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Summary

The design of decentralized robust control schemes for industrial robot manipula-
tors is the topic of this paper. The goal is to achieve good disturbance rejection and
trajectory tracking capabilities in spite of dynamic coupling torques. Three schemes
are presented that exploit joint position feedback, joint position + velocity feedback,
joint position + velocity + acceleration feedback, respectively. The performance is im-
proved by nesting more loops around the disturbance. Enhanced tracking is obtained
by resorting to a linear feedforward action.

1. Infroduction

Industrial robot manipulators are conventionally controlled by decentralized linear
controllers at each independent joint. In fact, it is argued that, when robot joints
have high gear ratios, the nonlinear coupling dynamic terms can be neglected since
the actuator inertias reported at the joints dominate over the configuration-dependent
terms. Moreover, industrial robot operational speeds are usually quite low, and therefore
Coriolis/centrifugal terms are also not compensated.

It is known that, in the case of direct-drive manipulators, the dynamic terms play
a significant role for high-speed motions [1]. A large number of model-based con-
trol schemes were proposed [2,3], including adaptive control algorithms [4,5,6]. More
recently, however, it was demonstrated that also for industrial robot manipulators
with high gear ratios dynamic compensation yields significant reduction of tracking
errors [7,8].

The present work is based on the preliminary results in [9] and proposes new dif-
ferent control schemes of decentralized type which are shown to guarantee satisfactory
tracking capabilities in spite of inertia and load variations. Three different schemes
are proposed: position feedback, position + velocity feedback, position + velocity +
acceleration feedback. The basic idea is to adopt a PI action for the inmost feedback
loop, so as to get perfect steady-state disturbance torque rejection. It is shown that
the third scheme achieves the best performance in terms of disturbance rejection ratio
and recovery time during the transients. The problem of lack of direct acceleration
measurements is solved by using a state variable filter to reconstruct them. Further, it
is shown how linear feedforward compensation confers enhanced tracking capabilities to
the schemes in case of good model accuracy.
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2. Decentralized Control

It is well known that the dynamic model of a robot manipulator in free space is
given by

B(g)§+C(g9.9)a+9(g)=T (1)

where g is the (nx 1) vector of joint variables, B is the (nx n) positive definite symmetric
inertia matrix, C§ is the (n x 1) vector of Coriolis and centrifugal forces, g is the (nx 1)
vector of gravitational forces, and 7 is the (n x 1) vector of joint driving forces.

To control the motion of the manipulator means to determine the forces 7 that
allow the execution of a motion g(t) such that it is

q(t) = qa(t)

as closely as possible, where gq(t) indicates the vector of reference joint variables.

Focusing on the case of gear-driven robots, the joint forces are provided by the
actuators via kinematic transmissions that perform a motion transformation from the
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Figure 1 — Block diagram scheme of the dynamics of a gear-driven industrial robot
manipulator.

motors to the links. If g, is the (n x 1) vector of actuator displacements, the following
relation is obtained

Krg=¢m (2)
where K, is an (n x n) diagonal matrix whose elements are usually much greater than
unity.

Due to the presence of gear reductions, the vector of actuator driving forces T, is
given by



Tm = m6m+Fmém+K:lf (3)

where I,, and F,, are diagonal matrices whose elements are the inertias and viscous
friction coefficients of the gear reduction motors, and K[! r is the vector of required
joint torques resulting at the actuator axes.

At this point, observing that the diagonal elements of B(qg) contain inertia moments
that do not depend on the joint configuration and configuration-dependent terms of
sinusoidal functions, the inertia matrix can be decomposed as

B(q) = B + AB(q) (4)
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Figure 2 — Block diagram scheme of the dynamics of an individual manipulator joint.

where B is a diagonal matrix whose constant elements represent the average values of
joint inertias. Plugging (2-4) into (1) gives

Tom = (Im + K7'BK " )gm + Fingm + TNL (%)

where
T~y = KJ'ABK Vgm + KT'CK ' qm + K 'g. (6)

As evidenced by the block diagram scheme of Fig. 1, the system of the manipulator
structure and the mechanical part of the gear reductions is actually composed of two
subsystems; one with 7., as input and gn as output, the other with gm, @m, Gm 8s
input and Ty as output. The former is linear and decoupled; each component of T,
affects the corresponding component of gm. The latter is nonlinear and coupled, since
it accounts for all those nonlinear and interacting contributions stemming from the joint
coupled dynamics.

On the basis of the above scheme, Tn1 can be regarded as a vector of disturbance
forces for the joint servos. This corresponds to a decentralized structure of the controller,
since each joint is controlled independenty from the others. :

3. Disturbance Rejection

It is desired to find a control structure that allows satisfactory tracking of the
outpnt reference variable with suitable reduction of disturbance effects; hence, the two
goals of the design are disturbance rejection and trajectory tracking. Let then face up
to the problem of disturbance rejection, first.

The system to control is the servo of the ith joint of the manipulator. This presents
the block diagram scheme of Fig. 2, which is logically derived from the scheme in Fig. 1.
In detail, the ith motor is characterized by the average inertia

Iti = Imi + K 2bii,




44

the resistance of the armature circuit R,; (the inductance has been neglected), and the
torque and voltage constants k,; and k,;, respectively. Further, G,; indicates the voltage
gain of the power amplifier that usually preceeds the motor. Consequently, the input to
the system is not the armature voltage v,i, but the input voltage v.; of the amplifier.
The scheme of Fig. 2 evidences the presence of the disturbance input d; that turns out
to be the ith component of the torque vector Ty in (6), i.e.

n n

di = 3 Rk bube — kbl + ) ke cibe + ks (M
k=1 k=1

where b;; is the average, constant value of inertia at the ith joint, and k., is the gear ratio

of the ith joint. Notice that in the scheme of Fig 2, the viscous friction coefficient Fin;

has been assumed negligible with respect to the equivalent electrical friction coefficient

kyikei/Rai. Moreover, the following positions are made:

1 _ RailTi

" kui Tmi = kyike

kmi

where km; and Tm; are respectively the gain and time constants of the motor; G.i is
considered to be included in the controller gain. Hence, the motor is described by
the voltage to position transfer function —dropping, from now on, the subscript ¢ for
notation compactness—

km
s(1 4+ sTwm)

An effective rejection of the disturbance d is ensured by:

G(s) = (8)

¢ a large value of the power amplifier gain,

o an integral action in the controller so that the effect of the gravitational component
on the output 8 is annihilated at steady-state.

This clearly suggests the use of a PI action for the controller whose transfer function is

C(s) = K.«,l + sTc;

5

this yields zero error at steady-state for a step disturbance, and the presence of the real
zero in s = —1/T. offers a stabilizing function.

Besides the closure of a position feedback loop, the most general solution is ob-
tained by closing inner feedback loops on the velocity and acceleration. This leads to
the scheme in Fig. 3, where Cp(s), Cv(s), Ca(s) represent respectively the position,
velocity, acceleration controllers, krp, kTv, kT4 are the relative transducer costants,
and the amplifier gain constant has been embedded in the gain constant of the inmost
controller. Notice also that the disturbance torque d has been appropriately transformed
into a disturbance voltage by the factor R, /k;.

In the following, the three particular solution that derive from the general scheme
of Fig. 3 are presented; at this stage, the eventual issue arising from measurement of
physical variables is not considered yet.
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Figure 3 — Block diagram scheme of the position + velocity + acceleration feedback
control system.

3.1 Position Feedback
In this case:

Cr(s) = Kp 212, Cy(s) =1, Ca(s) =1

krv = kra=0.

Root locus analysis can be performed as the gain of the position loop varies. Three
situations are evidenced for the closed-loop poles (Fig. 4). The stability of the closed-
loop feedback system imposes some constraints on the choice of the parameters of the
PI regulator: ¥ Tp < Ty, the system is inherently unstable (Fig. 4a). Then, it must
be Tp > T (Fig. 4b). As Tp increases, however, the absolute value of the real part of
the two roots of the locus tending towards the asymptotes increases too, and the system
has faster time response. Hence, it is convenient to render Tp > Tm (Fig. 4c). In any
case, the real part of the couples of dominant poles cannot be less than —Tr, /2.

The closed-loop input /output transfer function is

1
6(s) _ 773
Oi(s) 14+ (14 sTwm)
EmKpkrp(1+ sTp)
while the closed-loop disturbance/output transfer function is
sR,
6(s) _ __ kKpkrp(1+sTp)
D(s) 14 s2(1 4 sTp)
k. Kpkrp(1 +sTp)
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Figure 4 — Root loci for the position feedback scheme.

It can be recognized that the term Kpkrp is the reduction factor imposed by the
feedback gain on the amplitude of the output due to the disturbance; then, the quantity

Xr = Kpkrp (11)

can be interpreted as the disturbance rejection factor. However, it is not appropriate to
increase Kp too much, because small damping ratios would result leading to unaccept-
able oscillations of the output. Further, for large values of Kp, the third root on the real
axis is almost canceled by the neighboring zero. On the other hand, it can be noticed
in (10) that also the closed-loop zero in s = —1/Tp is canceled by the pole at denom-
inator; thus, the closed-loop pole close to the zero is not canceled anymore and then
determines the dynamics of the disturbance, which is quite slow. A characterization of
the recovery time to the disturbance is then given by the time constant

Tr = Tp. (12)




Figure 5 — Root locus for the position + velocity feedback scheme.

3.2 Position + Velocity Feedback

In this case:

14 T,
Cr(s) = Kp, Cv(s) = KVL:-'{, Ca(s) =1

kTA - 0.

Root locus analysis can be performed as the gain of the velocity loop varies. The most
convenient choice is to utilize the zero of the regulator in s = —1/Ty to cancel the
effects of the real pole of the motor in s = —1/T,. By setting

TV = Tma

the poles of the closed-loop system move on the root locus as the gain of the velocity
loop varies (see Fig. 5). The increase of Kp allows to move the roots towards regions of
the left-half complex plane characterized by large values of the real part, if an opportune
choice of Ky is made.

The closed-loop input/output transfer function is

1
6(s) _ krp

Oi(s) Skfk s? ’
14 PRTP + IlI'I]EP]ETF’]ZV

which can be compared with the typical transfer function of a second-order system

(13)

(14)




It can be recognized that, with a suitable choice of the gains, it is possible to get all
the values of natural frequency w, and damping ratio (. Hence, if w, and ( are given
as design requirements, the following relations can be established:

2(wn
Kvkry = f;" (15)
m
KpkrpKy = T*- (16)
m

Once Ky and kry have been chosen to satisfy (15), the values of Kp and krp are

obtained from (16).
Further, the closed-loop disturbance/output transfer function is

sR;
o(s) EKpkrpKv(1+sTv) -(17)

=" sk s° ’
1+ RPETP t E.KpkrpRv

D(s)
which shows that the disturbance rejection factor is

Xgr = KpkrpKv (18)

and is fixed, once Kp and Kv have been chosen via (15,16). Concerning the disturbance
dynamics, the presence of a zero in the origin introduced by the PI and of three poles
having real parts —1/Tv, —(wa, —(Wn should be noticed. Hence, in this case, an
estimate of the disturbance recovery time is given by the time constant

Tr = sup{Tm, ?:13:}’ (19)

which reveals an improvement with respect to the previous case in (11), since Tm < Tp.
3.3 Position + Velocity + Acceleration Feedback

In this case:

1+8TA

Cp(s) = Kp,Cv(s) = Kv,Ca(s) = Ka——

Differently form the previous case, the presence of the acceleration feedback does not
allow to define the motor transfer function as in (8). It is necessary, in fact, to perform
some handy manipulation of the block diagram scheme in Fig. 3, so as to report the
acceleration loop in parallel to the velocity loop of the motor. It can be shown that,
also in this case, an opportune cancellation can be performed by setting

Ta=Tn
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Figure 6 — Root locus for the position + velocity + acceleration feedback scheme.

or
kK AkTATA > Th knKakTa > 1.

The two solutions are essentially the same, as far as the dynamic features of the control
system are concerned. In both cases, in fact, the closed-loop poles are constrained on
the root locus in Fig. 6. This turns out to be analogous to the one in Fig. 5, having
assimilated the system to a second-order one.

The closed-loop input /foutput transfer function is

1
00s) _ krp . (20)
Oi(s) 14 S5k (1 + kmKakra
+ PNV 4 T(‘KT‘K_K‘Z
PRTP mAPRTPOAVILA
Moreover, the closed-loop disturbance/output transfer function is
sR,
O(s) _  kKpkrpKvKa(l+ sTy) (21)
D(s) skP{ 1+ kmKakra
14 PRTP + miLPRTPAVILA

The resulting disturbance rejection factor and recovery time are respectively given by
Xr=KpkrpKvKa4 (22)

and

Tp = sup{Ty, c%,.} (23)




Figure 7 — Block diagram scheme of the state variable filter.

where T4 can be made less than T,,.

With reference to the transfer function in (14), the following relations can be es-
tablished for design purposes:

2Kpkrp wp
i _In 24
krv ¢ (24)
- kaR
14 kK ks = wa (25)
KpkrpKyK4 = Xg. (26)

Once Kp, krp and kry have been chosen to satisfy (24), K4 and k1,4 are chosen to
satisfy (25), and then R’y is obtained from (26). Therefore, with respect to the previous
case, now the acceleration feedback remarkably allows not only to achieve any desired
dynamic behavior, but also to prescribe the disturbance rejection factor.

In deriving the above three control schemes, the issue of measurement of feedback
variables was not considered explicitly. With reference to the typical position control
servos that are implemented in industrial practice, there is no problem to measure
position and velocity, while a direct measurement of acceleration in general either is
not available or is too expensive to get. Therefore, for the general scheme of Fig. 3
with position + velocity + acceleration feedback, an indirect measure is to be obtained,
that is the acceleration measurement is reconstructed from the position measurement
by means of a state variable filter (Fig. 7). The filter is characterized by a natural
frequency wns = k1 k; and by a damping ratio (; = (1/2)y/k1/k2. Choosing the filter
bandwidth to be larger than the joint servo bandwidth —at least a decade off to the
right— the effects due to measurement lags between 84 and 6 are not appreciable, and
then it is feasible to take the filter outputs as the quantities to feed back.
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4. Trajectory Tracking

The above schemes have been derived according to the purpose of achieving good
T disturbance rejection. When the joint control servos are required to track reference
‘ position trajectories with high values of speed and acceleration, the tracking capabilities
of the scheme in Fig. 3 may become quite poor.

A computationally cheap remedy to the above inconvenient can be obtained via the
well-known technique of feedforward cancellation of the plant dynamics. In particular, B
it is quite straightforward to recognize that if the reference inputs to the three control
structures analyzed in the previous section are modified respectively into

s2(1+ sTp,)
_ i=(* @
e R 9 ( TF + ka{P(l + STP)) ed ( )
A -SkTV 5'2
- 2
o (’“”’ Y ke T kaPI{V) 64 (%)
skrv (1 + kaAkTA).sz
= (k ., 29 |
© (MPJr Kp + km KpKvKa ‘ () :

perfect tracking of the desired joint position trajectory is achieved. Incidentally, com- i
puting derivatives of the desired trajectory 4(t) is not a problem, once that is known .l
analytically. :

All the solutions allow perfect tracking of the input trajectory within the range of
validity and linearity of the employed models. Deviations from the ideal values cause
a performance degradation that must be analyzed case by case. It is interesting to
notice that, as the number of nested feedback loops increases, less knowledge of the
system model is required to perform feedforward compensation. In fact, T\n and km are
required to close & position loop, only kn is required for the position + velocity loops,
and k,, again —but with reduced weight— for the position + velocity + acceleration
loops.

Finally, we remark that the disturbance is not completely unknown but an expres-
sion is given in (7), though it is only an approximate one. Therefore, it is understood
thut & model-based compensation can be performed —say in a feedforward fashion, so
as to perform it off-line for typically repetitive trajectories— which can alleviate the
endeavor of disturbance rejection of the previous schemes. In other words, a valid so-
lution from an engineering viewpoint could be that of devising the control system for
an industrial robot manipulator as composed of two subsystems; a decentralized ro-
bust independent joint control with acceleration feedback whose performance can be
enhanced by the introduction of a centralized model-based (feedforward) control that
compensates for the relevant contributions of manipulator dynamics.
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5. Conclusions

The design of independent joint controllers for industrial robot manipulators has
el been investigated in this work as a still valid alternative to model-based control algo-
: rithms. Three schemes have been developed using classical linear control techniques.
In particular, one scheme that adopts position + velocity + acceleration feedback, with
the help of a state variable filter to reconstruct acceleration measurements, has been
shown to guarantee excellent disturbance rejection performance. Preliminary simulation
results for a three-joint industrial manipulator are reported in [9]. A future paper will
describe experimental tests which we are currently conducting on a high-speed parallel
robot.
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