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Abstract. In this paper, we present a tentatively comprehensive tutorial report of the most recent literature 
on kinematic control of redundant robot manipulators. Our goal is to lend some perspective to the most 
widely adopted on-line instantaneous control solutions, namely those based on the simple manipulator+s 
Jacobian, those based on the local optimization of objective functions in the null space of the Jacobian, 
those based on the task space augmentation by additional constraint tasks (with task priority), and those 
based on the construction of inverse kinematic functions. 
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1. Introduction 

The scientific and technological perspectives of robotics can be greatly enhanced by 
considering redundancy which has been recognized as offering greater flexibility and 
versatility in today's robot manipulators. It is for this reason that, during the last 
decade, an ever increasing number of researchers have been directing their efforts 
towards the adoption of redundancies, not only at the conventional kinematical level 
but also at the sensing and information handling levels, for the realization of 
hierarchical intelligent robot control systems. In the present study, we will focus our 
attention only on kinematic redundancy, although we are aware that the other types 
of redundancies are equally important to the development of more dexterous robot 
systems. 

Kinematic redundancy occurs when a manipulator possesses more degrees of 
freedom than the minimum number required to execute a given task. Until recently, 
it was usually claimed that a six-degree-of-freedom nonredundant robot manipulator 
is a 'general purpose' device, since it can 'freely' position and orient an object in the 
Cartesian workspace. Not surprisingly, this claim is still true for the majority of 
industrial robot manufacturers, and this is one of the reasons, perhaps, why we have 
registered the realization of kinematically redundant manipulator prototypes mainly 
in academical research centers. The typical reluctance to produce redundant robot 
systems observed in industry finds its justifications in that redundancy involves 
mechanical and control complexity, and then increased costs. 

It is not difficult to discover that a six-degree-of-freedom geometry can no longer 
be considered a general purpose manipulator. This geometry, in fact, has a number 



202 BRUNO SICILIANO 

of kinematic flaws such as limited joint ranges, workspace obstructions, and kinematic 
singularities which, in turn, prevent the manipulator from attaining arbitrarily 
assigned end-effector locations in its workspace. It is then desirable for a 'true' general 
purpose manipulator to dispose of additional degrees of freedom to overcome the 
above limitations; the seven-degree-of-freedom human arm constitutes an excellent 
model of a dexterous redundant structure. 

Nonetheless, it should be made clear that manipulator redundancy can be estab- 
lished only with respect to the given task in the sense that a manipulator is termed 
redundant when the number of active joints exceeds the number of variables 
which identify the task. For instance, a three-degree-of-freedom planar manipulator 
becomes redundant if the tip orientation angle is of no concern for a two-dimensional 
motion task. Analogously, a six-degree-of-freedom manipulator becomes redundant 
with respect to all those five-dimensional end-effector tasks, such as arc welding, laser 
cutting, spray painting, which do not require the specification of the sixth roll angle 
typically encountered in industrial robot geometries. 

When a manipulator is redundant, it is anticipated that the inverse kinematic 
problem admits infinite solutions. This implies that, for a given constant location of 
the manipulator's end-effector, it is possible to induce a self-motion of the structure, 
i.e. without changing the location of the end-effector. Thus, the arm can be recon- 
figured to find better postures for an assigned set of task requirements. More gener- 
ally, if a motion task trajectory is commanded to the end-effector, it is possible in 
principle to continuously modify the joint motion in such a manner that not only the 
end-effector task is correctly executed, but also a suitable constraint task is accom- 

plished at best. 
A number of solution techniques for solving the kinematic control problem for 

redundant manipulators have been suggested by researchers. In this paper, we review 
some of - what we believe - the most relevant literature that has appeared up until 
1988, including our own work, by providing unified frameworks for characterizing the 

features of each method. 
Most of the proposed approaches are based on the instantaneous or local resolu- 

tion of redundancy at the velocity level through the use of the manipulator's Jacobian 
matrix. Global optimization techniques have also been proposed but they involve 
increased computational complexity which rules them out in practical on-line imple- 
mentation for which the end-effector trajectory is continuously modified based on 
sensory feedback information. The local resolution methods can be distinguished in 
those optimizing a suitable scalar objective function in the null space of the Jacobian 
matrix, and those adopting a task space augmentation by defining a suitable con- 
straint task in addition to the end-effector task, and eventually resorting to a task 
priority strategy. Conceptually close to the latter is the method based on the construc- 
tion of inverse kinematic functions on suitable reduced workspaces. Proper references 
will be given throughout the paper wherever each method is discussed. 

The paper is organized as follows. Section 2 presents the inverse kinematic problem 
for redundant manipulators. Simple Jacobian-based techniques are discussed in 
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Section 3. The gradient projection method is illustrated in Section 4 and the augmented 
task space approach is presented in Section 5. Section 6 concentrates on the inverse 

kinematic function method. Conclusions are drawn in a final section. 

2. The Kinematic Control Problem for Redundant Manipulators 

In order to fix the notation throughout the paper, the direct kinematic mappings of 
interest for robot manipulators, can be written as 

x = f(q), (1) 

= J(q)/l, (2) 

where q is the (n x 1) vector of  joint variables, x is the (m • 1) vector of  task 
variables,* f is a differentiable nonlinear vector function whose structure and 
parameters are assumed to be known for any given manipulator, J is the (m x n) 
configuration dependent Jacobian matrix - formally defined as df/dq - and the upper 
dot denotes time derivative. 

For  a given trajectory in the task space x(t), the k inemat ic  control  problem can be 
formulated as to find a joint space trajectory q(t) such that f(q(t)) = x(t) is satisfied. 

It is clear that in the case of a redundant manipulator with respect to a given task 

(m < n), the inverse kinematic problem admits infinite solutions. This suggests that 
redundancy can be conveniently exploited to meet additional constraints on the 
kinematic control problem in order to obtain greater manipulability in terms of 
manipulator configurations and interaction with the environment. 

If the robot is required to move in a cluttered environment, for instance, avoidance 
of obstacles (Maciejewski and Klein, 1985) and mechanical joint limits (Lirgeois, 

1977) is usually desired. In other applications, it could be of interest to minimize the 
joint actuator power consumption (Vukobratovi~ and Kir6anski, 1984). 

The other important point in purposely adopting redundancy is the avoidance of  
kinematic singularities, which occur when the matrix J, at some configuration q, has 
rank less than m. In this case the manipulator loses its ability to move along or rotate 

about some direction of  the task space, meaning that its manipulability is reduced. 
The manipulability measure introduced by Yoshikawa (1985b) as ~ ,  and the 

dexterity measures proposed by Klein and Blaho (1987), e.g. the matrix condition 
number and the minimum singular value of  the matrix jjT, represent indices of the 
ability of  a manipulator to arbitrarily position and orient its end-effector. Isotropy 
criteria have been discussed by Angeles (1988). The dynamic manipulability measure 

(Yoshikawa, 1985a), instead, takes the arm dynamics into account. Related to these 
measures is also the concept of task compatibility (Chiu, 1988), according to which 
the matrix jjT is utilized to determine quantitative indices of  the ability to perform 
an exertion/control task along a given direction of  the task space. 

* Notice that, in the most general case, x does not necessarily denote the end-effector location but it can 
be any direct kinematic function of the joint variables expressed in a suitable reference frame. 
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3. Simple Jacobian-Based Techniques 

As emphasized in the Introduction, most of  the approaches for solving redundancy 
appeared in the literature are based on the inversion of  the mapping (2) in that a 

solution in terms of the joint velocities is sought as 

/I = K(q)~, (3) 

where K is a suitable (n • m) control matrix based on the Jacobian matrix. In his 

pioneering work on resolved-rate control, Whitney (1969) proposed to use the 

Moore-Penrose pseudoinverse of  the Jacobian matrix as 

r = jt(q)/~, (4) 

where j t  is the matrix defined as j r  = j r ( j j r ) - t .  

At first glance, this solution is quite attractive since the pseudoinverse has a least 

squares property that generates the minimum norm joint velocities. However, 
Baillieul, Hollerback and Brockett (1984) proved that kinematic singularities are not 
avoided in any practical sense, since joint velocities are minimized only instant- 
aneously and then can become arbitrarily large near singular configurations. 

In order to overcome this drawback, Wampler (1986) and Nakamura and Hanafusa 
(1986) independently proposed the use of a damped least-square inverse of the Jacobian 
matrix in the form of  J* = j r ( j  j r  + 2Zl)-~, corresponding to a modified Jacobian 

that is nonsingular in the whole workspace. Under this control, one obtains only an 
approximate inverse kinematic solution, and the problem is to select suitable values 
for the damping factor ,t which sets the weight of  the minimum norm solution, i.e. 

II r tl, with respect to the minimum task tracking error, i.e. II ~ - J~l II. High values of 
2 give good behaviour but reduced accuracy in the neighbourhood of  singular points; 
it can be recognized that the appropriate choice of 2 depends on the minimum singular 
value of the matrix J which is a measure of  proximity to singularities. Maciejewski 
and Klein (1988) have recently presented a technique to determine a good estimate of 
the minimum singular value to set 2; a refinement of  the technique is also proposed 
which performs selective filtering only in the direction of  the singular components for 
a given task tracjectory. Incidentally, we remark that the above method can be used 
for nonredundant manipulators in the neighbourhood of singular configurations. 

Another shortcoming of  the solution (4) is that repeatibility of  joint trajectories for 
repeated task trajectories is not preserved (Klein and Huang, 1983); this is not 
desirable in most practical applications, e.g. with industrial robots. Within the frame- 
work of generalized inverse methods, Shamir and Yomdin (1988) have established an 
elegant mathematical condition for the pseudoinverse solution - and more generally 
for any solution of the type (3) - to be repeatable: For  any two columns k~ and kj of 
K, their Lie bracket [kg, kj] must be a linear combination of  the columns of K.* 

* For the reader who is not familiar with differential geometry theory, we recall here that the Lie bracket 
of two (n x 1) vectors u and v, that are both functions of an (n • 1) vector w, is the vector [u, v] = 
(~v/~w)u - (~u/dw)v. 
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Therefore, this condition can be creatively exploited to find the initial setting q(0), 
under the control K, that ensures repeatable task motion in a simply connected region 
of the manipulator's workspace.* We would like to point out, however, that the above 
condition, although appealing from a pure mathematical viewpoint, seems less in- 
teresting from a real application viewpoint, since it is quite impractical to be exactly 
satisfied; a slight numerical offset on the initial joint setting satisfying the condition 
would, in fact, no longer imply repeatability. 

Last but not least, it must be remarked that a solution of the type (3) is inherently 
open-loop: Once the initial joint setting q(0) is known, Equation (3) is integrated over 
time to provide the joint path q(t). This is implemented on the computer, of course, 
in discrete-time and thus unavoidably causes numerical drifts in the task space. In 
order to overcome this drawback, a closed-loop algorithmic version of the solution (3) 
can be obtained if the task space vector ~ is replaced by ~ = ~d + Ae, where 
e = x d - x denotes the error between the desired task trajectory xu and the actual 
task trajectory x which can be computed from current joint variables via Equation (1), 
and A is a positive definite (diagonal) matrix that suitably shapes the error convergence 
(Sciavicco and Siciliano, 1987b; Tsai and Orin, 1987). Notice that the current joint 
variables are not to be confused with the real robot joint sensor measurements used 
by the dynamic control. This receives the outputs of the kinematic control as reference 
inputs, indeed. 

Furthermore, if a computationally cheaper solution is desired, one may devise a 
solution based on the transpose of the Jacobian matrix, i.e. 

Cl : Jr(q)Ae (5) 

which can be shown, via a simple Lyapunov argument, to guarantee limited tracking 
errors and null steady-state (xd : 0) errors (Sciavicco and Siciliano, 1987a; Slotine 
and Yoerger, 1987). An intrinsic advantage of the solution (5) is that it may avoid the 
typical numerical instabilities which occur at kinematic singularities, since no pseudo- 
inverse of the Jacobian matrix is required (Sciavicco and Siciliano, 1988b). 

4. Gradient Projection Method 

Revisiting the pseudoinverse minimum-norm solution (4), it can be easily shown that 
a more general solution to Equation (2) is given by 

~1 : jt(q)~ + [I - J*(q)J(q)]r (6) 

where I is the (n • n) identity matrix and el0 is an (n • 1) arbitrary joint velocity 
vector. The solution (4) has been modified by the addition of the homogeneous term 
created by the projection operator (I - J ' J )  which selects the components ofr in the 
null space of the mapping J; thus, ~10 produces only a joint self-motion of the structure 

* A simply connected subset of the workspace is that portion of the workspace such that any closed path 
in the subset can be continuously deformed into smaller and smaller closed paths that eventually shrink 
to a single point. 
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but no task space motion. An efficient method to compute a solution of the type (6) 
while avoiding explicit calculation of J* can be utilized if a full-rank submatrix of the 
Jacobian is available (Chevallereau and Khalil, 1988). 

One of the most widely adopted approach is to solve redundancy by optimizing a 
scalar cost function h(q) using the gradient projection method, i.e. choosing ~10 = 
(Oh/Oq) r. Notice that any differentiable cost function may be used as long as the function 
can be reduced to an expression in terms of the joint variables only. Examples of cost 
functions can be found in Li6geois (1977) for the avoidance of mechanical joint limits, 
in Yoshikawa (1985a,b) for the maximization of kineto-static and dynamic mani- 
pulability measures respectively, and in Dubey, Euler and Babcock (1988) for the 
maximization of various criteria. Yet another solution based on proper bounds for the 
rate of change of the Jacobian to be optimized has been proposed by Mayorga and 
Wong (1988). 

It must be remarked that all the above techniques are only local optmization 
techniques, since they deal with the instantaneous kinematics of motion. Global 
optimization techniques which minimize some performance index across a whole 
trajectory have been derived by Nakamura and Hanafusa (1987) based on Pontryagin's 
maximum principle, by Suh and Hollerbach (1987) using the calculus of variation, 
and by Kazerounian and Wang (1988) also using the calculus of variation but in a 
simpler fashion. However, even though global optimization solutions perform better 
than local optimization solutions, they are impractical for on-line feedback control, 
due to the heavy computational requirements. 

5. Task Space Augmentation 

Another method of solving redundancy, conceptually different from the above 
methods, is that of imposing an additional constraint task to be executed along with 
the original (end-effector) task. In details, a functional constraint task on the joint 
variables can be considered in the form 

y = fy(q), (7) 

where fy is an (r • 1) vector with continuous derivatives with respect to q; also 
it is r ~< (n - m) so as to employ at most all redundant degrees of freedom. 
Consequently, the augmented task space can be formally characterized as (Sciavicco 
and Siciliano, 1987a; Egeland, 1987) 

xA = [ : ]  = [ f(q) ] [ _ f y  (q)]. (8) 

In general, however, it is unlikely that, given any path xA (t), the joint paths q(t) will 
satisfy both tasks. In other words, it is quite difficult to select an ad hoc constraint task 
to be satisfied together with the original task, unless one has enough insight into the 
specific problem. An example of such kind can be found in Sciavicco, Siciliano and 
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Chiacchio (1988), where a snake-like robot arm is commanded to move in a toroidal 
region. 

Another indirect way of choosing the constraint task is that of requiring that the 
manipulator optimize some cost function of the type discussed above. To the purpose, 
in the case of r = (n - m), Baillieul (1985) suggested to project the gradient of the 
cost function onto the null space of the Jacobian and impose that this is zero, i.e. 

[ I -  J(q)a'(q)]k dq J = 0 (9) 

from which an (r x 1) constraint task vector can be derived in the form 

g(q) = 0 (I0) 

which in turn corresponds to an equation of the type (7). This technique has been later 
formalized by Chang (1987) who derived the constraint task in the form 

(c~h(q) '~r = 0, (11) Z(q) ~q ,] 

where Z is composed of(n - m) linearly independent row vectors which span the null 
space of the matrix J. In the scalar case, i.e. (n - m) = 1, it is quite straightforward 
to find a symbolic expression for Z, as already in Baillieul (1985) for a simple 
three-degree-of-freedom planar arm, but some difficulties may arise in the vector case. 

Nonetheless, once the task space augmentation has been set up according to any 
of the above methods, it is possible to solve an augmented kinematic equation of the 
type (8) either numerically for each point along the path xA(t), as done in Chang 
(1987), or in the same formal way as in (3). In fact, differentiating Equation (8) with 
respect to time gives 

~A = JA(q)~i, (12) 

where 

J~ 
(13) 

is a suitably augmented Jacobian matrix and Jy  = ~?yfl?q. One can then solve 
Equation (12) as 

/1 = KA(q)~A (14) 

which, in the case r = (n - m), reduces to what Baillieul (1985) called the extended 
Jacobian technique; also KA becomes JA ~. Notice that for constraint tasks of the type 
(11), this method will propagate joint configurations that extremize h(q) provided that 
the initial joint configuration q(0) has been chosen to extremize h. Again in this case, 
to get a closed-loop solution, it is suggested to replace ~A by ~Ad + AAeA with obvious 
meaning of the symbols; the pseudoinverse control can be used as in Equation (4) or 
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another option is offered by the use of the Jacobian transpose in the fashion of 
Equation (5) (Sciavicco and Siciliano, 1987b). 

Remarkably, a nice feature of the augmented task space method when the space of 
redundancy is entirely exploited, i.e. r = (n - m), is that it is repeatable for any 
initial joint setting, on condition that paths are chosen in a simply connected subset 
of the workspace (Baker and Wampler, 1988). 

On the other hand, a major problem that may be encountered in the application of 
the solution (14) in a task space augmentation setting is the occurrence of algorithmic 
singularities (Baillieul, 1986) which are the singularities associated with the augmented 
Jacobian matrix JA. It can be shown that if the Jacobian matrix J is full rank m and 
the constraint Jacobian matrix Jy is also full rank r, then the augmented Jacobian 
matrix JA is full rank (r + m) if and only i f ~ ( J  r) n ~(jyr) = 0, where ~(A) denotes 
the range space of matrix A (Sciavicco and Siciliano, 1988a). A useful analytical tool 
to aid in the analysis of algorithmic singularities has been established by Baillieul 
(1987) via the adoption of suitable constrained (coordinate-free) manipulability 
indices. 

An effective solution to handle multiple tasks is constituted by the task priority 
strategy formalized by Nakamura, Hanafusa and Yoshikawa (1987), but implicitly 
adopted by Maciejewski and Klein (1985) to perform obstacle avoidance. The original 
(end-effector) task and the constraint task are assigned different priorities in that the 
task of lower priority is satisfied only if it does not conflict with the task of higher 
priority. With reference to the above augmented task space formulation and assuming 
that the constant task y is given lower priority than the original task x, the joint 
velocity solution (14) can be modified into - referring to the pseudoinverse solution 
and suppressing the q-dependence for notation compactness - 

~1 = J*~: + (I - JtJ)J~(j, - JyJ*~) + (I - J*J)(I - J~Jy)Z (15) 

with Jy = Jy(I - J 'J) .  Notice that the second term can be simplified to J~(j~ - JyJ*~) 
since the projection operator (I - Jr J) is both Hermitian and idempotent. As in the 
case of solution (6), this second term is in the null space of the primary task Jacobian 
so as to satisfy the secondary task while producing no motion for the primary task. 
A third term is also present which allows for the inclusion of yet another task with 
lower priority. A result similar to (15) has also been obtained by Walker and Marcus 
(1988). Again, as emphasized above, the vectors ~ and ~ can be feedback-corrected 
into ~a + Ae and Ya + A~% so as to gain numerical robustness at low computation 
expenses (Sciavicco and Siciliano, 1988b). 

With reference to the above-debated problem of algorithmic singularities of the 
solution (14), we can recognize that the solution (15) performs better in that an 
algorithmic singularity now no longer interfers with the whole augmented task. As 
long as the primary task Jacobian is guaranteed to be singularity-free, in fact, an 
algorithmic singularity - which will occur when Jy is full rank r but ~ ( j r )  n ~(J~) :~ 0 
- will not affect the primary task, but, eventually, only the secondary task (Sciavicco 
and Siciliano, 1988a). 
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6. Inverse Kinematic Functions 

Another method of solving redundancy is to specify an inverse kinematic function to 
(1) as a function g defined on a suitable portion of the workspace, namely an invertible 
workspace (Wampler 1988a), such that 

f(g(x)) = x (16) 

for all x contained in the invertible workspace. A useful tool derived from topology, 
namely the winding number, can be used to discover restrictions on invertible work- 
spaces (Wampler, 1988b). In the case of simple nonredundant geometries, indeed, it 
is well-known that inverse kinematic functions in closed-form exists. Thus, the 
problem is to find closed-form expressions in the redundant case since a continuum 
of possible inverse functions g satisfying (16) exist. The most direct way of accomplishing 
this purpose is undoubtedly to dispose of an inverse function for (n - m) of the joint 
coordinates, say 

q~ = gl(x) (17) 

where gl is defined on a feasible workspace, and then solve for the remaining joint 
coordinates q2 from 

f(qt, q2) = x. (18) 

According to the definition of Wampler (1987), a feasible workspace is that subset of 
the reachable workspace, for a differentiable inverse kinematic function g, such that 
a finite bound on the ratio of joint speed to speed in the workspace exists. 

Like any of the above kinematic control methods, the inverse kinematic function 
method allows for on-line implementation, i.e. given a task path x(t), the joint path 
is derived from q(t) = g(x(t)). The other nice property of the method is repeatability, 
or cyclic behaviour according to the coinage of Wampler (1987). Also, an important 
result has been obtained by Baker and Wampler (1988): Any kinematic control 
method that allows on-line path corrections and enjoys the cyclic property is 
equivalent to an inverse kinematic function, that is there exists an inverse function 
that produces the same joint paths. Thus, for instance, the extended Jacobian method 
can be regarded as a viable computational way of implementing an inverse kinematic 
function, whenever that is difficult to obtain in closed-form. 

7. Summary and Discussion 

In the above sections we have attempted to bring out unified frameworks for the 
analysis of the most widely adopted methods for kinematic control of redundant 
robot manipulators. We have restricted our survey to the instantaneous solution 
techniques which allow on-line path modification. 

As it has emerged above, the first three classes of methods, namely simple Jacobian- 
based techniques, gradient projection method, and task space augmentation, are 
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based on the joint velocity solution of the mapping (2) (the joint displacements can 
then be found via numerical integration). The inverse kinematic function method 
aims, instead, at finding the joint displacements directly. 

We have tried to point out the advantages and disadvantages of each method. 
Singularity avoidance, joint path repeatability and satisfaction of general constraint 
tasks are the main issues that should guide the choice of the most effective solution 
technique. Simple Jacobian-based methods, though computationally simpler, hardly 
ensure repeatability. The use of the damped least-squares pseudoinverse, or even of 
the transpose, may provide remedy for singularity occurrence. Local optimization 
techniques do not supply practical guarantees if a local minimum is not achieved. It 
is our confidence that the task space augmentation method with task priority offers 
the most benefits over the other methods, since it allows the user to set a number of 
independent constraints, e.g. singularity avoidance, while systematically ensuring that 
the primary task is not affected by the constraint task. Also, repeatibility in the joint 
space is often obtained. The inverse kinematic function method, perhaps, is the most 
logical one to apply - and conceptually corresponds to an augmented task space 
method - except for the inherent difficulties in finding closed-form expressions for 
such inverse functions. 

In the present study, we have 
redundant manipulators; at least, 

not addressed the dynamic control problem for 
a few words are in order. The usual approach to 

robot control is as follows: Solve the inverse kinematics for a finite number of task 
configurations, by using any of the above methods. From the joint variable solutions, 
construct continuous joint paths, e.g. via splining functions, which constitute the 
reference inputs to some dynamic joint space controller. 

Another approach is to design a dynamic control directly in the task space which 
allows on-line path modification based on sensory feedback data. Unless the goal is 
to design a simple positional controller, in which case simple PD independent joint 
controllers (with gravity compensation) are seen to lead to stable behaviour (Asada 
and Slotine, 1986), a tracking task space controller requires that reference joint 
accelerations are available. This implies that the second-order kinematic mapping 
must be considered, which can be derived by further differentiating Equation (2), i.e. 

= J(q)i] + ..'l(q)~ 1. (19) 

The most general solution to Eq. (19) can be written as 

t] = J*(q)[~ - ~l(q)4] + [I - Jt(q)J(q)]i[ 0, (20) 

where ii0 is an arbitrary joint acceleration vector which is projected onto the null space 
of J. The choice of ii0 is not immediate. Hsu, Hauser and Sastry (1988) stressed that 
ii0 must be chosen to control the components of the joint velocities - unobservable at 
the output of the system - which may lead to internal unstable behaviour. 

We remark here that another possibility would be to derive the joint accelerations 
by symbolic differentiation of the joint velocity solutions obtained with any of the 
above-illustrated methods. This issue along with other refinements of the kinematic 
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control methods - or yet innovative approaches - open a research area mature for 
further investigation. 

We would like to conclude this tutorial with the following consideration: If the 
robotics research community believe that the addition of extra degrees of  freedom can 
improve on conventional nonredundant manipulator's performance, it is probably 
about time to provide the robotics industry community with convincing motivations 
in favour of  a greater use of  redundancy! 
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