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A robust tracking controller for a one-link flexible arm based on a model reference 
adaptive control approach is proposed. In order to satisfy the model matching conditions, 
the reference model is chosen to be the optimally controlled linearized model of the 
system. The resulting controller overcomes the fundamental limitation in previously 
published research on direct adaptive control of flexible robots that required additional 
actuators solely to control the flexible degrees of freedom. The nominal trajectory is 
commanded by means of a tracking control. Simulation results for the prototype in the 
laboratory show improvements obtained with the outer adaptive feedback loop compared 
to a pure optimal regulator control. Robustness is tested by varying the payload mass. 

INTRODUCTION 
Lightweight arms are a challenging research topic with potential to improve 

today's robot performance. Control is one key to effective use of lighter arms,'.' 
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but it is limited by uncertainties in the arm’s behavior and in the environment. 
The main problem with lightweight structures is the flexible vibrations that are 
naturally excited as the arm is commanded to move.3 

The first step in designing a control system consists of developing a dynamic 
model for the flexible arm. A general dynamic modeling technique was estab- 
lished by Book,4 based on a recursive Lagrangian-assumed modes method. If 
one is interested in the regulator control problem requiring that the arm reach 
a prespecified nominal state with satisfactory response , the approach of lineariz- 
ing the dynamic equations by assuming small motions around the nominal state 
and neglecting terms of higher order, proves effective. An optimal control for 
a one-link flexible arm was experimentally tested by Hastings and Book.5 Also, 
experimental results with linear models were reported by Cannon and Schmitz,6 
by Fukuda,’ by Sakawa et a1.,8 and by Chalhoub and Ulsoy.’ Frequency domain 
techniques, instead, were adopted by Book and Majette’O and recently revisited 
by Ower and Van de Vegte.ll 

On the other hand, if one is concerned with controlling the arm while it is 
moving along a predefined path with given velocity and acceleration of the joint 
variables, the technique of linearizing the system is likely to fail. Furthermore, 
linearization around a sequence of nominal states, as done by Sunada and 
Dubowski*z for instance, seem expensive computationally and not necessarily 
very robust when applied to the overall nonlinear dynamics. 

This article describes research on control for a one-link flexible arm moving 
along predefined trajectories. The resulting controller overcames the fundamen- 
tal limitation in previously published research on direct adaptive control of 
flexible robots that required additional actuators solely to control the flexible 
degrees of freedom. Previous efforts aimed at designing tracking controllers for 
flexible arms have been produced by Singh and Schy13 with a nonlinear inversion 
control, and by Davis and Hirschorn14 with a linear control. They have both 
taken advantage, however, of additional active tip actuators. A nonlinear joint 
tracking controller has been devised by DeLuca and Siciliano.” A singular 
perturbation approach has been pursued, instead, by Siciliano and Book.I6 

The approach adopted here is based on model reference adaptive control 
(MR4C),17 as recently proposed by Siciliano et a1.18 In order to assure the 
satisfaction of the so-called “model matching conditions”, the reference model 
is chosen as the linearized system (second-order terms neglected) as optimally 
controlled. Integral type adaptive actions guarantee the stability of the overall 
system, as is proved via the Lyapunov direct method. However, since the 
reference model turns out not to be decoupled, the reference trajectory is forced 
on the system by means of a tracking controller.lg A direct adaptive controller 
for a linear model of a flexible arm was also designed by Meldrum and Balas,20 
but stability was guaranteed only for a special class of trajectories. An indirect 
adaptive control conversely, with dynamic parameter identification was pro- 
posed by Canudas, De Wit, and Van den Bossche.21 

A case study based on a laboratory prototype, whose dynamic model is 
described in Hastings and Book22 shows that the control performs well when 
tracking a fast trajectory. The whole nonlinear system is considered for simul- 
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ation purposes. Moreover, the control proves robust to parameter variations 
such as payload changes. 

It must be mentioned that full state availability is assumed for control syn- 
thesis. While the state variables representing deflection can be obtained from 
strain gauge mea~urements,~ their derivatives need to be reconstructed by 
means of an observer.u 

PROBLEM FORMULATION 

Nonlinear equations of motion for a flexible arm can be derived using the 
Lagrangian a p p r ~ a c h . ~  The deflection of the elastic members is represented as 
a linear combination of admissible functions multiplied by time dependent 
generalized  coordinate^.^^ The flexible motion of a link is then described by 

where the 4i(q) are assumed in this article to be eigenfunctions of a clamped- 
free beam, Si(f)  are the generalized coordinates, and 7 is any point along the 
undeformed link (Fig. 1). Furthermore, assuming that the amplitudes of the 
higher modes of the flexible link are very small compared to the lower modes, 
n = 2 will be accurate enough to describe the flexible m ~ t i o n . * ~ . ~ ~  

The derivation of the dynamic equations for the one-link arm follows then 
as in Book4 and Siciliano and BookI6 (i.e., dropping the explicit reference to 
time dependence). 

Figure 1. The one-link flexible arm. 
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where 8 is the joint angle, M is the inertia matrix, fl andf2 are vectors containing 
nonlinear dynamic terms (interactions of angular rates and deflections), K is 
the effective spring matrix, u is the net input torque. 

Notice that in the model no actuator dynamics is considered, and no friction 
at the joints nor in the structural vibrations is explicitly included. Define the 
full state vector 

The dynamic m d e l  of the flexible arm of Figure 1 can be expressed in state 
variable form as 

X =  A(X)X + b(X)u ( 5 )  
where 

k1 A2(xP, x")x" = M-' 

B2(xP) = M -  [A] 
At this point it becomes clear why the tracking control problem is difficult. 

If the goal is just to require that the arm reaches a prespecified nominal state, 
linearizing (5 )  around the nominal state leads naturally to an optimal regulator 
in which one can eventually specify the closed loop poles of the linearized 
system with an arbitrary degree of stability. However, if one desires to control 
the arm while it moves along a predefined trajectory, in terms of joint angle 
rates and accelerations, a different approach must be sought, rather than trying 
to linearize ( 5 )  around a sequence of nominal states. 

In order to obtain good trajectory tracking and steady-state accuracy, a direct 
MRAC approach1' is pursued in the following. The basic idea of this approach 
is to define a linear time-invariant reference model and directly synthesize a 
controller that assures that the error between the states of the system and those 
of the model tends to zero. To this purpose let 
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be a linear time-invariant reference model of the same dimension as the system 
described by Eq. (5). 

As in the work on MRAC for rigid  manipulator^,^^*^^ it would seem appropri- 
ate to select a decoupled model for (6), i.e., Alo = diag(ullalzal~), ali < 0, Azo = 
d i a g ( u , , ~ ~ ~ a ~ ~ ) ,  uzi < 0. However the model matching conditions that are the 
basis of an MRAC approachz8 cannot be satisfied independent from the partic- 
ular values of A ,  A,, b ,  6,. This can be confirmed by observing that the 
system described in (5) does not hgve as many control inputs, as nontrivial state 
variables (0, &, &), i.e., the lower block of vector bo in (6b) is not a square 
block (a row vector in this case). 

In the particular case of the system in (5), however, the nonlinear terms do 
not play a dominant role, thus it appears adequate to choose a reference 
model on the basis of the linearized model of the system (seoopd-order terms 
neglected) as optimally controlled; this approach will be outlined in the next 
section. 

CONTROL LAW DEVELOPMENT 

system (5)-(6) is proposed in the form 
Following the basic MRAC scheme in Landau” a control for the overall 

where u1 is a linear model following control and u2 represents the adaptive 
control that is devoted to assuring the stability of the whole system. Under the 
action of control (7), the system (5) becomes 

X = A,(X)X + b,(X)urn @a) 

Let then 

e = X , - X  (9) 

be the error between the model and system states. On reduction of (6) and (8), 
the error dynamics are found to be 

i = Arne + (Am - A J X  + (b, - bs)um (10) 

In order to satisfy the model matching conditions, the following should hold:28 
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where A and 6 are the linearized forms of A and b ,  respectively. Assuming 
that the pair (A, b)  is stabilizable, KT can be designed by means of optimal 
control techniques for the linearized system in (A,  b) .  K ,  is chosen to equal 1 
for simplicity. Substituting (8b) and (11) into (10) gives 

t = Arne + [AA - AbKz + bAKT]x + [AbK, - bAK,]um (12) 

A - A = h A  (134 

6 - b = A b  (13b) 

where 

and 

express the difference between the actual system and its linearized parts. In 
order to guarantee the stability of the overall system, a candidate Lyapunov 
function is 

V =  eTPe + tr[(Am - A,)TF; '(Am -A,)]  + tr[(bm - b , ) T ;  ' (bm - b,)] (14) 

where P, Fa, Fb are positive definite matrices. The derivative of V including 
(12) yields: 

V =  eT(AzP + PAm)e + 2tr[(AA - AbKz  + b A K 9 ) ( P e X T  - K'A,)] 

+ 2tr[(AbK, - bAKJT(Peum - Fi'b,)] ( 1 5 )  

Setting, as is usual, 

where H i s  a positive definite matrix, and assuming that the rate of the adjust- 
able gains is larger than that of the system, AKx, AKu %- A, b,  leads to 

V =  -eTHe + 2tr[(hA - A b E +  b A G ) T ( P e X T  t Fi 'bAkT) ]  

+ 2tr[(AbKu - bAKJT(Peu, - Fi'bAfG)] (17) 

At this point the choice of 

AK? = -(bTF;'b)-'bTPeXT, 

AK,Tl,=,= A K S  

AK, = (bTFilb)-'bTPeum, (18b) 
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results in cancellation of the last two terms in (17), and assures that V is 
negative definite, thus guaranteeing that e -+ O(X-+X,). 

The only problem now remaining is to force the system to track a desired 
trajectory. This point has been addressed by Meldrum and Balasm but, even 
with an equal number of controls and output variables, only a sinusoidal refer- 
ence trajectory could be commanded of the rigid body motion. An inverse 
model techqique of the type proposed in Balestrino et aLZ6 cannot be adopted 
since the model (a), satisfying (l l) ,  turns out not to be decoupled. However, 
the state-space design existing in the reference model (6) appears to provide a 
possible way out of this dilemma by specifying the development of systematic 
design procedures for both the optimal regulator and the tracking problems. l9 

TRACKING CONTROLLER 

The tracking problem was initially conceived in order to extend state-space 
regulator methods to problems having external command inputs. Therefore, 
consider an output form 

Y =  cx, (19) 

where Y is the output to be tracked, C is a constant matrix. 
Meanwhile, a control system for the reference model (6) and (19) must be 

synthesized such that in the steady-state condition, the output Y becomes equal 
to some arbitrary desired constant reference output Y,(t) = Y,. In order to 
pursue this goal, the integral error W between the reference and the actual 
output is defined as follows: 

ti’ = Y,  - Y or W = (yr - Y )  dt I’ 
and the tracking control law can thus be written as 

where K,,,, KI are the proportional and the integral gains respectively. Adjoining 
(20) and (21) to (6), gives 

2 = AoZ + BOYr (22) 

where ZT= [IYT,, W] 
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It is claimed that the dynamic system (22) is asymptotically stable, if KI is 
chosen appropriately. Then, in the steady state, 

where the inverse matrix exists due to the asymptotical stability. Clearly, the 
desired zero error between Y and Y, is also obtained in the steady state (i.e., 
lim Y(t) = Y, or lim W(t)  = 0). Now, the objective is to find the gains Km and 

KI.  Define 
t-4- t-rm 

AX,= X m -  X m ,  A W =  W -  Way Aum= urn- U, (24) 

where urn = - KmXm - KIWa. 
The transient response is then governed by the set of differential equations 

ti ["I = C A m  0 ] [  u r n  ] + [:m] Au, 
dt AW -C 0 AW 

An LQR design is utilized to minimize the performance functional for (25) 

This results in 

where S = [ 4 l  'I2] > 0 is the solution of the Riccati equation. 
Sl2 s22 

In summary, since the constant matrix C is determined by the output Y, one 
needs at least as many inputs as the number of outputs to be tracked and needs 
the dynamical system (25) to be ~ontrollable.'~ Therefore, Km and K f  are 
simultaneously derived as in (27). With only one input, for example, the 
dynamical system (25) in the case of a one-link flexible arm may be uncontroll- 
able when the joint velocity is tracked as is shown in the following example. 
This may result in a singular solution for the Riccati equation (27). Finally, the 
total control problem becomes one of choosing the feedback constant gains K,, 
K,, along with the adaptive gains AK,, AK, for system stability, and K,,, as 
well as the integral gain KI for the desired reference tracking. In other words, 
u is composed of (7) and (21). The block diagram of the total system is shown 
in Figure 2. 
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Figure 2. Block diagram of the total control scheme. 

THE CASE STUDY 

In the following a case study is developed for the one-link flexible arm existing 
in the Flexible Automation Laboratory at Georgia Tech, whose specification is 
fully described in Appendix A. The mode shapes (A)  used to model the arm 
are shown in Figure 3. 

As far as the joint angle trajectory is concerned, the arm is required to move 

1st and 2nd Mode Shapes 

<--- - - - - - -  ---_ I -- 

Length (ft.) 

_-----  2nd Mode I 
Figure 3. First and second mode shapes. 
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..................................................................................... 

........ Ref. I n p u t  
Adaptive 

-------- Nonadaptive 

Time [sec.] 

Figure 4. Joint position profiles (joint velocity to be tracked). 

from 0, = 0" to Of= 90" in 2 s, following a standard trapezoidal velocity profile 
with maximum velocity 6=6O0/s. The constant feedback gain resulting is 
KT= [65.27 -176.13 -2937.23 27.27 -7.50 -67.271 and K ,  = 1. AKT and 
AKu (18) have been chosen with Fa = 21, Fb = 0.005, and H = I in (16) such that 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time [sec.] 

Figure 5. Joint velocity profiles (joint velocity to be tracked). 



Yuan et al.: Adaptive Control of Arm 

N 
A 1  

-- 

lo: 30. 
* :  

-e k 2! .E t - 

673 

,, /------. ,.---.* 
,--. ,.-. 

*.J' 

--_- ., ,' #* '\, '. ' ../' /-- *-. 
I' 

: 
, --_____ Nmadapt lve  

- Adaptive 

, 

.--.__.* 

I 

- 

the system under adaptive control is guaranteed to be stable. AKL and AKuo 
are null here. An LQR design with Q = 21 and R = 1, which is used to derive 
the tracking controller, results in KL = [O.O -0.635 -8.591 0.06 -0.056 0.0461, 
KI = 0.031 for the joint angular velocity to be tracked (Figs. 4-7) (i.e., CT= 
[OOOlOO]). For the joint angular position to be tracked (Figs. 8-11) (i.e., 
CT = [ l o  0 0 0 O]), the tracking controller is KZ = [0.616 -0.793 -10.004 0.1335 

0.5 1 1.5 2 2.5 3 3.5 4 
Time (sec.) 

0 0.5 1 1.5 2 

Time [sec.] 

I ' " ' I ' ' " I  
5 3 3.5 4 

Figure 7. Control torques (joint position to be tracked). 
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......... Ref. Input 

Nominal Payload 

-------- Doubled Payload 

0 0.5 1 1.5 
T i'ime [sec.] 

Figure 8. Joint position profiles (joint position to be tracked). 

-0.034 0.051, KI = 1.414. For the end-point position to be tracked (Figs. 12-15) 
(i.e., CT=[42.02 -1.365000]), Kz and K I  become [2.41 -1.27 
-14.32 0.396 0.05 0.0058] and 1.4142. Also notice that the dynamic system that 
is linearized around zero states from (4) is used to derive the optimal (constant) 

.......... Ref. Input 

Nominal Payload 

---------- Doubled Payload 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time [sec.] 

Figure 9. Joint velocity profiles (joint position to be tracked). 
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Nominal Payload 

Doubled P a y l o a d  - - - - - - - - - 

A 

Figure 10. End point position errors (joint position to be tracked). 

Figure 11. Control torques (joint position to be tracked). 
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Nominal Payload 

a, 0-  

c -  Doubled Payload 
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8 $- 
. w .  
C 
7 .  
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N 
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0 0.5 1 1.5 2 2.5 3 3.5 4 
Time (sec.) 

Figure 12. Joint position profiles (end-point position to be tracked). 

gains K,. This results in unstable responses for the constant (nonadaptive) 
feedback control system, when the arm travels at high velocity. 

Different sets of simulations have been carried out, one with the above design 
parameters, and another one just with the constant feedback gains K,' and K,, 
without any outer adaptive control. In order to analyze the control performance 
the whole nonlinear model has been simulated for the system ( 5 )  in both cases. 

Nomlnal Payload 

-___-___ Ooubled Payload 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time (sec.) 

Figure 13. Joint velocity profiles (end-point position to be tracked). 
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- Nonlml Payload 

..... -.. Doubled Payload 

Figure 14. End point position errors (end-point position to be tracked). 

A sampling rate of 0.1 m s has been adopted. Furthermore, the robustness of 
the system control to parameter variations has been tested by doubling the 
payload mass, without changing the constant control gains. Figures 4 through 
15 illustrate the results obtained. I t  can be recognized that the adaptive control 
performs better than the simple optimal control, as it results in better tracking 
accuracy. 

First consider the case (Figs. 4-7) of joint velocity tracking. Figure 4 shows 

Nomlnal Payload 

-------- Doubled Payload 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time (sec.) 

Figure 15. Control torques (end-point position to be tracked). 
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the joint position response with and without adaptive control and corresponding 
reference input. Figure 5 shows the joint velocity. Note better tracking occurs 
with adaptation but at the expense of some oscillations as gains adapt. Figure 
6 shows differences in the end-point position error with respect to the reference 
signal. Figure 7 shows the joint torque. It should be pointed out that the 
dynamical system (25) does not satisfy the criteria of controllability. Therefore, 
the solution of the Riccati equation is singular, which causes undesirable re- 
sponse with inaccurate tracking and oscillations. However, such problems do 
not arise for joint position and end-point tracking. 

When the system is used to track a joint position command (Figs. 8-11), the 
nonadaptive control is unstable due .b uncompensated nonlinearities and thus 
not plotted. The joint position response of the adaptive control is shown in 
Figure 8 with the reference joint position command and responses for a nominal 
payload as well as twice the payload used in the design. The low steady-state 
error and the low effect of payload change illustrate the robust properties of 
the controller. Joint velocity, end-point position error, and control torques are 
illustrated in Figures 9-11. 

Another quantity tracked in this analysis is the end point position. Figures 
12-15 show the time responses for this simulation. The results are almost 
identical to the above joint position case, except that the end point position 
error is comparatively small during this control process. Note that this requires 
that the reference model predict the end-point position. 

CONCLUSIONS 

A model reference adaptive control has been presented for a one-link flexible 
arm, which is based on the preliminary results obtained in Siciliano et a1.'* In 
order to comply with the model matching conditions, the reference model has 
been set up to be the linearized arm model of the system as optimally controlled. 
Since the resulting reference model is not decoupled, the desired joint angle 
trajectory is commanded through a tracking controller preceeding the overall 
system. Full state availability has been supposed for control synthesis. The 
extension of this work to the use of an observer has been initiated and described 
in Yuan and Book.23 

A case study has been developed for a prototype in the laboratory. Simulation 
results have shown the advantage of using an outer adaptive feedback control 
with respect to the pure optimal control and the robustness of the system control 
to payload variations. Furthermore, for the tracking controller, only the joint 
velocity command is not recommended based on the results of this work. 

It must be emphasized, however, that for multiple-link flexible manipulators 
the results obtained in this article appear only partially satisfactory. In the case 
of more degrees of freedom, the nonlinear coupling terms in the joint variables 
(which are not present in the one link case) may become dominant, particularly 
at high speed, and control performance is likely to be derated. 

This point, along with the problem of state reconstruction, or eventually 
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considering output feedback, constitute two challenging research issues needing 
additional investigation. 

The authors would like to acknowledge that this material is based in part on work 
supported by the Computer Integrated Manufacturing Systems Program at Georgia 
Tech, and by the NATO Science Program (Special Panel on Sensory Systems for Robotic 
Control) under grant no. 687/86. 

APPENDIX A: SPECIFICATION OF EXPERIMENTAL PROPERTIES 

Beam 

Length: 48 in. 
Section: 3/16 X 3/4 
EI: 4120 
Material: Aluminum 
Alloy: 6065-T6 

Payload 

Weight: 0.1 lb 
Material: Aluminum 
Alloy : 6065T6 

Torque Motor 

Manufacturer: Inland Motor 
Type: T-5730 (Permanent Magnet DC) 
Rotor Inertia: 0.06 in.-lb-s2. 
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