

K= -dT(hd + Dd) + l/2dTB88d

(24)

(25)

(26)

Observe that for the velocity dependent term h8 there exists
always a factorization h8 = S885 such that the matrix B88 - 2S88
is skew symmetric.41 As a consequence, Eq. (26) reduces to

V = -6r.D6<0 (27)

To show asymptotic stability, note that F=0 if and only if
6 = 0. In this case, the system dynamics (23) becomes
6= — B f t l K d , which implies that the largest invariant set in
F=0 is 6 = 6 = 0. Invoking LaSalle invariance set theorem,48

the result follows. D
Remark 13. The foregoing result, together with the choice

equation (22), also permits the conclusion that the closed-loop
system is asymptotically stable under the inversion control law
(19) in the trajectory tracking case (07*0). To understand this
fact, consider the simpler case of an inertia matrix independent
of 6 (see Remark 4). When 0 = 0des(0 is imposed by the control
(19) and (22), the flexible variables satisfy the following linear
time-varying equation

where

is a known function of time, and

(28)

, 0des)] (29)

(30)

(31)

Then, as long as all time-varying functions are bounded, sta-
bility is ensured even during trajectory tracking.

Remark 14. From Eq. (27), the rate of asymptotic conver-
gence to zero of the flexible variables is established by the arm
damping matrix D, generally resulting in a poorly damped
behavior. This may be satisfactory during the large maneuver-
ing phase of the manipulator, but it represents a major concern
at the final destination. The standard remedy to this limitation
is to resort to an active linear stabilizer for the deflection
variables, designed for a linearized version of the system
around the final configuration. It is convenient, indeed, to
superimpose such a stabilizing control on the nonlinear one
(19) and (22); in this way the synthesis can be advantageously
performed on the system (20) and (21), which is linear in the
input-output behavior, rather than on the original nonlinear
system.23 Alternatively, damping can be increased in a passive
fashion by a mechanical treatment of the lightweight structure,
e.g., attaching thin layers of viscoelastic material to the link
surfaces.49

In the preceding derivation of the inversion-based control, it
was assumed that full state feedback is available. The joint
positions and velocities are measured via ordinary encoders
and tachometers mounted on the actuators. For measuring

link deflection, different apparatus can be used ranging from
strain gauges,9 to accelerometers,12 or optical devices.11

In spite of the availability of direct measurements of link
flexibility, it may be convenient to avoid their use within the
computation of the nonlinear part of the controller. The joint-
based approach naturally lends itself to a cheap implementa-
tion in terms of joint variable measures only. In fact, one can
preserve the robust linear feedback (22) and add a feedforward
action to compensate for the nominal nonlinear terms. Specif-
ically, when a twice differentiable joint trajectory Bdcs(t) has
been assigned, the forward integration of the flexible dynamics

6 = -

(32)

from initial conditions 6(0) = 60, 6(0) = 50, provides the associ-
ated time evolution 6des(0> ^des(0 of the flexible variables.
Hence, evaluation of the nonlinearities in Eq. (19) along the
computed state trajectory gives a control law in the form

u = udes(t) + KP(t)(Odes-0) + KD(t)(Odes-8)

where Eq. (22) has been used, and

(33)

KD

(34)

(35)

(36)

Remark 15. The initial conditions for numerical integration
of Eq. (32) are typically 60 = 60 = 0, corresponding to the unde-
formed rest configuration for the arm. Since the dynamics (32)
are asymptotically stable, as just demonstrated, the evolution
^des(0> ^des(0 generated from any initial condition will be
bounded in response to a Odes(t) with bounded second deriva-
tive. Indeed, the initial condition should match the actual ini-
tial deformation of the arm, otherwise the computed feedfor-
ward term (34) would not be the correct one. However, for
persistent reference trajectories, an initial mismatch leads to
tracking errors limited to the transient phase, since 6des(0 any-
how decays toward the natural steady-state evolution.

Remark 16. An even simpler implementation of Eq. (33) is

U = (37)

with constant feedback matrices. This type of control law has
been tested experimentally on a two-link manipulator with a
flexible forearm.50

IV. Case Study
The inversion-based nonlinear control laws presented earlier

have been tested in simulation on a very light two-link planar
flexible arm (TV = 2), assuming two clamped mode shapes for
each link (^ = /*2 = 2, implying M = 4) (Fig. 2). This reduced-
order model is sufficient to encompass the relevant flexibility
occurring in practical experimental control of lightweight ma-
nipulators with limited bandwidth actuators.The physical
parameters characterizing the arm are the following: uniform
density pl = p2 = 0.2 kg/m; (EI^ = (£7)2 = 1 N/m2; link lengths
/! = /2 = 0.5 m; link masses ^71 = m2 = 0.1 kg; tip payload mass
mp =0.1 kg; mass of second hub mh2= 1 kg; inertias of links
about relative joint axes J0\ = J02 = 0.0083 kg m2; hub inertias
Jh\ = Jh2 = 0-1 kg m2; and tip payload inertia Jp = 0.0005 kg m2.
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Fig. 2 Planar two-link flexible manipulator.

The first two natural eigenfrequencies of the links are

First link: /„ = 0.48 Hz, /12 = 1.80 Hz

Second link: /21 = 2.18Hz, /22 = 15.91 Hz

which allow the computation of the stiffness matrix K as

Ar = diag{AT/)=diag{0.91, 12.74, 18.73,999.88) kg/s2

The modal damping matrix is chosen as D = diag{0.lV^ ) .
The complete dynamic model of the system is reported in
Ref. 4.

The desired trajectory has been chosen as a sinusoidal pro-
file with zero initial and final velocities and accelerations,

0<ta.iC) = «ta,/(0) + I t - ^- sin(360 deg ̂Jou \ -i ,

1 = 1,2 (38)

where T is the traveling time. The closed-loop dynamic equa-
tions have been integrated with a fourth-order Runge-Kutta
method at 1-ms sampling time.

First, the input-output feedback linearizing controller (19)
and (22) with T = 8 s and

0des,i(8) = 45 deg

has been simulated using

(39)

(40)

This choice corresponds to placing the poles of the resulting
linear system (20) and (22) both at - 1 for the first joint, and
both at -2 for the second joint; in general, it was found that
whenever system nonlinearities are canceled through inversion
feedback, the design of suitable control gains is not a critical
issue. The results in Fig. 3 indicate that the first joint evolution
reproduces the desired trajectory, and the second joint is prac-
tically held fixed, with a maximum error of 0.23 deg. The tip
error is limited to 1.6 cm along the y component; this error is
computed as the deviation between the tip trajectory resulting
from Eqs. (38) and (39)—as if the links were rigid—and the
actual trajectory. The required joint input torques are indeed
very small due to the lightweight nature of the arm.

The same control law, with gains as in Eq. (40), has been
used for tracking a slewing motion on both joints specified by

Satisfactory performance is obtained also in this case (Fig. 4),
with a maximum tracking error of 0.33 deg on the second joint
and a maximum tip error of ~ 2 cm on both Cartesian coordi-
nates. The torque profiles are similar to the preceding ones,
with a slight increase for the second joint.

Next, a linear joint feedback proportional-derivative (PD)
controller has been applied for the slewing motion (40). In this
case, the gains have been tuned down to

KP = diag{ 1, 0.04), KD = diag{2, 0.4) (42)

to avoid numerical instability. In fact, since the nonlinear
dynamic couplings during motion are not compensated, larger
errors are induced which would result in excessive input
torques applied to the flexible system. In Fig. 5, the resulting
joint trajectories display a transient lag, an overshoot, and a
longer settling time, which are typical of PD controllers. The
maximum tracking error is 7.8 deg on the second joint, and
consequently a maximum tip error of 11 cm is obtained.

To further compare the performance of the proposed non-
linear control law with a linear PD control, the reduced gains
(42) have been used also for the control law (19) and (22). The
results in Fig. 6 show that nonlinear compensation reduces the
joint tracking errors by a factor of four, even with the same
gains for the linear control part. Notice that the input torques
in Figs. 4-6 are of comparable magnitude. This in turn means
that the feedback gains in the inversion controller can be con-
veniently increased to reduce tracking errors, without affecting
the overall control effort.

Finally, the results achieved with the computationally
cheaper feedforward strategy (37) are shown in Fig. 7. To test

joint angles joint errors

40

I 2°

0

0.5

10 15

tip errors

0.02

0

(

^Oc ———
) 5 10 1

W

0.1

0.05

-0.05

5 10 15

W
joint torques

5 10 15

W

Fig. 3 Performance with inversion feedback control, trajectory (39)
and gains (40); solid line = joint 1 and tip x component, dashed
line = joint 2 and tip y component.

I 20

joint angles

5 10

M
tip errors

joint errors

0.5

() 5 10 1

M
joint torques

0des,/(0) = 0 deg, = 45 deg, / = 1, 2 (41)

Fig. 4 Performance with inversion feedback control, trajectory (41)
and gains (40); solid line = joint 1 and tip x component, dashed
line = joint 2 and tip y component.
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for robustness, the nominal evolution of the flexible variables
to be used in Eq. (34) has been derived integrating the simpli-
fied dynamics

(43)

in place of Eq. (32), where the carets denote constant estimates
of the respective terms, implying hd = 0 (see Remark 4) and Bd8
is diagonal. For comparison with pure PD control, the same
gains (42) have been chosen. The tracking accuracy with the

joint angles joint errors

Fig. 5 Performance with PD control, trajectory (41) and gains (42);
solid line = joint 1 and tip x component, dashed line = joint 2 and tip
y component.

joint angles joint errors

Fig. 6 Performance with inversion feedback control, trajectory (41)
and gains (42); solid line = joint 1 and tip x component, dashed
line = joint 2 and tip y component.

joint angle: joint errors

Fig. 7 Performance with inversion feedforward control, trajectory
(41) and gains (42); solid line = joint 1 and tip x component, dashed
line=joint 2 and tip y component.

model-based feedforward is improved both at the joint and at
the tip level, although the control effort is about the same. We
saw that no improvement was obtained when adding to the
PD control a feedforward term based only on the desired joint
acceleration.

V. Conclusions
The design of inversion-based nonlinear control laws that

guarantee stable tracking of joint trajectories for multilink
flexible manipulators has been investigated. The interaction
between modeling and control issues has been studied with
specific concern for the effects of clamped/pinned boundary
conditions on the complexity of the control law.

The theoretical and numerical results of the present work
lead us to draw the following conclusions.

1) Joint-based inversion strategies are always stable for
robots with flexible links.

2) Derivation of the model in the clamped case format al-
lows remarkable simplifications in the model-based inversion
controller.

3) The proposed control formulation requires inverting
only the sub-block of the inertia matrix pertaining to the flex-
ible variables, quite often a constant matrix.

4) Reduction of the computational burden is achieved by
resorting to feedforward compensation of nonlinear and inter-
action terms, removing the need for sensing and feeding back
arm deformation.

5) Satisfactory behavior is obtained for the tip motion of
the flexible structure, provided that the desired joint trajec-
tory is sufficiently smooth and enough structural damping is
present.

An open research issue is to find effective control strategies
for flexible manipulators that guarantee the tracking accuracy
at the end-effector level similar to that obtained here at the
joint level, without violating stability requirements. A recom-
mendation toward this goal is to provide an intelligent motion
planner with the capability of generating suitable reference
trajectories for the joint variables in such a way that the end
effector behaves as desired. Nevertheless, for current space
robotics applications, it is believed that the adoption of joint-
based nonlinear inversion techniques offers a performance
breakthrough over classical control methods.
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