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Abstract In this paper, a novel, robust, and simple method
for automatically estimating the hand pose is proposed
and validated. The method uses a multi-camera optoelec-
tronic system and a model-based stochastic algorithm.
The approach is marker-based and relies on an Unscented
Kalman Filter. A hand kinematic model is introduced for
constraining relative marker’s positions and improving the
algorithm robustness with respect to outliers and possible
occlusions. The algorithm outputs are 3D coordinate mea-
sures of markers and hand joint angle values. To validate
the proposed algorithm, a comparison with ground truths
for angular and 3D coordinate measures is carried out. The
comparative analysis shows the advantages of using the
model-based stochastic algorithm with respect to standard
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processing software of optoelectronic cameras in terms
of implementation simplicity, time consumption, and user
effort. The accuracy is remarkable, with a difference of
maximum 0.035rad and 4mm with respect to angular and
3D Cartesian coordinates ground truths, respectively.
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1 Introduction

Hand motion analysis finds application in robotics, with refe-
rence to learning-by-demonstration approaches and grasping
database creation [1], in virtual reality and medical fields.

Reconstructing the motion of the human hand joints is
complex due to the high number of Degrees of Freedom
(DoFs). Position, pressure, electromagnetic and inertial sen-
sors [2] so as data-gloves [3] are some of the methods used
for estimating the hand pose, but they suffer of several lim-
itations (drift, obtrusiveness, customized calibration, etc.).

Vision-based tracking systems represent a valuable alter-
native to the above systems since they can be utilized with
hands of different size and let the user perform more natural
movements.

The accuracy of RGB-D cameras, recently adopted for
tracking hands [4, 5], is still far from that obtained with
optoelectronic cameras [6]. Therefore, although these lat-
ter are still expensive and require a completely struc-
tured environment for calibration and acquisition, they are
widely used for motion analysis. However, presently used
approaches [7] for hand motion analysis are very time-
consuming and, more importantly, generally require that the
association between physical markers and measurements
is known. The software provided by manufacturers for
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labeling and tracking markers over time is unable to solve
all the associations, requiring the manual intervention of
the user, thus making the data user-dependent. Further-
more, these systems require post-processing for extracting
information about hand joint angles.

Methods for online marker labeling have been also
applied in human motion analysis, e.g., [8] and [9], but are
applicable only for skeleton tracking.

In [10], a model-based approach has been adopted
for hand tracking. The models have been uploaded from
a database created ad hoc and the computational cost,
although not reported, seems to be quite high being nec-
essary a preprocessing phase. The authors emphasize the
use of a reduced number of markers, but this increases
the error on the joint angle estimation in the case of
the human hand. In [11], an Unscented Kalman Fil-
ter (UKF) is implemented for predicting marker posi-
tion. The main limitation is that a hand model is not
adopted implying the possibility to have not realistic hand
configurations.

The method illustrated in this paper aims at overcoming
the abovementioned limitations by proposing an automatic,
robust, and self-contained stochastic algorithm for hand
pose and motion estimation that is grounded on an UKF [12]
and employs reflective markers and an optoelectronic multi-
camera system. The proposed technique is able to adaptively
associate a given image measurement to a marker or to
an outlier by using probabilistic techniques. The algorithm
reformulates the problem into a stochastic nonlinear filter-
ing framework through UKF and relies on an appropriate
hand kinematic model whose accuracy has been validated.
With respect to other nonlinear estimation techniques, such
as Extended Kalman Filters (EKF), the UKF has proven to
improve the estimation performance, is very simple to be
implemented thanks to the software modularity, and does
not need the computation of Jacobian matrices, as required
by the EKF.

Differently from approaches like [8] and [9], the present
one is general, being applicable to any object whose geom-
etry is defined in an online initialization phase. Creating the
hand model in the initialization phase avoids the use of a
clutter database, like in [10], making the approach applica-
ble to different hands. Furthermore, the proposed method
has a low computational burden, by paving the way for
a real-time implementation, as discussed in Section 3.3.
Adopting a marker on each hand joint guarantees a remark-
able accuracy, as shown in Section 3.4.

The approach has been validated by means of a compara-
tive analysis between the estimated joint angle values and an
angular ground truth, made of the measures obtained from
the joint angle sensors embedded in a robotic hand (i.e.,
the DLR-HIT Hand II [13]) and between the estimated 3D
Cartesian coordinates of the finger joints and a 3D Cartesian

coordinates ground truth, made of the marker 3D Cartesian
coordinates obtained from an optoelectronic system (i.e.,
the BTS Smart D www.btsbioengineering.com/it/). To this
purpose, the optoelectronic system has been used to track
markers positioned both on the subject and on the robotic
hands. Although this paper is focused on the hand motion
estimation, the proposed approach is general. It means that,
once known the kinematic parameters of the object to be
tracked, the method automatically reconstruct the motion
and pose.

2 Methods

2.1 Hand kinematic model

An accurate kinematic model is needed for mapping sen-
sor information to coordinate frames and joint angles. In
order to describe human hand kinematics, different kine-
matic models have been proposed [14]. They differ for
simplifying assumptions, especially related to the number
of DoFs and the position and orientation of the Axis of
Rotation (AoR) [15, 16].

In this work, a 21-DoFs hand model is considered [17]:
the thumb is modeled as a 5-DoFs kinematic chain, whereas
the long fingers have 4 DoFs each. Joint angle values
have been determined after placing 25 reflective markers of
6-mm diameter on the right hand of a volunteer subject, as
shown in Fig. 1. The protocol for positioning markers on
the hand has been chosen in order to minimize artifacts (due
for instance to skin movements or marker occlusion) and
to obtain information about wrist position. Four markers
have been positioned on each finger in correspondence of
MetaCarpo-Phalangeal (MCP), Proximal Inter-Phalangeal
(PIP), Distal Inter-Phalangeal (DIP) joints, and fingertips
(TIP). There is one more marker on the thumb, positioned
close to the TrapezioMetacarpal (TM) joint (in Fig. 1 it is
called TMb): this simplifies the determination of the AoR of
the TM joint. Three markers (called B1, B2, B3) positioned
on the hand dorsum constitute the system reference frame:
the dorsum is the part of the hand that suffers less from skin
movements.

The BTS optoelectronic system gives the 3D Carte-
sian coordinates of the center of each marker. It has been
assumed that the Cartesian coordinates of the marker cen-
ters correspond to the finger joints Cartesian coordinates
and that the Cartesian coordinates of the finger joints ref-
erence frame origin is coincident with the corresponding
finger joint Cartesian coordinates.

The axes of rotation of the long finger MCP joints and of
the thumb TM joint are defined as shown in Fig. 1; further,
it has been supposed that the Flexion/Extension (F/E) axes
of PIP and DIP joints are parallel to each other.
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Fig. 1 Joint reference frames and adopted protocol for marker posi-
tioning. Joint labels are outlined in yellow. The reference frame,
positioned on the hand palm and outlined in green, has X-axis along
the line connecting marker B1 with marker B2, Y -axis perpendicular
to the palm plane and Z-axis defined with the right hand rule

The hand reference frame (outlined in green in Fig. 1) is
assumed to be centered in marker B1 and its orientation is
shown in the figure. It represents the base frame for the hand
body, with respect to which the forward kinematics of the
hand is expressed. The hand palm is modeled as a rigid body
with 6 DoFs, consisting of 3 components of translation and
3 angles of rotation. The angular parametrization of Euler
angles in configuration ZYX has been chosen in order to
obtain the hand joint angles from the rotation matrices [18]
(see the Appendix for formulation of the equations).

2.2 Stochastic hand motion and pose estimation

A robust pose estimation scheme able to estimate the
relative motion —in terms of position, orientation and
velocity— of a tracked hand (whose kinematics is known)
with respect to a multi-camera optoelectronic system is
described in this section.

2.2.1 Modeling and filtering hand motion and pose

A multi-camera optoelectronic system is adopted in order
to obtain information about the motion and the pose of the
hand in the operating space. The noisy measurements of the
3D positions of the markers placed onto the hand surface

with respect to the camera are thus available from the vision
system.

An ideal vision algorithm, capable of maintaining coher-
ent correspondences between measurements and physical
markers, would express the measurement of the N markers
placed onto the hand surface as

y(t) =
⎡
⎢⎣

yi(t)
...

yl(t)

⎤
⎥⎦ =

⎡
⎢⎣

g(t)Tmib + νi(t)
...

g(t)Tmlb(�) + νl(t)

⎤
⎥⎦ . (1)

where, yi(t) is the measurement of the i-th marker on the
hand dorsum, yl(t) is the measurement of the l-th marker
on the finger joints, νi(t) ∼ N(0, R) and νl(t) ∼ N(0, R)

represent white zero-mean, normally distributed stochastic
processes, with variance assumed constant among features.
The position of the l-th marker with respect to the hand
reference frame is expressed in terms of the generalized vec-

tor of joint variables � = [
. . . θ r

k (t) . . .
]T

of the fingers
and is obtained via forward kinematics, i.e. Tmib(�). θr

k (t)

denotes the k-th joint angle of the r-th finger.
The motion of the hand reference frame b (whose origin

is rigidly attached to marker B1) with respect to the camera
frame c, assumed fixed in space, is modeled according to
the following discrete-time model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (t + 1) = T (t) + v(t)dt

v(t + 1) = v(t) + ηv(t)dt

R(t + 1) = R(t)e�(t)dt

θ r
k (t + 1) = θr

k (t) + ηθr
k
(t)dt

�(t) = ηω(t)∧
yi(t) = Tmibg(t) + νi(t), i ∈ Vi (t) ⊆ {

1, 2, ..., Np

}
yl(t) = Tmlb(�)g(t) + νl(t), l ∈ Vl(t) ⊆ {

1, 2, ..., Nf

}
(2)

where T (t), v(t) and R(T ) are position, linear velocity and
rotation matrix of the hand frame with respect to the cam-
era frame, respectively, �(t) is the skew-symmetric matrix
of angular velocity ηω(t) expressed in the coordinates of
the hand frame (being ∧ the cross-product operator). Vari-
ables T (t) and R(t) define the group transformation g(t) �
{R(t), T (t)} ∈ SE(3) that fully describe the 6-DoF local-
ization problem of the hand with respect to the defined
reference frame fixed in space. Vi (t) and Vl (t) denote the
group of markers (on the hand dorsum and the fingers)
that are visible at the current time (except for the clutters).
Therefore, the sets Vi (t) and Vl (t) are time dependent, since
the physical markers could be not visible due to illumination
artifacts or occlusions. It is assumed that no prior informa-
tion regarding the nature of the hand motion and the time
evolution of the joint angles is available. Hence, zero-mean
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white Gaussian noises with constant variance ηv(t), ηω(t),
ηθr

k
(t) are introduced. They model the hand linear accelera-

tions, the angular velocities, and the joint angular velocities
as random walks.

As in all pose estimation algorithms, the rationale behind
the proposed approach is to use the measurements obtained
from the visual system as a measure of the pose and motion
variables of the hand. This measure is then used to estimate
the state variables in Eq. 2. The novelty of the approach,
in the framework of hand pose estimation, is twofold: (i)
The marker measurements are assumed to be randomly
provided. This means that the association between a mea-
surement and the right entity (outlier or physical marker)
cannot be made a priori, but is made adaptively. (ii) The
introduction of the information about the hand anatomy in
the tracking algorithm improves its robustness with respect
to outliers, occlusions, and markers entering and exiting
through the field of view. In fact, as evident from Eq. 2,
the measurements of the i-th and of the l-th markers are
given by the forward kinematics. It means that the marker
measurements are constrained by each other: their motion
should respect the constrains imposed by the kinematic
models. If a marker disappears, its position can be esti-
mated on the basis of the nearest marker position and of the
kinematic model.

According to the motion and pose dynamics in Eq. 2,
given the visual measurements of the markers, Eq. 1,
(with N = 25), a nonlinear stochastic estimation scheme
has been designed. The aim of the filter is to estimate
the state x(t) of the system, consisting of the motion
variables, T (t), v(t), the angular parametrization of the
rotation matrix R(t), and the value of the finger joint
angles.

Given the strong non-linearity of the model with respect
to the state and the noise terms, a certain number of esti-
mation schemes can be implemented (such as EKF, UKF,
and particle filters). Although other choices can be made,
this work is not focused on estimating the whole condi-
tional density function of the state, as in particle evolution
schemes, but only the point estimate of the state, since
a unimodal posterior density of the state is expected. All
the deviations from the nominal model assumptions (i.e.,
the tails of the posterior) are considered to be due to clut-
ters, and are ignored in the estimation process. This fact,
together with the Gaussian nature of the noises involved
into state evolution and measurements, motivated to limit
the discussion to nonlinear Kalman filtering. Thus, an esti-
mation scheme based on an augmented Unscented Kalman
Filter (UKF) [12] has been selected. The peculiarity of
the adopted estimation scheme, as compared with the
classical UKF approach [19], is the possibility to easily
deal with non-affine noise terms in the state/measurement
model.

2.2.2 Robust marker tracking – the association problem

The tracking phase in passive marker-based visual sys-
tems may be problematic due to local illumination changes,
reflections or occlusions. Since a model of the body and the
information about its shape are available, it has been cho-
sen to reformulate the tracking problem into a stochastic
optimization problem, embedded into the estimation task.

To this aim, the raw outputs given by the visual system
algorithm, corresponding to the image at time t , are con-
sidered as a random sequence of Mt measurements yt ={
y1(t), y2(t), ..., yMt (t)

}
of marker candidates. In general,

condition Mt �= N holds, which means that the sequence yt

does contain measurements of visible markers and outliers.
The randomness of the measurement sequences is a

fundamental issue in this framework, since it implies
the following important consequences: (i) the associations
between measurement yi and marker j or with a clutter can-
not be decided a priori and has to be estimated; (ii) each
sequence of measurements for each frame can be considered
conditionally independent on every other sequence in the
past; (iii) once the current sequence of associations has been
defined, it can be considered conditionally independent on
the past history of associations. A direct consequence is
that predicting the order in which markers and clutters are
detected, for each image, can be very tricky. Because of
the above assumption, a solution to the filtering problem
(ensuring robustness at the same time) has been developed
by employing probabilistic techniques. In order to model the
measurement-to-marker or measurement-to-clutter associa-
tion [20], a latent variable ai(t) has been introduced for each
measurement yi(t) ∈ yt .

ai(t) =
{
0, if yi(t) is a clutter
j, if yi(t) is the measurement of marker j.

(3)

The compact form of the nonlinear model (1), i.e.,
y(t) = h(x(t)) (where x(t) is the state variable), can
be considered as a conditional measurement model over
the variable ai(t). In fact, the output function can be
written as yi(t) = h(x(t) |ai(t) = j �= 0 ), being con-
ditioned over a certain value of the latent variable. It
means that the rows corresponding to the measurement of
the marker j can be selected from the function h(x(t)).
If ai(t) = 0, the output model becomes yi = νo,
νo ∼ N (ν̄o, �o). Therefore, the association problem con-
sists in maximizing the belief that the current measure-
ment yi(t) ∈ yt corresponds to either a visible marker
or a clutter. It can be performed by finding the most
probable value of the variable ai(t), ∀i = 1, . . . , Mt ,
for every measurement collected at the current time
step.
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Formalizing, the aim is to find the maximum of the
posterior distribution

p (ai(t) |yi(t), y0:t−1 ) ∝ p(yi(t) |ai(t), y0:t−1 )p(ai(t))

(4)

given the current observation yi(t) and the whole history of
the measurements up to the previous step. Eq. 4 has been
obtained via the Bayes’ rule. In Eq. 4:

• p (ai(t)) is assumed to be independent on the previ-
ous measurements and is determined by the a priori
knowledge of clutter and marker association event prob-
abilities. Since no specific prior probability distribution
is generally available, one possible choice is to consider
the probability of detecting the marker j as the same
of detecting the marker d �= j , i.e. by considering a
uniform distribution for the marker association.

• p (yi |ai, y0:t−1 ) is the likelihood that the current mea-
surement is associated to a given marker or to a clutter
and can be written as

p (yi |ai, y0:t−1 ) =
∫

p(yi | x, ai , yt−1)p(x |ai, yt−1 )dx (5)

=
∫

p (yi |x, ai , yt−1 ) p (x |yt−1 ) dx (6)

Upon fixing a certain guess for the association, ai(t) =
j, j �= 0, Eq. 6 is the Kalman Filter likelihood of the mea-
surement yi(t), given the prediction of the marker j , i.e. the
conditioning of the measurement model over that value of
the latent variable. Thus, given the predicted state-related
Sigma-Points [12], Xx

n,t/t−1, n = 1, . . . , L, computed
by employing the nonlinear state model, their transforma-
tion through the conditioned measurement function can be
obtained, as in a classical UKF

Yj

n,t/t−1 = h
(
Xx

n,t/t−1 |ai = j
)

. (7)

The superscript j on the transformed Sigma-Points of the
output indicates that Y

j

n,t/t−1 refers to the predicted pro-
jection of the marker j , for which the association is being
tested. The mean and the covariance of the measurement
vector are calculated as

ŷ−
j =

L∑
n=0

Wn
mY

j

n,t/t−1 (8)

P −
yy,j =

L∑
n=0

Wn
c

(
Yj

n,t/t−1−ŷ−
j

) (
Yj

n,t/t−1−ŷ−
j

)T +Rj(9)

where Wn
c and Wn

m are the weights associated to the Sigma-
Points [12], ŷ−

j is the predicted projection of the marker

j and P −
yy,j its covariance. Thus, the probability of the

association ai = j can be computed as

p (ai = j |yi, y0:t−1 ) ∝ N
(
yi − ŷ−

j , P −
yy,j

)
p(ai = j)

(10)

being N () the multivariate normal distribution of proper
mean value and covariance. The set of possible associations
is discrete, and thus the (discrete) value of the association
posterior distribution can be computed by inspecting all the
possible values of the associations (per each measurement)
as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p (ai = 0 |yi, y0:t−1 ) ∝ 1
RESu×RESv

p (ai = 0)

p (ai = 1 |yi, y0:t−1 ) ∝ N
(
yi − ŷ−

1 , P −
yy,1

)
p (ai = 1)

.

.

.

p (ai = N |yi, y0:t−1 ) ∝ N
(
yi − ŷ−

N , P −
yy,N

)
p (ai = N)

. (11)

In the case of clutter association (ai = 0) the likeli-
hood function has been set equal to 1/ (RESu × RESv) ,

where RESu × RESv is the image resolution, meaning that
a clutter can happen everywhere in the image. This choice
is usually considered valid in approaches similar to the one
proposed here, for example [21]. Selecting the maximum
probability among the ones in Eq. 11, will give the most
probable value of the variable ai(t), corresponding to the
measurement yi(t). The association problem is solved by
repeating the above procedure for all the measurements in
the set yt .

In the following, the conditions needed to perform the
Kalman correction step, given the solution to the associ-
ation problem, are determined and how to perform such
correction is explained. When Eq. 11 is applied to the entire
measurement set, the sequence of probabilities can be nor-
malized and put into a matrix called Feasible Association
Matrix. It can be expressed as

FMt =

⎡
⎢⎢⎢⎣

π10 π11 . . . π1N

π20 π21 . . . π2N
...

. . .
...

πMt0 πMt1 . . . πMtN

⎤
⎥⎥⎥⎦ (12)

where πij = p(ai=j|yi ,y0:t−1 )∑
j p(ai=j|yi ,y0:t−1 )

, with the property πij > 0

and
∑N

j=0 πij = 1.
Each row in the previous matrix contains the belief for
each measurement to be an outlier or the projection of each
expected marker.

In the following some definitions are introduced.

Definition 1 (Strictly Dominant Feasible Association
Matrix) The feasible association matrix FMt = [

πij

]
is
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strictly dominant if for each i = 1, . . . , Mt one j∗ exists
such that

πij∗ >
∑
j �=j∗

πij . (13)

The foregoing condition defines a feasible association
matrix for which every measurement is univocally assigned
(with a probability of more than 50%) to an outlier or to a
marker.

Definition 2 (Non-degenerate Feasible Association Matrix)
The Feasible Association Matrix FMt = [

πij

]
is non-

degenerate if it is strictly dominant and

�j∗ �= 0
∣∣ πhj∗ >

∑
j �=j∗

πhj , πij∗ >
∑
j �=j∗

πij , ∀h �= i.

(14)

The condition of non-degenerateness states that, while it
is expected that more measurements can be classified as out-
liers (j∗ = 0), two (or more) different measurements cannot
be assigned to the same marker.

These two definitions are useful since when the prop-
erty of non-degenerateness holds, the Kalman Filter cor-
rection can be performed by employing the (estimated)
visible markers and their associated measurements and
factoring out the measurements classified as outliers. How-
ever, ambiguities could raise when the feasible associa-
tion matrix degenerates, i.e. when condition (14) is not
addressed.

Experimental tests revealed that condition (13) usually
holds1, but the case of multiple association is very common
and countermeasures need to be taken. In particular, it is
possible that two (or more) different measurements can be
assigned to the same marker. This may occur, for example,
when two marker measurements are very close each other or
when the same marker is split into two (or more) different
measurements due, for instance, to illumination artifacts. In
the degenerate situations of multiple associations, a fast and
easy a posteriori algorithm is proposed in [22]. In order to
disambiguate the association it has been proposed to sim-
ply take the maximum among all the πhj∗ and associate the
marker j∗ to the measurement whose probability πhj∗ has
the maximum value. For all the remaining h ∈ H the asso-
ciation is forced to an outlier: πh0 = 1 and πhj = 0, ∀j =
1, . . . , N .

1Otherwise it should be hopefully possible to extract the subset of
strictly dominant rows from the matrix and work with them.

3 Experimental results

3.1 Experimental setup

One volunteer subject has been involved in the experiments.
It is worth observing that, for the aim of this study (consist-
ing of assessing the accuracy and robustness of the proposed
approach), the analysis of data coming from only one sub-
ject performing different grasping actions is not limiting.
The subject has been asked to perform different movements
with his right hand. Twenty-five reflective semispherical
markers of 6mm diameter have been located on the hand,
as shown in Fig. 1. The subject grasped three different
objects with a tripod, a pinch, and a palmar grasp. He was
seated in front of a table where the objects were placed one
after the other. In the hand starting configuration the four
fingers were fully extended and the thumb was adducted.
The marker positions have been acquired with the opto-
electronic system BTS SMART-D Motion Capture System
(Fig. 2a), a 7-camera motion analysis system with an acqui-
sition rate of 60 Hz. The accuracy is less than 0.1mm over
a 2x2m area. The BTS Smart Analyzer software package
has been used to reconstruct the marker Cartesian posi-
tions and to build a link model of the hand. The obtained
marker positions constitute our 3D Cartesian coordinates
ground truth. A comparison with respect to a ground truth
is not possible for the angle reconstruction with the adopted
instrumentation (the BTS can be used as a ground truth for
the Cartesian positions but not for the joint angles which
should be computed offline). In fact, the processing soft-
ware provided by the optoelectronic camera manufacturers
does not directly provide joint angles values, but they should
be computed offline after defining, for each image frame,
the joint reference frames (Fig. 3). Therefore, a synchro-
nized acquisition with the BTS and the angular sensors
embedded in a robotic hand (i.e., the DLR-HIT Hand II)
has been performed. The DLR-HIT-Hand II is a dexterous
robotic hand with five identical fingers and an independent
palm. Each finger has four DOFs (MCP A/A and MCP,
PIP, DIP F/E), of which three DOFs are actuated and one is
passive. PIP and DIP joints are 1 : 1 coupled. Each finger
has three Hall-effect sensors for measuring joint positions.
The angular values measured by the sensors embedded in
the robotic hand has been considered as the angular ground
truth.

Dealing with occlusions and disappearing/reappearing
markers is crucial during this phase. Standard tracking
schemes sometimes may fail (Fig. 2b), thus making the
labeling procedure tricky and requiring a direct interven-
tion of the user. This makes the procedure time-consuming
and the final reconstruction more error-prone. Therefore, at
the beginning of the acquisition, a hand kinematic model is
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Fig. 2 a Acquisition platform
composed of the BTS motion
analysis system. b A possible
association failure by using
standard tracking schemes. It is
evident the wrong assignment of
new label (in blue) to the marker
on index finger (in yellow). In
this case, the user has to correct
manually the software error

(a) (b)

created and used in the estimation procedure. It guarantees
that (i) differently from [11], not realistic hand configu-
rations are avoided; (ii) the generality of the approach is
increased (without resorting to ad hoc databases, as done
in [10]) by developing personalized kinematic models for
each subject; (iii) the estimation errors in case of occlu-
sions or disappearing/reappearing markers is reduced by
constraining the markers among each other.

The marker positions have been recorded in the starting
position and during the whole trial until object grasping.

In order to measure the repeatibility of the markers
positioning, the markers have been applied, removed, and
repositioned five times on the subject hand and the data
have been acquired with the hand in the starting configura-
tion. During the five repositioning, the markers forming the
hand reference frame have not been repositioned, in order

Fig. 3 Finger position in two different frames. The DIP joint reference
frame is outlined in yellow at frame k, whereas it is in blue at frame
k+1. The proposed protocol determines joint reference frames at each
video frame. The relative position of two consecutive joint reference
frames gives joint angle values. PIP F/E angle is in green at frame k,
in violet at frame k + 1

to have a fixed reference frame with respect to obtain the
marker 3D Cartesian coordinates. The difference between
the 3D Cartesian coordinates of each marker in the 5 acqui-
sitions has been evaluated and the maximum error (i.e.
1.32mm±0.25mm) has been obtained for the T Mb marker.

3.2 Initialization phase

An initialization phase needs to be performed to build
the hand kinematic model and estimate the initial rela-
tive transformation between camera and hand reference
frame. At the beginning of the acquisition (i.e. in the first
frame), a Non Linear Least Squares optimization approach
has been applied to the measurements of the hand mark-
ers. It is paramount that during this phase all the markers
are visible and correctly associated to the corresponding
measurements.

For the initialization of position and orientation of the
hand frame, let Tmib be the position of the i-th marker on the
dorsum and ỹmic be the corresponding 3D measurement in
the camera frame. The available measurements are mapped
into the estimated positions of the markers in the camera
frame through the following relationship

ymic = g0Tmib (15)

where g0 ∈ SE(3) represents the initial pose of the hand
with respect to the camera. The 2-norm cost function

ĝ0 = min
g0

∑
i

‖ỹmic − g0Tmib‖2. (16)

is minimized in order to find the optimal estimation of the
foregoing transformation. As regards the initialization of
the finger joint angles, the transformation that maps this
position onto the corresponding measurement in the camera
frame can be written as

ymic = ĝ0Tmib

(
�

j

0

)
, (17)
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where Tmib

(
�

j

0

)
is the position of the i-th marker on the

j -th finger with respect to the frame on B1 and depends
on the configuration of the finger, i.e. on the values �

j

0 of
the joint angles. The locally optimal estimation of the initial
configuration of the finger, �j

0, is found by minimizing the
2-norm cost function

�̂
j

0 = min
�

j
0

∑
i

‖ỹmic − ĝ0Tmib(�
j

0)‖2. (18)

These initial motion and pose parameters are used to initial-
ize the state of the Unscented Kalman Filter and to compute
the hand kinematic model.

3.3 Validation of the stochastic algorithm for the
estimation of marker 3D Cartesian coordinates

Unknown associations have been solved with the described
probabilistic association method. It is necessary to outline
that, for the stochastic algorithm, all the measures pro-
vided by the optoelectronic cameras have been used without
applying the processing software provided by the optoelec-
tronic camera manufacturers. Furthermore, the stochastic
approach is based on a fixed hand reference frame centered
on the marker B1 (as explained in Section 2.1), defined at
the first frame during the calibration phase; the Cartesian
coordinates of all the hand joints are expressed with respect
to this fixed hand reference frame.

In order to validate the approach, algorithm outcomes
(in terms of joint Cartesian coordinates) have been comp

ared with data acquired with the optoelectronic system and
reconstructed with the BTS Smart Analyzer (i.e., our ground
truth). The mean and standard deviation of the error between
joint Cartesian coordinates obtained with the two methods,
computed in all the frames, are shown in Fig. 4. For the
sake of brevity, the figure shows the performance analysis,
in terms of error between the finger joint Cartesian coordi-
nates only during the tripod grasp, but similar results have
been also obtained for the other grasping configurations.
The red dots represent the mean value and the blue lines the
standard deviation obtained for each Cartesian coordinate of
each finger joint. As it can be seen, the error mean value is
always less than 4mm (i.e., it is maximum 3mm ± 0.9mm)
demonstrating the good performance, in terms of Cartesian
position reconstruction accuracy, of the proposed estimation
approach.

During the acquisitions, some occlusions and disappear-
ing/reappearing markers phenomena happened. The results
shown in Fig. 4 confirm the reliability of the proposed
method also in presence of these phenomena.

A representative frame of the comparative analysis
between the methods in terms of joint Cartesian coordinates
is shown in Fig. 5. White dots are the joint Cartesian coordi-
nates given by the optoelectronic system and red squares are
the joint Cartesian coordinates resulting from the stochastic
approach.

The algorithmic complexity of the stochastic filter with
the robust tracking scheme has also been evaluated by
measuring the execution time of the algorithm during the
experiments. The average value of the execution time of
the algorithm running in Matlab is 50ms (±6). This reveals

Fig. 4 Mean value (± standard deviation) of the error between joint Cartesian coordinates obtained with the stochastic algorithm and with the
BTS Smart Analyzer, calculated in all the frames in the case of a tripod grasp.
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Fig. 5 Marker positions given by the BTS Smart Analyzer (outlined
in white) and by the stochastic algorithm (in red).

that, subject to some improvement, an implementation of
the algorithm in real-time is feasible.

3.4 Validation of the stochastic algorithm for the
estimation of hand joint angles

In order to validate the joint angle reconstruction, 21 retrore-
flective markers have been located on the robotic hand
joints adopting the same protocol applied to the human hand
(Fig. 6).

The index finger has been moved from an initial angle
configuration equal to: [MCPA/A = 0rad; MCPF/E =
0rad; PIPF/E = 0rad] to a final angle configuration equal
to: [MCPA/A = 0rad; MCPF/E = 0.61rad; PIPF/E =
0.78rad]. A third degree polynomial function and a PD
torque control in the joint space have been used to control
the hand index finger closing until the final desired configu-
ration. The joint angles measured by the sensors embedded
in the robotic hand represent our ground truth.

In order to evaluate the performance of the proposed
stochastic algorithm, a comparison with the angular ground

Fig. 6 Adopted protocol for marker positioning on the robotic hand.
The hand has been covered with paper tape to avoid interferences
between the camera infrared rays and the metallic cover of the hand.

Fig. 7 Error between the angular values obtained by means of the
angular sensors embedded in the robotic hand and the one estimated
by the stochastic algorithm. The error behavior is shown for the
MCPA/A, MCPF/E, P IPF/E

truth has been performed. In particular, the error between
the angular values obtained by means of the angular sensors
embedded in the robotic hand and the one estimated by the
stochastic algorithm has been evaluated. The error behavior
is shown in Fig. 7. The 1:1 coupling between the DIP and
PIP joints has been modeled also in the kinematic model
for the stochastic algorithm. Therefore, the error on the DIP
joint is equal to the error on the PIP joint.

It is possible to note that the error is always less
than 0.035rad ± 0.006rad over a range of motion of
0rad − πrad and is better than the results obtained in the
literature [23].

4 Discussion

It is worthwhile mentioning that in a previous paper [20],
a preliminary version of the stochastic approach applied to
a RGB-D camera was presented. In the present paper, an
evolution of the approach and its application to a multi-
camera optoelectronic system are illustrated. A more rigor-
ous formalization of the method has been developed and the
problem of associating different measurements to the same
marker has been solved. Furthermore, the system perfor-
mance has been thoroughly tested by means of a comparison
with ground truths of angular and 3D coordinate measures.

The results clearly show that the pose estimation algo-
rithms lead to low errors between the estimated values and
the ground truth both as regards joint Cartesian coordinates
(maximum 3mm ± 0.9mm, which is a typical error of the
estimation algorithms proposed in the literature) and joint
angle values (less than 0.035rad ± 0.006rad). In particu-
lar, from Fig. 4, it is evident that the largest error is on the
z-component of the TIPs. This is probably due to the mis-
alignment of the markers with respect to the corresponding
joint (whereas in this work they are supposed coincident)
and to finger anatomy, which is different from the modeled
one: fingers actually are not cylinders, but truncated cones
slightly curved along the z-axis. Furthermore, there is also a
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small error propagation along the kinematic chain. Thus, the
error between the estimated joint Cartesian coordinates and
the measurements are related to the errors due to the pose
estimation and to the forward kinematic approximations.
The mean error on the TIP Cartesian coordinates obtained
with the proposed stochastic method is comparable or even
lower than the error obtained by other approaches proposed
in the literature, where data provided by an optoelectronic
camera system have been used as ground truth. In [24],
the error between the TIP Cartesian coordinates estimated
by their inertial sensory system and those measured by
means of the optoelectronic system reaches 10mm on the z-
direction. In [7], the maximum error between joint Cartesian
coordinates predicted by their model and the coordinates
measured by the optoelectronic system is about 3.5mm on
the TIP.

The comparison with the angular ground truth let us
to state that this method is also applicable to activities
requiring an accurate angle estimation, such as patient
performance evaluation. The stochastic filter is fast, proba-
bilistically robust and optimal. The results show robustness
and real-time applicability of the proposed approach. More-
over, it is very easy to be implemented and initialized,
and requires a minimum effort by the user, as several
experiments have shown. This last consideration makes
the stochastic approach feasible for biomedical applica-
tions, such as neurorehabilitation: e.g. the therapist motion
can be reconstructed to guide a rehabilitation robot or
the motor tasks executed by the patient can be used for
moving a patient avatar in a virtual environment during a
rehabilitation session.

5 Conclusions

An automatic, robust and simple method for hand pose esti-
mation using a multi-camera system and a model-based
stochastic algorithm has been presented. The marker-based
approach relies on a UKF and an accurate hand kinematic
model in order to improve the algorithm robustness with
respect to outliers and possible occlusions. The approach
has been validated by analyzing data acquired with an opto-
electronic system during three different types of grasp. It
has been compared with ground truths for angular and 3D
coordinate measures. The comparative analysis shows a
level of accuracy in the reconstruction of the joint Carte-
sian coordinates comparable or better with respect to other
methods proposed in the literature (less than 4mm). The
results obtained for the joint angles reconstruction are real-
istic and within errors comparable to those reported in the
literature (less than 0.035rad). The advantages of using the
proposed model-based stochastic algorithm with respect to
other optoelectronic methods for hand joint motion recons

truction are evident in terms of simplicity of implementa-
tion, initialization, effort by the user and possibility to use
the approach in real-time, making the system suitable for
several biomedical applications. Namely, the performance
achieved with our stochastic approach offers the chance to
use the method in the field of neurorehabilitation combined
with virtual reality, where patients have to perform prede-
fined hand movements and visualize their hand avatar in
real-time, and with instrumented objects for acquiring infor-
mation about the interaction forces between the human hand
and the grasped objects [25, 26]. Future activities will be
mainly focused on the application of the approach to the
hand motion analysis during rehabilitation sessions.
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Appendix

The Denavit-Hartenberg (DH) parameters for the index
finger and for the thumb are shown in Tables 1 and 2, respec-
tively. The other long fingers have the same DH parameters
of the index. DH parameters are evaluated in such a way
as to obtain a generic algorithm valid for different hand
sizes. Therefore, the algorithm envisages an initial cali-
bration phase, where the 3D Cartesian coordinates of the
markers center are detected manually in the first image
acquired by the camera and the link lengths are measured,
by means of the 3-dimensional information provided by the
vision system.

In the Tables 1 and 2, Lindex and Lthumb represent
the link lengths of the index finger and of the thumb,
respectively.

Once the DH parameters have been computed, the rota-
tion matrices can be extracted. Given the symbolic form of
a generic rotation matrix

R =
⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ , (19)

Table 1 Denavit-Hartenberg parameters of the index finger

Joint # ai αi di θi

1 0 −π/2 0 qMCP
f lex

2 Lindex
P π/2 0 qMCP

abd

3 Lindex
M 0 0 qPIP

f lex

4 Lindex
D 0 0 qDIP

f lex
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Table 2 Denavit-Hartenberg parameters of the thumb

Joint # ai αi di θi

1 0 −π/2 0 qT M
f lex

2 Lthumb
P π/2 0 qT M

abd

3 0 −π/2 0 qMCP
f lex

4 Lthumb
M π/2 0 qMCP

abd

5 Lthumb
D 0 0 qIP

f lex

the corresponding Euler angles in configuration ZYX,
under the assumption that r13 �= 0 and r23 �= 0, are

φ = atan2(r23, r13)

θ = atan2(
√

r213 + r223, r33)

ψ = atan2(r32, −r31) (20)

where atan2(x, y) is the arctangent of two arguments, the

choice of the positive sign for the term
√

r213 + r223 limits the
range of the feasible values of θ to (0, π). If θ is chosen in
the range (−π, 0), Eq. 20 becames

φ = atan2(−r23, −r13)

θ = atan2(−
√

r213 + r223, r33)

ψ = atan2(−r32, r31) (21)
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