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User-Defined Accuracy in
the Augmented Task Space

Approach for

Redundant Manipulators

Stefano Chiaverini?, Olav Egeland?,
Jan Richard Sagli®, and Bruno Siciliano?

This paper shows how singularity robust redun-
dancy resolution can be performed using the aug-
mented task space approach with user-defined
weighted damped least-squares. The resulting
scheme achieves a task priority strategy between the
end-effector task and the constraint task. The mini-
mum singular value of the augmented Jacobian is
exploited to calculate appropriate values for the
damping and weighting factors. The scheme is suc-
cessfully implemented in simulation studies on a
two-joint planar arm and on a seven-joint manipula-
tor with a kinematic design derived from the PUMA
geomelry.

1. INTRODUCTION

Many applications of manipulators with redundant
degrees of freedom are conveniently described in the
framework of the so-called augmented task space
approach independently introduced by Egeland [1]
and by Sciavicco and Siciliano [2], and later used by
Seraji [3] under the name of configuration control.
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The simple common idea is to augment the end-
effector task with a suitable constraint task that is
aimed at specifying the internal motion of the arm;
one typical constraint is to require the manipulator
to avoid kinematic singularities. On the other hand,
this formulation suffers from the drawback of algo-
rithmic or artificial singularities which are intro-
duced in addition to the kinematic singularities, due
to conflicts between the two tasks.

Conceptually similar to the above approach is
the use of inverse kinematic functions, defined on a
singularity-free workspace proposed by Baker and
Wampler [4]; however, the definition of closed-form
inverse kinematic functions is feasible only for
manipulators with few joints. Baillieul [5] included a
constraint task vector in his extended Jacobian
scheme which was derived through the optimization
of a scalar objective function. This method is rather
simple but fails when the extended Jacobian becomes
singular even though the end-effector Jacobian has
full rank; this logically corresponds to the occurrence
of the above artificial singularities.

Nakamura, Hanafusa, and Yoshikawa [6] pro-
posed the so-called task priority strategy that estab-
lishes an order of priority between the end-effector
task and the constraint task. This method is compu-

~ tationally more expensive than the previous ones,

but remarkably gives a correct primary end-effector
solution as long as the end-effector Jacobian main-
tains full-rank. Nevertheless, the solution is ill-condi-
tioned close to artificial singularities due to the use
of a pseudoinverse of a matrix that becomes near
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rank-deficient. The drawback was addressed by
Maciejewski and Klein [7] who devised an effective
solution obtained by treating the above matrix as sin-
gular in the neighborhood of the artificial singularity.

A remedy for the handling of artificial singulari-
ties was proposed by Chiacchio and Siciliano [8]
using the transpose of the ill-conditioned matrix
together with a feedback correction term. The tech-
nique was later refined by Chiacchio et al. [9].

The above discussion suggests that it would be
desirable to have a solution that combines the com-
putational simplicity of the augmented task space
technique with the effectiveness of the task priority
scheme, and at the same time gives acceptable trajec-
tories in the neighborhood of (artificial) singularities.
This is achieved in the present work, where a
method based on weighted damped least-squares
solution [10] with user-defined accuracy [11] is pre-
sented. The damped least-squares yields singularity
robustness [10, 12] and the use of proper weighting
allows the shaping of the solution along given task
space directions [11]. In particular, a true task prior-
ity strategy is performed by giving lower weight to
the constraint task which is imposed for keeping the
manipulator off kinematic singularities [13]. The sin-
gular value decomposition is invoked to analyze the
features of the method; an estimate of the smallest
singular value [14], which gives a measure of close-
ness to singularities, is used to compute suitable val-
ues for the damping and weighting factors.

The scheme is first applied to the simple case of
a two-joint planar arm, and then is tested on a seven-
joint manipulator derived from the PUMA geometry.
Simulation results are reported in the paper.

2. AUGMENTED TASK SPACE

Let q denote the n-dimensional vector of joint coordi-
nates of the manipulator and xz the m-dimensional
vector of end-effector task coordinates. The differen-
tial task space motion is described by 8x g = x5t
where &t is the time increment. The (m X n) end-
effector Jacobian matrix Jg (q) is defined by xg = J¢
(q)q which, in terms of incremental motions, gives

oxg=Jr(q)oq (1)

where éq = §ét.

In configurations where J is rank deficient, that
is, when rank(Jz) = r with r < m, the manipulator is
in a singular configuration and there exist directions
of the end-effector task space along which motion is
not feasible. Further, when m < n the manipulator is
kinematically redundant with respect to the given

end-effector task, and (n — m) degrees of freedom
become available to specify the motion of the manip-
ulator in all n-dimensional joint space.

The augmented task space approach [1, 2] pro-
vides a natural framework to exploit redundancy in
robotic systems. An additional constraint task is
introduced by specifying an (n — m)-dimensional
vector X as a function of the manipulator joint vari-
ables. Accordingly, an ((n — m) X n) constraint Jaco-
bian matrix J¢ can be defined through

sxc=llaba. @

ox = oxg ’
oxc
Then, defining an n-dimensional task increment
equations (1, 2) can be combined into

| I5(q) '
&x =J(q)éq = ,
q)5q (Ic (q))ﬁq (3)

where ] is the (n X n) augmented Jacobian matrix.
The joint increment 8q can be computed from (3) as

8q=]"" (g)éx, (4)

on condition that the matrix J has full rank. To the
purpose, even if the end-effector Jacobian J is non-
singular, the augmented Jacobian J may be singular.
This happens when the rows of the constraint Jaco-
bian J become linearly dependent on the rows of Jg,
indicating that the constraint task is in conflict with
the end-effector task. In this case, the manipulator is
said to be in an artificial singularity and no exact
solution for 6q will exist unless &x is in the range
space of J. Actually, the constraint task is often cho-
sen to keep the manipulator off kinematic singulari-
ties; therefore, the occurrence of an artificial
singularity is really an undesirable effect from a prac-
tical point of view.

An effective way to handle the conflicting task
situations is offered by the task priority strategy [6],
that assigns different priorities to the two tasks and
ensures the correct execution of the task with higher
priority. Instead of solving (3) directly as in (4), the
joint space increment is computed as—dropping the
dependence on g—

8q = JEoxg + (I - JEIE)UcU — JEJE)) *(8xc — JJE 8x5), (5)

where the symbol “*” denotes the pseudoinverse ofa
matrix. Solution (5) can be simplified to (7]

8q = Joxg + Ul - J3)e)) * (8xc — JJEéxe).  (6)
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From (5) it is easily seen that Jg8q = x5 which
means that if Jz has full rank the end-effector motion
is correctly executed and is unaffected by the con-
straint task. This solves the problem of artificial sin-
gularities only in part, because the solution (5) or (6)
still involves the computation of the pseudoinverse
of the matrix Jo (I — J4J£) which is rank-deficient at
an artificial singularity. In particular, it can be shown
that this matrix has full rank (n — m) if and only if
the augmented Jacobian J has full rank n [9]. This in
turn reveals that, when a pseudoinverse of the matrix
Jc (I — J2Jg) exists, the task priority solution gives
the same solution as the pure augmented solution
(4), but still the problem remains in the neighbor-
hood of artificial singularities.

A first possible way to tackle the above inconve-
nience is to use a damped least-squares solution [10,
12} in connection with the matrix J¢ (I = J£Jg) in
such a way that the errors due to damping will
mostly affect the secondary constraint task direc-
tions. It is anticipated, however, that the computa-
tional requirements of such a solution might be
impractical for on-line implementation of the tech-
nique.

A computationally inexpensive alternative is to
modify the solution (6) resorting to the transpose of
the constraint Jacobian together with a suitable feed-
back correction term for the constraint task [8, 9].

3. WEIGHTED DAMPED LEAST-
SQUARES WITH
USER-DEFINED ACCURACY

As pointed out above, the solution to equation (3)
becomes ill-conditioned in the neighborhood of
(kinematic or artificial) singularities for the aug-
mented Jacobian matrix. In this case, solution (4)
cannot be used any more and a robust inverse solu-
tion must be sought.

Nakamura and Hanafusa [10] and Wampler [12)
independently proposed the adoption of the damped
least-squares solution to (3) in the inverse kinematics
algorithm. The solution minimizes the index

L = ||6x — Jéqll* + A?*|8qll?, 7

where a trade-off between solution accuracy—first
term of (7)}—and solution feasibility—second term of
(7)—is set through the damping factor A.

Proper weighting [10] can be introduced in (7)
concerning the accuracy of the solution along differ-
ent task space directions [11). This technique can be
conveniently used also for redundant manipulators
[13). In particular, for the augmented task space

increment 8x, different weighting can be imposed for
the end-effector task and the constraint task. A
weighted task increment is thus defined as

5% = Wéx = Jéq, (8)
w =(l o ) ©)
0 W,

= JE
()
Welc)
By choosing W, = wl, the weighted damped least-
squares solution minimizes the index

L = ||6xg — Jedql? + wAlléxc — Jcoqll? + A¥lisql. (11)

It can be easily shown that the joint space increment
is given by

8q = JF)s + wi&Jc + NI (JF 8xg + w?Edxc). (12)

In terms of the singular value decomposition, solu-
tion (12) can be written as

n
g;
« ,z_:‘ of+A
where o; is the i-th singular value of matrix §, and v;
(u,) is the i-th input (output) singular vector of matrix

f, that is, .
)= Zﬂ'}'“f"?.

i1

where

and

(10

S v,u; 0%, (13)

(14)

The singular values o; and the singular vectors v; and
u; will depend on the weighting matrix W. This has
no impact on the solution &q as long as A << 0.

Close to artificial singularities (J is near rank-
deficient), where A > 0,4, for some r < n, the solution
can be shaped by selecting a proper weighting factor
w. In particular, if w << 1 and Jghas full rank, the
first m output singular vectors will be practically
aligned with the end-effector task space directions,
while the damping will mostly affect the constraint
task space directions. In other words, a true task pri-
ority strategy is accomplished by this technique.

To study the effect of weighting and damping in
detail, the error in the augmented task space coordi-
nates can be analyzed. The joint space increment cor-
responding to a pure inverse solution to equation (8)
can be written in terms of the singular value decom-
position as 0, 4

6q = Z;‘ v uj8%. (15)
=1 1
The error in the joint space due to damping, e;, can
be obtained by subtracting (13) from (15), that is,
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n 2
eq=2—-)‘-2—1,]v u‘8x (16)

oo+ A
The resulting error in the augmented task space is
given by e; = Je,, which on reduction of (14, 16) gives

O _2 +)L2 a7

lti

Assuming that o, > A, the error can be approxi-

mated as
o= 2

i=m+1 l' +A

u;u, (18)

which shows that the error essentially occurs along
the constraint task space directions.

Far from artificial singularities, there is actually
no need to weight the solution nor even to resort to a
damped least-squares (if Jzhas full rank). This fact
. suggests the use of both varying damping factor A and
varying weighting factor w to suitably tune the solu-
* tion with respect to the distance from singularities.

On the other hand, the weighting factor w should
not introduce itself excessive ill-conditioning of J:
Indeed, the region inside which the manipulator is
treated as singular is established by A; choosing a
much too low value of w would unnecessarily
enlarge the region where damping is active. There-
fore, it is convenient to choose w> A.

Concerning the actual determination of the
weighting factor w and of the damping factor A, the
minimum singular value o, is significant to detect
the occurrence of near-singular configurations. An
estimate of o, can be effectively obtained via the
numerical technique illustrated in [14].

The following choice for the weighting factor and
the damping factor [11] can be recognized as to
ensure continuity and good shaping of the solution:

()

(0

A% =4
= whend,2€¢ (19)

otherwise,

2 2 20
R [ e

otherwise,

where &, denotes the available estimate of the mini-
mum singular value, € sets the size of the singular
region, Apm,, is the maximum value of the damping
factor, and w,, is the minimum value of the weight-
ing factor.

Finally, it should be mentioned that an inherent
advantage of the solution (12) is that it properly

works also close to kinematic singularities (Jzis near
rank-deficient). To achieve the same performance
using the original task priority solution (6), one
should replace each pseudoinverse with a damped
least-squares inverse, thus increasing the overall
computational burden.

4. CASE STUDIES

In the following, the weighted damped least-squares
solution with user-defined accuracy is tested in two
case studies: In the first one, a simple two-joint pla-
nar arm is considered to demonstrate how the
method essentially works. In the second one, a
seven-joint spatial manipulator is considered to
demonstrate the applicability to a real robot.

4.1 Two-Joint Planar Arm

The proposed method is applied in simulation to the
two-revolute-joint planar arm depicted in Figure 1 in
its initial configuration. The end-effector task xgfor
the arm is to track a motion trajectory along the x,
axis, and then the arm is redundant with respect to
this task. The augmented task space technique is
applied, with an additional constraint task x, consist-
ing of a motion trajectory along the y, axis.

The manipulator is kinematically singular with
respect to the end-effector task if sin g, = 0 and sin g,
= 0. Artificial singularities appear when sin g; = 0,
that is when the arm is stretched out or folded up; in
this case, the reference for the constraint task cannot
be tracked independently of the reference for the
end-effector task.

The weighted damped least-squares solution
with user-defined accuracy is used to give priority
to the end-effector task over the constraint task.
The damping factor A is computed as in (19)
with Apg = €= 0.01, while the estimate of the mini-

4 LT 4
Yo

Figure 1. The two-joint planar arm.
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Figure 2. Space-plot of endpoint
motion in the simulation of the
two-joint arm.
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mum singular value &, is calculated according to
[14]. The weighting factor is computed as in (20)
with Wnin = 0.1.

The reference trajectory is a straight line with
constant velocity for both components of the aug-
mented task space.

As illustrated in Figure 2, both references xgand
xc are tracked until joint 2 is stretched out (artificial
singularity). Then the end-effector continues to track
xg accurately, keeping joint 2 stretched out, while
there is an increasing error on the secondary compo-
nent xc. The time-plots for the estimate of the small-
est singular value &, and the damping factor A are
shown in Figure 3, which confirm the effect of the
damping when the arm is proximal to the artificial

singularity.

4.2 Seven-Joint Manipulator

The proposed method is now applied in simulation
to the seven-revolute-joint manipulator depicted in
Figure 4 together with its Denavit-Hartenberg para-
meters. The kinematic structure is derived from the
well-known PUMA geometry with an extra roll joint
in the shoulder which was proposed in [15]. Detailed
kinematic analysis for this structure can be found in
{16, 17], which reveals the following kinematic sin-
gularities:
1. sin g, = 0 (elbow singularity),

2. sin g, = 0 and cos g; = 0 (shoulder/shoulder
singularity),

1.3%

1.4 1.435 1.9

3. sin g, = 0 and sin gg= 0 (shoulder/wrist singu-
larity),
4. sin gg= 0 and cos gs = 0 (wrist/wrist singularity).

The end-effector task x for the arm is to track a
motion trajectory for the six components (three of
position and three of orientation), and then the arm
is redundant with respect to this task. The aug-
mented task space technique is applied; the addi-
tional constraint task xcis the extra joint g;. This
choice is very effective because the analysis of artifi-
cial singularities follows directly from the analysis of
the kinematic structure of the original PUMA manip-
ulator. In fact, the constraint Jacobian J.is the row
© 0 1 0 0 0 0) which is added to the
end-effector Jacobian J; to form the augmented Jaco-
bian J; then, a simple shift of column 3 of J to the last
column gives the matrix

which has the same singularities as those of the (6 X
6) matrix Jpyma.

At this point, it is easy to recognize that the
resulting artificial singularities are:
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Figure 3. Time-plot of the ©.08
estimate of the smallest singu-
lar value &, and the damping
factor A in the simulation of the ~ ©-97

two-joint arm.

0.02

A i

1. sin gg = 0 (wrist singularity),
2. d;sin g, + dssin(g, + g) =0 andsing; =0
(shoulder singularity).

Notice that the elbow singularity of the PUMA geom-
etry is also a kinematic singularity for the seven-joint
manipulator, and then is not strictly considered to be
an artificial singularity. -

The weighted damped least-squares solution with
user-defined accuracy is used to give priority to the
end-effector task over the constraint task. The damp-
ing factor A is computed as in (19) with Ang, = €= 0.03,
while the estimate of the minimum singular value o,
is calculated according to [14]. The weighting factor is
computed as in (20) with Wy, =0.1.

First, a trajectory through an artificial singularity
is assigned. The initial configuration of the manipula-
toris

Figure 4. The seven-joint
manipulator.

0.4 0.§  0.8 1 1.2
time (8)
q=(0 -=/8 0 -3w/8 0 O 0)T;

a saw-tooth reference is given in the y, direction,
while the remaining components of the end-effector
task space are left constant. The reference for the
constraint task is xc= 0 which makes the manipulator
to work around the “nominal” PUMA configuration,
which is known to have a good kinematic design.

The tracking of the end-effector trajectory is
accurate. Figure 5 reveals an initial deviation for the
constraint variable which is compensated by the
wrist angles gsand g, that rotate +7/2; thus, the next
time the trajectory passes through the artificial singu-
larity the commanded motion is feasible. '

The time-plots of the estimate of the smallest sin-
gular value &, and of the damping factor A in Figure 6
show the periodic occurrence of the artificial singu-
larity and the handling thereof. In fact, it can be seen

Denavit-Hartenberg
parameters

Joint |6 ala]| d

1 0] 9]0 0

2 |0{-90]|0 0
3 |0| 9}0]|1.0m

4 |0]-90)0 0
5 |0]9]|0|10m

6 |0|-90]0 0
7 |0] 0/0]03m
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Figure 5. Motion of the constraint 0.05
variable g; in the simulation of the
seven-joint manipulator going through ob

T

an artificial singularity.

-0.0%
-0.1

=0.15

that the solution algorithm does not remove the arti-
ficial singularity but, thanks to the weighting, allows
to align the range space of the augmented Jacobian
along the directions of the commanded motion.

Next, a trajectory starting from a kinematic singu-
larity is assigned. The initial configuration of the
manipulator is

g=(0 0 0 -w/2 =/2 0 O)T;

notice that this is not an artificial singularity (sin gg=
0) because also cos gs = 0. The same saw-tooth refer-
ence as above is given in the y, direction while the
remaining components of the end-effector task space
are left constant. The reference for the constraint task
is again x-=0.

The tracking of the end-effector trajectory is
accurate. The first 0.5 seconds of the motion in
Figure 7 show that a very small initial deviation
occurs for the constraint variable; incidentally,
observe that the motion of g; cannot help the manip-
ulator exit the singularity. In any case, q; is kept
close to the reference value along the rest of the
commanded trajectory.

The time-plots of the estimate smallest singular

value o, its estimate &,, and of the damping factor A .

in Figure 8 for the same 0.5 seconds clarify the exit
from the singularity; in detail, the singular value
associated with the wrist/shoulder singularity
increases fast, and the singular value associated with

time (8)

the constraint variable becomes the smallest. Also in
the Figure, the deviation of the actual singular value
o, from its estimate &, can be appreciated.

5. CONCLUSIONS

An inverse differential kinematic scheme for redun-
dant manipulators has been presented in this work.
The solution has been derived in the framework of
the augmented task space approach, according to
which an augmented Jacobian square matrix is
obtained by adding a suitable constraint Jacobian to
the ordinary end-effector Jacobian. The damped
least-squares method has been used to handle the
occurrence of both kinematic singularities and artifi-
cial singularities, the latter being originated by con-
flicts between the end-effector task and the constraint
task. A user-defined strategy has been shown to offer
the possibility of achieving task priority between the
two tasks by weighting the relative task increments;
usually, the end-effector task prevails over the con-
straint task. Singular value decomposition has been
invoked to analyze the features of the solution and
an estimate of the minimum singular value has been
used for the determination of suitable damping and
weighting factors. The two simulation studies for a
two-joint planar arm and a seven-joint manipulator
have validated the results anticipated in theory.
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Figure 6. Time-plot of the estimate of the smallest singular value o, and the damping factor A in the simulation of the
seven-joint manipulator going through an artificial singularity.
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Figure 7. Motion of the constraint variable g, in the simulation of the seven-joint manipulator started from a kinematic

singularity.
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M i Figure 8. Time-plot of the
smallest singular value o3, its
4 estimate o; and the damping fac-
tor A in the simulation of the
seven-joint manipulator started
from a kinematic singularity.
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