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Robot Redundancy
Resolution at the
Acceleration Level

Alessandro De Luca?, Giuseppe Oriolo’,

and Bruno Siciliano?

W present different methods for solving robot
kinematic redundancy at the acceleration level.
Their features are discussed with respect to velocity
solution schemes and potential benefits are high-
lighted. The following strategies are pursued: local
optimization of objective functions that depend on
both position and velocity, task augmentation with
stable internal motion, and a second-order extended
Jacobian approach. The resulting solutions are criti-
cally compared in the light of achieving enhanced
task trajectory tracking performance with reduced
computational complexity. The numerical results ob-
tained for a case study with a planar arm validate
the theoretical findings.

1. INTRODUCTION

Kinematic redundancy is purposely introduced in
robot manipulators to obtain more versatile motions
and enhanced interaction with the environment. The
extra (redundant) degrees of freedom can be conve-
niently exploited to generate an internal joint motion
that reconfigures the structure according to given
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task specifications. Most of the proposed techniques
solve redundancy locally, that is, with information
limited to the current point of the task trajectory, at
the velocity level; recent surveys can be found in [1,
2]. Global methods have also been developed [3-6] to
achieve optimal behavior along the whole task trajec-
tory; in general, they outperform local methods but
are computationally expensive—typically requiring
the numerical solution of a two-point boundary
value problem—and then impractical for real-time
sensor-based robot control applications.

If one wishes to dynamically control a manipula-
tor in the task (Cartesian) space, it is necessary to
compute the explicit inverse kinematic transforma-
tions relating both joint velocity and acceleration to
the given end-effector motion. On the other hand, the
synthesis of joint accelerations in redundant robots
usually requires a more involved analysis but allows
to directly face dynamic issues, as opposed to veloc-
ity schemes which often result in poor dynamic per-
formance. The performance of second-order versus
first-order schemes have recently been discussed
from an algorithmic point of view in [7].

The basic minimum joint acceleration norm
solution was proposed in [8]. Inverse kinematics was
also solved at the second-order level in the frame-
work of augmented task space with task priority 9,
10]. In [11] it was first shown that solving redun-
dancy at the acceleration level by local torque mini-
mization may generate internal instability of joint
velocities. The more general occurrence of this phe-
nomenon was later investigated in [12], where addi-
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tional contro! of joint velocities in the null space of
the end-effector Jacobian is provided as a remedy. A
simpler scheme which, differently from [12], does
not require the computation of the time derivative of
the Jacobian pseudoinverse was introduced in [13].
A detailed analysis limited to self-motions, that is,
joint movements with zero end-effector velocity, can
be found in [14], while a stabilizing control law was
proposed for this case in [15]. Nonetheless, accelera-
tion solutions can be computed by symbolic differen-
tiation of velocity solutions, for example [16]; these
may avoid the above inconvenience of joint velocity
instabilities, but do not allow full exploitation of the
capabilities of second-order methods.

The goal of this paper is to present a number
of feasible alternatives for redundancy resolution at
the acceleration level. Connections with velocity
schemes are pointed out, leading to the development
of effective algorithms to design suitable joint accel-
eration contributions in the Jacobian null space. In
particular, we present three methods: local optimiza-
tion of objective functions that depend on both posi-
tion and velocity, task augmentation with stable
internal motion, and a second-order extended Jaco-
bian approach. The advantages of the first two solu-
tions are evidenced in terms of reduced com-
putational burden and stability of arm internal
motion. The satisfactory performance of these tech-
niques is shown—also with respect to the classical
minimum acceleration norm solution—on the basis
of a simulated case study for a planar three-joint arm.

2. VELOCITY RESOLUTION SCHEMES

Consider a robot manipulator with n joints executing
an m-dimensional task, with n — m > 0 being the
number of redundant degrees of freedom. The associ-
ated direct kinematics is

p=f{g), (1)

with joint coordinates g € IR” and task variables p €
IR™. The first-order differential kinematics is

p= )4, (2)

where the robot Jacobian J = df/oq is an m X n
matrix. In general, a task trajectory p(t) is given and
the inverse kinematic problem consists in determin-
ing a joint trajectory q{f) satisfying (1) for each t. In
view of the nonlinearity of (1), this problem may be
solved at a differential level using (2). Due to arm
redundancy, at each time instant there exists an
infinity of joint velocity solutions of the form

q = J{gp+ E-THQJQv, (3)

where Jt is the unique pseudoinverse of J[17) and v
is an arbitrary vector in JA". The n X n matrix I - J']
is the projection operator into the null space of the
Jacobian. In the full row rank case, the expression of
the pseudoinverse is J* = JT{JJ7} 7.

Each choice of v(f) yields a particular motion of
the arm in the joint space, always guaranteeing a cor-
rect task execution. This vector is usually deter-
mined through optimization of some performance
criterion or by satisfying an augmented task specifi-
cation [18].

The usual way for specifying v is through the
iterative minimization of a configuration dependent
objective Hiq) by the projected gradient method [19]

q=J'p - o1 VeH, (4)

where @ > 0 is a suitable scalar stepsize. It can be rec-
ognized [7) that solution {4) exactly minimizes the
complete quadratic function

Lg, &) = 1474 + alVH)g (5)

at the current arm configuration g. Thus, {4) is natu-
rally a compromise between the minimization of the
joint velocity norm and the optimization of the main
criterion. Notice that when a = 0 the basic minimum
norm Jacobian pseudoinverse solution is recovered
{20]. :
When the Jacobian has full rank, a convenient
alternative to (4) is the reduced gradient method pro-
posed in {21]. The joint vector is partitioned as (qq,
qy) with g, € IRand g, € IR"™, in such a way that
J, = of/dq, is nonsingular. The first set of joint vari-
ables is used for satisfying (2), while optimization is
properly reduced to the second set. The joint velocity
is then computed as :

. 9| 2 - ]nf; -Jr (6)
"“[qb]“[o}" “[-ﬂ% I]V"H' |

where J5 = Jo-*Is- The above two methods provide
different updates, and in general the latter is more
efficient in approaching the local optimum.

In order to explicitly use the redundant degrees
of freedom, the method of task augmentation [22, 23]
allows the specification of n — m additional task
constraints as functions of the joint variables

P:= Aq), (7}
whose differentiation gives

bo=Jlak (8)

with ), = #f/éq. an{n —m) X n matrix. The task-pri-
ority velocity solution to (2, 8) that avoids the (sec-



ondary) constraint task conflicting with the {primary)
end-effector task is (9]

q = PP + (I - ]*I)UC(I—FIW [bc _'L.pr)- (9]

that, in view of the idempotency of the matrix I — J*J,
can be simplified into [24]

q = pi)+ Uc[l - rn)f[bc - ’J*I") (10}
An effective way to handle the occurrence of algo-
rithmic singularities, due to rank deficiencies of the

matrix J (1 ~ J*J), is to adopt the Jacobian transpose
solution [25]

g =" + I - ]I Ke,, (11)
where K> O weighs the feedback correction term e,
= p. — f{q).

A method that somehow combines the features
of optimization and task augmentation is the
extended Jacobian technique proposed in [26].
Assume that the current configuration q is a con-
strained optimum, that is, necessarily (-JF)V,H = 0
[27]. Imposing the following (augmented) condition
ensures propagation of optimality throughout arm
motion:

d .
E—;((—J};n v,H) = Glg)§ = . (12)
The velocity solution is then

1T
. p
ole) 3]
provided that no algorithmic singularities are
encountered.

(13)

3. ACCELERATION
RESOLUTION SCHEMES

The second-order differential kinematics associated
to(1)is

ii = ](q]fi + j (q. fl)('l. (14}

and the general solution for joint acceleration is

ij=J'q)¥ (g, q) + (I - J{Q)Jg)a, (15)

where ¥ = pj — Jqand a is an arbitrary vector in IR".
The basic issue in selecting (15) versus (3) is the
differential order at which redundancy resolution
takes place. Indeed, first-order resolution typically
provides only path planning at the joint level,
whereas the second-order scheme gives a full trajec-
tory planning, that is, with complete timing informa-
tion. Correspondingly, equation {3) requires at the
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current time instant only the knowledge of the con-
figuration q, while both q and q are needed to com-
pute (15). In the latter case, the set (g, q, q) can be
directly fed into the robot inverse dynamics compu-
tation for task space control purposes.

In order to obtain joint accelerations from a first-
order solution, one may differentiate symbolicaily
(3). This corresponds to a specific choice of the null-
space vector a in the second-order solution (15), as
stated in the following [7}

Proposition. Assume that p(tj € C?, and that the
initial foint positions q(0) and velocities §(0) are such
that flig(0)) = p(0), J(q(0))4(0) = p(0). Provided that
Jiq(t)) is always full rank, the joint trajectory gft) gen-
erated by the first-order solution (3) for any v(t} € C'
coincides with the one generated by the second-order
solution (15) iff

I-FPa=a~7DHHp-W+vl  (16)
where jt = d/dt (JY).
Proof. Differentiate (3} to obiain
q =Jp - Jv) + @~ TPV, (17)

Plugging (3) in (15) to eliminate q, and equatin;g with
(17) gives

a=Ja= [+ M- vl + - D% (18)

In the full rank case, differentiating JJ' = I with
respect to time and premultiplying by J* leads to J'JJ*
= —J*Jj*. Substituting this in (18), the thesis follows.

Equality (16) is limited to null-space projections
of joint acceleration vectors. Thus, a = J*(p — Jv) + v
is a sufficient but not necessary condition for coinci-
dence of first and second-order schemes. '

In the following, we present a taxonomy of sec-
ond-order redundancy resolution schemes which are
transpositions of the above first-order schemes. In
particular, we consider optimization of mixed config-
uration- and velocity-dependent objective functions,
stable task sugmentation, and a second-order
extended Jacobian approach. :

3.1 Optimization of Mixed Objective
Functions

When moving to an acceleration level, it is natural to
consider objective functions of the form Hiq, q), that
is, that may depend on both configuration and veloc-
ity. However, there is a8 mathematical difficulty in
optimizing a function of 2n differentially related
variables using only the n-dimensional vector of joint
accelerations a (see (15)). The appropriate framework
to seek for a solution would be Calculus of Varia-
tions, which applies only to globally defined criteria
[6). A practical way to overcome this problem is to
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adopt a discrete-time approach, using an expansion
that accounts for the effect of acceleration on the next
position and velocity samples [7).

As with (4, 5), it is straightforward to recognize
that the general acceleration solution (15) is the exact
constrained minimizer of the complete quadratic
function

Lig, g & =144 -a"(g, 94 (19)

At this point, a reasonable extension of the projected
gradient method can be devised when considering a
in (19} as generated from an objective function (to be
minimized) that contains separate contributions of
joint position and velocity terms. This leads us to
choosing as mixed objective

H{g, ) = 1d'K, § + H(q), (20)
and ‘blending’ the negative gradients into a as
a= ~V,H-AV H’
= —K,§ ~AV, H.

The structure of (20) is motivated by the desire of
damping (with K, > 0) the joint velocity in the Jaco-
bian null space, in order to avoid the kind of instabil-
ity phenomena observed in [11, 12], but still trying to
optimize the configuration dependent criterion Hig).
The weight A establishes the relative importance
between the two objectives. The resulting accelera-
tion solution is then

§ = J'i - (I-TNK,§ +AGH). (22)

We remark that the above intuitive reasoning leads to
a scheme which is similar to the one formally
derived in [7].

(21)

3.2 Stable Task Augmentation

Following the guideline of the task augmentation
velocity solution (10), the corresponding task-prior-
ity acceleration solution can be obtained as [9]

ii = ]?i: + Uc(l_rln* {fc"'lcr.ﬂ! (23)
where ¥, = j. — j.qand, by differentiation of (8),

Pc= J(q)g + ic(‘lufl]i]- (24)

Solution (23), besides achieving exact tracking of the
end-effector acceleration task (14), provides also
exact tracking of the constraint acceleration task (24)
in the nul} space of the end-effector Jacobian.

In the same fashion, the second-order Jacobian
transpose solution corresponding to (11) is [13]

=+ O-TNI Ko Kok, (29)

where &, = p, — J{q)g, and K. > 0, Kg. > O are suit-
able matrices that shape the time behavior of the

feedback correction term e.. Remarkably, this solu-
tion is computationally more advantageous than (23)
since it avoids pseudoinversion of the matrix J (I -
J*))—like for the velocity solution (11). However, the
best performance is obtained in the cese of constant
constraint tasks, that is, p, = O. This feature is com-
mon to all inverse kinematics schemes based on the
Jacobian transpose [28].

On the other hand, the above joint accelerations
are not computed as time derivatives of first-order
solutions but directly resolving second-order rela-
tionships, and may still suffer from instability prob-
lems. Following similar arguments which led to the
introduction of 8 damping term in (22), a more well-
behaved arm motion can be obtained with

q-= ]+r + (]-]+]}[II(Kpcec + chéc) - KV('I(,]' {26)

When e, = O, solution (26) guarantees exponential
stability of joint velocities in the null space of the
end-effector Jacobian [13, 15]. Moreover, note that in
the case of p, = O, the added contribution in {26}
serves as a regularizing term that ensures positive
definiteness of the matrix JTK,J. + K, premulti-

plying q.

3.3 Second-Order Extended
Jacobian Method

For the transposition of the extended Jacobian velo-
city solution (13) to the second-order level, two cases
can be considered.

First, let the objective criterion still be of the
form Hig). Then, the acceleration solution which pre-
serves optimality can be derived via direct differenti-
ation of (13). In fact, differentiation of (12) with
respect to time yields

Glg)i + Glg.q)g=0 {27)
which, arranged with (14), leads to

i 1T # (28)
G| {64l

It is not difficult to show that (28) is equivalent to the
time derivative of (13). This equivalence is intrinsic
to the exact nature of the extended Jacobian method.

Let now the objective be also a function of the
joint velocity, Hig, q). As previously emphasized, in
general the current state (g, ) will not extremize H.
Assumse instead that the current velocity q extrem-
izes H for the given configuration q, as expressed by
the n — m conditions (~J} 1) V, 0. Local optimal-
ity of velocity will be preserved if the acceleration is
such that
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d
FU(-IRDVeH) = K(g, 4} - s{a. ¢) = 0. (29)

Using this constraint to ‘square’ the system (14), the
accelerations are uniquely determined as

Y-

It is interesting to point out the equivalence of this
second-order extended Jacobian method with the
derivative of the exact first-order solution in the case
of objective functions that are quadratic in §. For
example, consider Hg) = 1§7g. which is exactly opti-
mized at velocity level by (3) with v = 0, or ¢ = J'p.
The necessary condition (29) can be equivalently

expressed now as
d .
Sl I = 31
yr ([l ]])q) 0, (31)

I-Jg = 0+ i'Da. (32)

Using idempotency of the matrix I — J'J, and noting
that for any § there exists a vector a such that (I-
J'1)i = (I-J*N)a, the equivalence is shown by apply-
ing (16) with v = 0. Thus, solution (30) can be rewrit-
ten in this case as § = J'p + J'Jq.

resulting in

3.4 Further Considerations

The following considerations can be drawn from a
transversal analysis of the presented acceleration res-
olution schemes.

+ The functional dependence of the objective H
for the first and third schemes is a crucial point
for discriminating the performance of one solu-
tion with respect to another. It clearly emerged
that, although approaching the problem at the
acceleration level gives more flexibility in the
definition of objective functions, no local opti-
mization technique allows to reach optimality
for both position and velocity by acting only on
the instantaneous acceleration.

» The first two schemes are easier to implement
for practical trajectory tracking tasks since they
do not require the knowledge of a particular
constrained initial state. Although gain selec-
tion is critical in (22) and (26), a higher design
flexibility is introduced anyway. Instead, the
third scheme loses its nice features if not initial-
ized in an optimal state which will be propa-

gated along the trajectory; in addition, it is more
prone to algorithmic singularity problems.

¢ As a matter of fact, the actual algorithms imple-
mented are discrete-time versions of the contin-
uous-time solutions illustrated above. There-
fore, in order to improve the robot tracking pet-
formance in the task space, it is advisable to
modify the desired acceleration quantities with
robustifying feedback terms, So, the end-effector
acceleration j can be replaced as

pop+ K+ Ke, (33)

where e = p — f(g) and é = p ~ J(g)q. A similar
modification can be introduced for fi.. Use of
feedback correction was indeed mandatory for
the solutions (25, 26), since the Jacobian trans-
pose does not provide a true inverse mapping.

Last but not least, it should not be dismissed that any
acceleration scheme inherently offers the possibility
of taking into account robot dynamic effects in the
resolution of redundancy. Let

B{g)j + n(q,q) =u (34)

be the well-known manipulator dynamic model with
inertia matrix B, nonlinear terms n, and input join!
torques u. When the squared norm of the joint torque
1uTu is considered as a criterion, the objective func-
tion remains quadratic and positive definite in terms
of the joint acceleration {, being B > 0, and the opti-
mal acceleration solution can be immediately
obtained in closed-form. More in general, this is true
whenever a quadratic energy-related objective func-
tion is chosen.

In particular, since local minimization of pure
joint torque may lead to unstable “whipping” phe-
nomena in the joint space [11], closed-form accelera-
tion schemes have been proposed that counteract
this effect. Among them we mention the squared
inverse inertia weighted method in (29] and the addi-
tion of a stabilizing velocity-acceleration term in (30]
{see also (19)).

4. CASE STUDY

The proposed methods for resolving redundancy at
the acceleration level have been simulated on a pla-
nar arm with three rotating joints and equal unitary
link lengths.

In the following, absolute joint coordinates g;
(with respect to the x-axis) are used so that the robot
Jacobian is simply
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Jg) = -ging, -sing, -sin q_.,]' (35)
Cosg, C€OSq; COSQ,

"The end-effector trajectory to be tracked is the circle

described by

x(t) =1+ sin wt, (386)
y(t) = 1 + cos 7wt
In all trials, the initial state has been chosen as
q(0) = (115° 63° 11°), (37a)
goy=(0 o0 0) {37b)

with the end-effector on the path but with an initial
velocity error, corrected though in all schemes by the
addition of the end-effector feedback action (33).
Simulations were run for 4 sec, corresponding to two
complete cycles, using a second order Runge-Kutta

N
h

Figure 1. Stroboscopic motion of the arm with the mini-
mum norm acceleration solution (38): first cycle {top);
second cycle {bottom).
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Figure 2. Joint trajectories with the minimum norm
acceleration solution (38) {in degs).

integration method with 5 msec sampling time.

In order to show the limitations of a simple
acceleration scheme, the minimum acceleration
norm solution [8]

§ =T - jg+ Ko + Ke) {38)
is tested first, using K,=diag {100, 100} and K, = diag
{20, 20}. The resulting stroboscopic motion of the
arm is sketched in Figure 1.

The joint trajectories (Fig. 2) reveal the build-up
of unstable velocities near the completion of the sec-
ond cycle. These joint velocities are theoretically
unobservable at the end-effector level, but when
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velocity increases numerical saturation occurs and
the Cartesian performance is badly degraded.

Next, the second-order optimization method (22)
is used in conjunction with the maximization of the
following convenient manipulability measure [31]

(39)

Note that the initial configuration (37a) is a maxi-
mum for (39), when the end-effector is constrained to
be located at p = (1 2)T. The addition of the Carte-
sian error feedback leads to the solution

4= TP - Jq+ Keé + Kpe) —
U-T] (K, § ~AV, H), (40)

where K, = diag {100, 100}, K, = diag {20, 20}, K, =
diag {50, 50, 50), and A = 1000 are used. The overall
motion of the arm is now smoother, and repeats itself
after the first cycle completion (Figure 3); the joint
trajectories (Figure 4) demonstrate the expected sta-
bility and a satisfactory general behavior.

Finally, the stable task augmentation scheme (26}
is applied using as single additional constraint vari-
able f.(q) = H(q) as in {39), and setting the desired
constant value p, = 2. Then, the resulting joint accel-
eration is

§=J'p - Jq + Keé + Kge) + (I-J'))
(i::r(kpcec = kyejf)— K.q), (41)

in which K, = diag {100, 100}, K, = diag {20, 20}, K,
= diag (40, 40, 40}, k. = 1000, and k,. = 5 are used,
and where j, is now just a row vector. From the
global motion of the arm (Figure 5) and the joint tra-
jectories (Figure 6) similar stability properties as in
the previous case are exhibited.

Simulation results with the second-order ex-

Hig) = sin®(q, — qy) + sin%(qg; — qq).

Figure 3. Stroboscopic motion of the arm with the mixed
objective function optimization solution (40).
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Figure 4. Joint trajectories with the mixed objective func-
tion optimization solution (40) (in degs).

tended Jacobian method are not reported. In fact, if
the manipulability measure {39) were used as objec-
tive function, a quite involved expressions would be
obtained for the solution (28). On the other hand, if
the joint velocity norm is chosen, this is equivalent to
using a pseudoinverse solution, as shown in Section
3.3. In the present case, the applicability of such a
method is discarded by the occurrence of a kinematic
singularity at 3/4 of the first cycle.

For the purpose of comparing the performance of
the three simulated schemes, Figure 7 displays the
evolutions of the joint velocity norm while the
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Figure 5. Stroboscopic motion of the arm with the stable
task augmentation solution (41).

manipulability measures are reported in Figure 8.

It can be seen that the minimum acceleration
solution progressively “accumulates” joint velocity
when manipulability tends to decreasé, eventually
running into trouble after passing close to a singular
arm configuration. The two other schemes present
high velocity values in correspondence to sudden
manipulability losses; however, their built-in dissipa-
tion capability allows to recover from these large
velocities, without losing track of the end-effector
trajectory.

Finally, it should be stressed that the chosen
Cartesian path is particularly demanding since it
requires the arm to undergo a large reconfiguration in
the vicinity of the xy-plane origin. High velocity
peaks are essentially due to the absence of preview in
Jocal resolution schemes; indeed, a global synthesis of
joint accelerations would overcome this problem.

5. CONCLUSIONS

Resolving redundancy at the acceleration level may
allow improved robot performance, also in view ofa
dynamic analysis of the motion control problem.
However, some caution should be taken in trying to
directly extend first-order schemes to the second-
order level. A general result has been given for stat-
ing the equivalence between a velocity and an
acceleration resolution method. Still, the simple dif-
ferentiation of a given velocity solution fails to cap-
ture the need of internal arm motion stabilization,
while yielding computationally inefficient schemes.

The stability issue has been taken into account
explicitly both by introducing an additional velocity
term in a local objective function to be minimized
and by augmenting the task with a joint damping
constraint. Moreover, an acceleration solution which
shares part of the exact minimization property of the
extended Jacobian technique has been derived.

A case study has been presented that gives evi-
dence of the superiority of the proposed redundancy
resolution second-order schemes over the classical
one with minimization of acceleration norm.
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Figure 6. Joint trajectories with the stable task augmenta-
tion solution (41) (in degs).
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Figure 7. Joint velocity norm: solution (38) (top); solu-
tion (40) (center); solution (41) (bottom).
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