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The solution of the inverse kinematic problem is of the utmost importance in robotic 
manipulator control. This article proposes a closed-loop scheme for solving the inverse 
kinematic problem for nonredundant and redundant wrists based on the computation of 
the Jacobian transpose. The manipulability measure is suitably introduced as a con- 
straint for redundant wrists, by taking advantage of the null space of the Jacohian 
matrix. The resulting algorithm provides a computational tool to solve a specified 
orientation trajectory into a joint trajectory. Numerical results with two spherical wrists 
show the excellent performance o f  the scheme. 

1. INTRODUCTION 

Robot motion control is usually performed in the joint space, whereas robot 
motion planning is naturally specified in the task space. The direct mapping 
from the joint space to the task space is described by a straightforward 
function, uniquely determined for any robot geometry.' Of major importance 
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is the inverse mapping from the task space to the joint space, which does not 
always lead to a closed-form analytical solution. Whenever such a solution is 
found for a simple geometry? it is not unique. 

This issue has stimulated the robotics research community to seek alter- 
native computational inverse kinematic schemes.34 Those are essentially 
based on the differential kinematics, through the use of the Jacobian matrix, 
which linearly relates the joint velocities to the task velocities. In particular, 
the so-called (pseudo)inverse Jacobian control proposed by Whi tne~,~  and 
lately revisited by Klein and H ~ a n g , ~  solves for the joint velocities, and the 
joint displacements are obtained via a simple integration. On the other hand, 
the method independently proposed by Balestrino et al.' and Wolovich and 
Elliott6 is based on the computation of the transpose of the Jacobian. The 
advantages gained with this solution5" versus the common are a 
reduced computational burden (no inversion is taken) and the closed-loop 
fashion which overcomes the drawbacks of the open-loop Jacobian control, 
such as long-term drifts and initial location errors. 

The goal of this article is to establish a computational closed-loop scheme 
for explicitly solving the orientation inverse kinematic problem. The kinema- 
tics of the wrist is suitably described by the orthogonal unit vectors associated 
with the orientation of the end-effector frame relative to the base frame. 
Differently from a previous work on the subject: which used the time 
derivatives of the above unit vectors, the differential kinematics is described in 
terms of the wrist angular veIocitiesmR A computationally fast algorithm to 
solve a specified wrist trajectory into a joint trajectory is derived. 

For redundant wrists, the scheme is suitably modified by adding a manipu- 
lability constraint in order to avoid degenerate configurations, performing a 
so-called task space augmentation.' The correctness of the scheme is ensured 
by projecting the constraint onto the null space of the wrist Jacobian matrix.'O 

It is worth remarking that the previous scheme proposed by De Maria et al.' 
did not allow for a proper task space augmentation for redundant wrists, since 
;I suitable null space o f  the wrist Jacobian could not be directly extracted. 

A set of numerical results are presented which regard the application of the 
proposed schemes to two different spherical wrists, the three-revolute joint 
wrist studied by Paul and Stevenson" and the four-revolute joint redundant 
wrist proposed by Yoshikawa." 

The paper is organized as follows. Section I1 gives the necessary back- 
ground of inverse kinematic techniques. Section 111 presents the closed-loop 
Jacobian transpose scheme, and section IV extends it to the case of redundant 
wrists. Numerical results are discussed in section V, and conclusions are drawn 
in the final section. 

II. BACKGROUND 

The direct kinematic equation of an arbitrary manipulator structure with 
known geometrical dimensions describes the mapping of the (n x 1 j vector of 
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joint coordinates q into the ( m  x 1) vector of robot's end-effector task coor- 
dinates x as' 

where f is a continuous nonlinear function, whose structure and parameters are 
known. 

I t  is well-known that the solution of the inverse kinematic problem, i.e., 
solving Eq. (1) for q, is of fundamental importance for robot control. A typical 
robot task is specified as a motion assigned to the end-effector. This must be 
solved into joint motions in order to provide the control servos in the joint 
space with the reference set points. The most popular approach to the problem 
relies upon the possibility of finding a closed-form analytical solution to Eq. 
(1 ) .  I t  is recognized that this is true only for manipulators having simple 
geometries, such as the spherical wrist, the elbow manipulator etc. Pieper2 
gave a sufficient condition for nonredundant structures ( m  = n), which 
establishes that a given kinematical structure is solvable if it contains three 
consecutive joint rotation axes intersecting at a common point. The spherical 
wrist does satisfy this condition, while the elbow manipulator does not. 
Nonetheless, the analytical solution is usually nonunique and sequential, and 
requires the computation of Atan2 functions. 

The two shortcomings of the above technique, namely the solvability of the 
structure and the computational burden, have inspired the research to finding 
alternative solution techniques to the inverse kinematic problem, which would 
be applicable to any kinematical structure as well as be efficient from the 
computational standpoint. In particular, differentiating Eq. (1) with respect to 
time yields the mapping of the joint velocity vector q into the end-effector task 
velocity vector x 

where J(q) = af/aq is the end-effector Jacobian matrix. 
The alternative approach to the inverse kinematic problem, commonly 

followed in the robotics literature, is based indeed on the use of the inverse of 
the Jacobian matrix in Eq. (2), that is3 

q = J-l(q)x, (3) 

where J(q) is assumed to have full rank. In case of redundant manipulators 
( m  < n), a pseudoinverse of J must be adopted in lieu of the inver~e .~  The 
joint displacements q are then obtained by integrating (3) over time. 

A rather different approach to the inverse kinematic problem, which is 
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X d  

applicable to any manipulator structure, was independently proposed by 
Balestrino et al.' and Wolovich and Elliott." The idea is to construct a simple 
dynamic system whose input is the desired end-effector task vector X d  and 
whose outputs are the corresponding joint displacement and velocity vectors, 
q and q respectively. The scheme is depicted in Figure 1; K is a positive 
definite (usually diagonal) matrix. 

Theorem. The dynamic system of Figure 1 assures that the error 

q 
- P + K +  J'(q 1 

' 

e = Xd - x ,  (4) 

can be made arbitrarily small by increasing the minimum eigenvalue of K.',' 
Proof. Define the positive definite Lyapunov function 

f 
2 v = - eTKe. 

The time derivative of (4) becomes, via (2), 

which, plugged into the time derivative of (S), directly yields 

v = eTKT%d - eTKTJ(q)q. 

According to the scheme of Figure 1, the choice 

= JT(q) Ke, (8) 

guarantees that d is negative definite outside a region in the error space 
containing e = 0, which is attractive for all trajectories x d  E %(.I), where % ( J )  
denotes the range space of J .  In particular: 

If e at time t = O  is null (i.e., the initial configuration q(0) of the 
manipulator is known), the tracking error is confined to the above region 
of the error space; the larger the minimum eigenvalues of K and JJT and 
the inverse of the norm of i d ,  the smaller the region. 
The steady-state error, i.e., when x d  = 0, is null. 
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From the above theorem it follows that the application of the scheme of 
Figure 1 to solve the inverse kinematic problem for a general structure is 
twofold. It can be used off-line to make q(t) approach a desired constant 
solution q d  to Eq. ( I ) ,  with q(0) # qd, arbitrarily fast. It can be adopted on-line 
to guarantee that x(t) tracks the desired trajectory x d ( l )  with an arbitrarily fast 
decaying error. The advantages of this technique can be summarized as 
follows: 

I t  is applicable to any robot system since it does not require any special 
assumption regarding the kinematical structure; the extension to the case 
of redundant manipulators is discussed by Sciavicco and Siciliano.' 
It is computationally efficient since it is based only on direct kinematic 
functions (f and J ) ,  generating joint velocities at no additional cost. 
The use of the transpose of the Jacobian may avoid problems when 
kinematic singularities occur; this point has recently been addressed by 
Chiacchio and Siciliano.13 

If  a null tracking error is desired, the solution (8) can be modified into the 
more computational demanding solution' 

which resembles the resolved rate control proposed by Whitney,3 but it is 
inherently closed-loop, i.e., avoids long-term drifts associated with the in- 
stantaneous inversion of the mapping J .  It is worth remarking that a solution 
equivalent to (9) has recently been proposed by Tsai and Orin.14 Similarly to 
Eq. (3), a pseudoinverse of J must be adopted in lieu of its inverse if the 
manipulator is redundant. 

The above scheme is only general since it assumes that the position and 
orientation of the end-effector x on the left-hand side of Eq. ( I )  is described by 
means of the usual position vector p (Fig. 2) and any three orientation angles 

Figure 2. Position and orientation vectors of the end-effector. 
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(e.g., Euler, RPY). Unfortunately, an explicit dependence of these angles on 
the joint coordinates is not available,' so that the kinematic function in (1) 
cannot be directly computed for its orientation part. 

De Maria et aL7 adopted a partitioning strategy, according to which the 
inverse kinematic problem was solved into two sequential stages, the first 
relative to position and the second relative to orientation. It should be 
mentioned that this strategy had originally been proposed by Featherstone,Is 
Hollerbach and Sahar," and later revisited by Waldron et aI.l7 in the context 
of solving the differential kinematic mapping (3) for spherical wrist manipula- 
tors. The solution scheme proposed by De Maria et al.,' indeed, was inspired 
by the above-referenced works, in the context of applying the algorithmic 
solution scheme of Figure 1 based on the control law (8), though. The case of 
a spherical wrist manipulator was treated by Balestrino et al.," whereas 
Sciavicco and Siciliano" applied the same strategy to a manipulator having 
joint revolute axes intersecting two-by-two at the end-effector, which does not 
have a closed-form analytical solution. 

On the basis of the above two-stage strategy, it can easily be shown that the 
inverse kinematic problem for end-effector position is directly solved by the 
scheme of Figure 1, with x replaced by p. On the other hand, the solution of 
the inverse kinematic problem for end-effector orientation is not trivial and 
will constitute the subject of the following section. 

111. THE JACOBIAN TRANSPOSE SCHEME FOR SOLVING 
ORIENTATION 

As pointed out in the previous section, a direct mapping of the joint 
variables into the task variables describing orientation is needed to apply the 
inverse kinematic scheme of Figure 1. A description of wrist orientation in 
terms of a minimum number of parameters can be obtained through three 
orientation angles (e.g., Euler, RPY). Such description, however, does not 
satisfy the above-mentioned requirement.' Alternatively, it is well-known that 
the orientation kinematics of the wrist can be represented by a (3 x 3) rotation 
matrix 

R = [ n  s a] 

where n, s, and s are the normal, slide, and approach unit vectors defining the 
orientation frame located at the wrist.' These unit vectors are defined in the 
right-hand sense of n = s X a with respect to the base frame of the manipulator 
(Fig. 2), and they are orthonormal vectors, i.e., 

sTs  = aTa = nTn = 1, (1 1) 

sTa = aTn = nTs = 0, 
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cos a cos p cos y-sin cr sin y 

sin a cos p cos y+cos cr sin y 
-sin p cos y 

- cos a cos p sin y - sin a cos y cos a sin p 
-sin a cos p sin y + cos a cos y sin cr sin p 

cos p sin p sin y 

This relationship relieves the user from specifying the desired orientation in 
terms of the unit vectors, while guaranteeing the constraints ( 1  I)-( 12). 

If the unit vectors s and a are adopted to describe the wrist orientation (n is 
redundant, since n = s X a), Balestrino et a]." showed that the solution (8) can 
he suitably modified into 

where J, = aslaq, J, = aalaq, e, = sd -s, e, = ad -a, and K,, K ,  positive 
matrices. 

A n  alternative scheme based on the usual definition o f  the differential 
kinematics for orientation is proposed in the following. It is well-known that 
the angular wrist velocity vector w can be expressed in terms of the joint 
velocity vector q as 

where J,, is the (3 x n )  wrist Jacobian matrix.' 
Theorem. The dynamic system of Figure 3 assures that the error 

1 
2 

e, = - (n x nd + s x sd + a x  ad), 

between the desired wrist frame (nd, s d ,  ad) and the actual wrist frame (n, s, a) 
can be made arbitrarily small by increasing the minimum eigenvalue of the 
positive definite matrix K,,. 

Figure 3. Thc Jacobian transpose closed-loop inverse kinematic scheme for non- 
redundant wrists. 
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Proof. Define the positive definite Lyapunov function 

1 
2 v, =-ezK ,e , .  

Luh, Walker, and Paul' showed that the expression (16) is derived from the 
definition of the orientation error in terms of Euler rotation parameters as 

where the unit vector r and angle 4 are illustrated in Figure 4. Note that n will 
be aligned with n d  (and simultaneously s with s d  and a with a d ,  although these 
unit vectors are not evidenced in Figure 4) by a rotation of an angle a b u t  r. 
I t  can be shown that' 

Substituting (19) in the time derivative of u, in (17) leads to, via (15), 

(20) v, = e:KTod -e, T T  K O  JJq)q. 

The choice 

guarantees that u, is negative definite outside a region in the error space 
containing e ,  = 0, which is attractive' for all trajectories o d  E %(.lo). The 
remarks for the general scheme in the previous section are still in order. I t  
should be noticed, however, that a singular case occurs when the actual wrist 
orientation differs from the desired wrist orientation by an Euler rotation of 
180". This corresponds to having (n, s, a) = (-nd, - sd ,  -ad) ,  with e ,  = 0. 
Therefore, as long as this case does not occur at t = 0, Eq. (21) guarantees that 

W the orientation error will uniformly decrease as anticipated above. 

x, 
Figure 4. Specification of the orientation error. 
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IV. EXTENSION TO REDUNDANT WRISTS 

It has been recognized in the robotics literature that kinematic redundancy 
is one key towards the realization of more versatile robots.4 It is well-known 
that a manipulator is termed redundant with respect to a given task when more 
than the minimum number of degrees of freedom to execute that task are 
available. With regard to general orientation tasks, then, a wrist will be 
redundant if it possesses more than three degrees of freedom. 

Most approaches in the literature solve redundancy according to the 
differential kinematic mapping (2), or (15), by using the pseudoinverse of the 
Jacobian matrix,"' which produces the instantaneous minimization of joint 
velocities. Baillieul et al."' pointed out, however, that with this technique 
singular configurations are not avoided in any practical sense. 

The extra degrees of freedom in a redundant structure, indeed, can be 
conveniently exploited to meet different constraints on the solution of the 
inverse kinematic problem. LiCgeois'" proposed to modify the pseudoinverse 
solution by the addition of a term in the space of redundancy-the null space 
o f  the Jacobian matrix-which is used for local optimization purposes. One of 
such constraints is constituted by the so-called manipulability measure intro- 
duced by Yoshikawa,'' which is an index of the ability of arbitrarily translat- 
inglorienting the end-effector. A low value of this measure means that the 
manipulator is close to a singular configuration. With reference to the wrist 
orientation differential kinematics (1 5) .  the manipulability measure can be 
defined as 

This allows for a so-called task augmentation strategy: i.e., the wrist orien- 
tation task space is suitably augmented to include the kinematic constraint 
expressed by (22). As observed by Baillieul et al.,'" however, the constraint 
has to be projected onto the null space of the wrist Jacobian. This will ensure 
that the constraint is met only o n  condition that it does not disturb the wrist 
orientation task which is the primary task, performing thus a true task-priority 
strategy.*' It is important to emphasize here that the inverse kinematic scheme 
for solving orientation based on the control law (14)' does not allow to extract 
a null space of the wrist Jacobian to suitably exploit for fulfilment of the 
constraint task. 

Theorem. The dynamic system of Figure 5 assures that the error e,, can be 
made arbitrarily small as above for the scheme of Figure 3, and the error 

wd denoting a desired constant value of manipulability, can be made arbitrarily 
small provided that the joint velocity solution has a component onto the null 
space of the wrist Jacobian J,, by increasing the positive scalar k,. 

Proof. From the scheme of Figure 5 ,  one can easily recognize that the 
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2 Cornput. 
a Block d , 

i q  
K, - J:(q) q L  I b 

control law (21) has been modified 

~ 

~ 

where j, = d w l d q  is the ( 1  x n) constraint Jacobian row vector, J', denotes the 
pseudoinverse of J,J and ( I  - J:,J,,) is a projection operator onto the null space 
o f  J,,. I t  is easy t o  show that the choice (24) produces the same results as (21) 
for the wrist orientation error tracking performance. 

Regarding the constraint error e,, define the positive definite Lyapunov 
function 

s( - )  ' 

a ( * )  ' 
rn 

1 
v, = - k,e$ 

2 (25) 

Its time derivative turns out, via (23), 

which, by virtue of (24), becomes 

At ihis point, as e,, is arbitrarily small (null in the limit) from (20) and (24), the 
first term in uw is negligible. The second term is negative only along the 



Chiacchio and Siciliano: Closed-Loop Jacobian Transpose Scheme 61 1 

directions of the null space of J'. Thus, by suitably increasing k,, w is taken to 
a locally minimum distance from wd as long as the required q has a component 
onto the null space of J,. 

Two remarks are in order regarding the solution (24): 

The most appropriate choice for wd is thought of as the maximum value 
achievable in the wrist workspace, so as to be independent of the 
particular trajectory assigned. As a matter of fact, if the wrist cannot 
achieve that maximum along the given trajectory, the algorithm will 
guarantee that w is locally maximized as seen from (27). 
As the pseudoinverse of J, has to be computed to construct the projector 
( I  - JLJ, ) ,  it may be convenient to modify the first term of the solution 
(24), according to (9) as 

which guarantees a null tracking error e,,. 

V. CASE STUDIES 

In the following, the inverse kinematic schemes presented in the previous 
section are tested for the spherical wrists of Paul and Stevenson" and of 
Yoshikawa." I t  is understood that the purpose of the wrist mechanism is only 
to change the orientation of the end-effector, while the position is varied by 
means of the arm supporting the wrist. 

Figure 6 shows the three-revolute joint system usually adopted in current 
industrial robots," while the four-revolute joint redundant system depicted in 
Figure 7 is constituted by a universal joint with two revolute joints at both 
ends.'* The design of Figure 6 has two cones of degeneracy inside the working 
region where the ability of arbitrarily orienting the end-effector (manipu- 

Y 

Figure 6. The three-revolute-joint spherical wrist.'' 



61 2 Journal of Robotic Systems-1 989 

Figure 7. The four-revolute-joint spherical wrist.12 

lability) becomes poor.'' This drawback is overcome by the design of Figure 7 
which has been argued to possess greater manipulability than the standard 
design.I2 For reader's convenience, the kinematics of the two wrists are 
detailed in the Appendix. 

Notice that the above two wrists are just schematic systems in that the 
question of interference between the links is not explicitly addressed here. It 
should be mentioned that practical designs do exist which are free from 
interference and singularity problems such as those proposed by StaniSiC and 
Penn~ck*~ and by Trevelyan et aL2' Nonetheless, joint limit and singularity 
avoidance constraints can be systematically embedded in the scheme of Figure 
5 according to the task space augmentation with task priority presented above. 

Numerical examples have been worked out. The trajectories for the desired 
orientation frame ( n d ,  Sd ,  a d )  are generated from trajectories assigned at the 
Euler angles of orientation ( a d ,  p d ,  y d ) ,  according to Eq. (13). In the space of 
Euler angles the trajectories are straight lines, with the usual trapezoidal 
velocity profiles. The initial configuration of either wrist is always assumed to 
orient the actual end-effector frame (n, 8, a) as the desired one ( n d ,  s d ,  a d ) ,  i.e., 
e,(O) = 0. The desired value of manipulability measure wd for the wrist of 
Figure 7 has been chosen as (see Eq. (A-7)). A sampling rate of 1 ms is 
adopted. This is seen to be sufficient to perform on-line all the computations 
required by the two schemes of Figures 3 and 5 on a 16-bit microprocessor 
system with floating point co-processor. The elements of the diagonal feed- 
back matrix K ,  and the scalar k, have gradually been increased until before 
numerical instabilities arise due to the sampling time. For each task trajectory, 
the resulting joint trajectories will be shown along with the orientation errors, 
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eviduated as thc norm of eEul = (ad - a yd - T ) ~ ,  and thc manipu- 
lability measures in the last example. 

A first trajectory goes from (adi, pdj, ydi) = (0,45,0)” to (ad,, pdf, yd,) = 
(90,90, -90)” in a time of 1 s. with a maximum velocity of IXOo/s in  the space 
of Eulcr angles. The results are plotted in Figures X and 9 for the scheme of 
Figure 3 applied to the wrist of Figures 6 and 7, with K,, = 12001 and 
K,, = diag ( i  800 1000 1000) respectively. The tracking performance is seen to 
be excellent. 

For the three-joint wrist of Figure 6, a second trajectory goes from 
(ad,. p d ; ,  yd i )  = (0, 0 ,O)O to (ad,, pd,, yd,) = (90,90, -90)” in a time of 1 s, with a 
maximum velocity of 180”ls in the space of Euler angles. Notice that the initial 
configuration (01, O,, 0,) = (0, 0,O)” orients the wrist such that a singularity 
occurs. The relative results are plotted in Figure 10, with KO = IOOOI. 

For the four-joint wrist of Figure 7, a third trajectory goes from 
(adi, pdi, ydi) = (0, 90, 0)” to (ad,, pdf, ydf) = (0,  0, -90)” in a time of I s, with a 
maximum velocity of 180°/s. Also in this case, the initial configuration of the 
mechanism (0,. 0*, 03, 0,) = (90,90,90,0)” is singular. The  results are plotted 
in Figure 1 1 ,  with KO = 10001. A common feature o f  the results in Figures 
IO(b)-1 I(b) is that a peak in the tracking error occurs, showing the effort paid 
to  leave the singular configuration. The maximum tracking error, however, is 
larger for the three-joint wrist, since the four-joint redundant wrist can leave 
the singularity in different ways. 

Finally, in order to test the task space augmentation for the four-joint wrist 
of Figure 7, a fourth trajectory goes from (ad;, pdi, ydi) = (45,90,0)O to 
(ad, ,  p d f ,  ydf)  = (150,90,0)O in a time of 1 s, with a maximum velocity of 
18O0/s. The scheme of Figure 3 is applied first with KO = 8001. From the 
results of Figure 12 it can be recognized that the trajectory crosses a 
singularity ( w  = 0 in Fig. 12c), but the tracking performance of the scheme 
(Fig. 12(b)) is still excellent. The scheme of Figure 5 is applied next with K,, as 
above and k ,  = 200. The results of Figure 13 clearly show that the wrist is 
kept off the singularity ( w  in Figure 13(c) is locally maximized along the 
trajectory), while the tracking performance is unchanged (Fig. 13(b)) in force 
of the task priority strategy. 

p,, - p 

VI. CONCLUSIONS 

A closed-loop computational scheme for solving the inverse kinematics of 
nonredundant and redundant wrists has been presented in this article. The 
scheme retains the advantages of a more general inverse kinematic scheme 
based o n  the computation of the transpose of the robot’s Jacobian. In case o f  
redundant wrists, it has been shown how a manipulability constraint can be 
suitably embedded into the solution, according to a task augmentation strategy 
with task priority. Different case studies have been developed which have 
shown the effectiveness of the proposed scheme, even at singular configura- 
tions of the two spherical wrists analyzed. 
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APPENDIX 
Figure 6 shows the three-revolute joiqt spherical wrist. Using the short 

notations sin ei = si and cos 6, = ci, the direct kinematic functions of interest 
are: 

a = [,I] = [ z:], 
0 -s1 a, 

1 0 a, 
.;[ 0 CI  (A-3) 

The direct kinematic functions for the four-revolute-joint spherical wrist of 
Figure 7 are: 

(A-5) 

Notice that some handy reductions have been carried out in deriving the 
above Jacobians since, for each given configuration q, the unit vectors s and a 
are already to be computed by the algorithms in the feedback loop and n is 
simply computed as n = s x a. 
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