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A B S T R A C T

This paper presents a trajectory generation algorithm for a three-dimensional (3D) biped robot
that can adjust the center of mass (CoM) according to the environment. We adopt a new abstract
model that supports vertical motion and rotation. Differing from traditional abstract models, the
proposed full centroid dynamics inverted pendulum model fully considers the robot’s movement
and rotation. Unlike the zero moment point (ZMP), which only ensures the feet do not flip
over, we also propose a new additional stability criterion, named zero frictional moment point
(ZFMP), guaranteeing no yaw rotation while walking. Next, a nonlinear model predictive control
is designed to generate the CoM trajectory, torso rotational angle, and adaptive footholds to
induce various biped gaits. A full-dynamics 3D humanoid robot is simulated to test the proposed
method while steering, walking underneath a low door, and walking with disturbances.

. Introduction

The control of a biped robot is challenging mainly due to its hard-to-stabilize dynamics. Compared to other mobile systems,
.g., wheeled or tracked robots, biped locomotion involves another complexity: the hybrid nature of stepping where the continuous
odel changes in each phase [1]. First, the fact that the biped robots can only have unilateral constraints with the environment leads

o difficulty in balancing them [2]. Moreover, associated timing and the coordination control of redundant joints are other essential
opics in controlling biped robots [3]. Beyond these, the robustness of biped locomotion is far achieved [4], leading to the fact that
ost of the existing robot biped walking is clunky and unnatural; thus, the main challenges are being human-like, energy-efficient,

ersatile, and of course, agile as humans [5,6]. However, simplified models are widely used for computational convenience [1],
esulting in unnatural center of mass (CoM) cycles. Lack of crucial dynamics of the biped robot, e.g., angular momentum, results in
oor walking robustness [7,8]. Nowadays, biped robot locomotion is still far from the human level.
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One of the earliest simplified models that roughly describes biped locomotion is the inverted pendulum (IP) [9] with a fixed-
ength leg. In our previous works, we proposed a biped locomotion method with minimal energy [10], variable speed [11], and torso
wing [12] to generate natural biped walkers inspired by IP. However, numerical integration is unavoidable. Based on IP, Kajita
t al. proposed the linear inverted pendulum (LIP) [13]. With additional zero moment point (ZMP) control [14], many position-
ontrolled humanoid robots can walk stably through inverse kinematics. Nevertheless, it should be noted that humanoid robots
sing LIP usually have to crouch their knees to keep the CoM at a constant height [1,2,5]. The vertical condition of the robot can
ffect its balance ability and energy efficiency, e.g., it is easier to balance when the CoM is lower, and improve walking robustness
y briefly raising the height of the CoM [15,16].

There are various abstract models: Fig. 1 shows the prevailing simplified model nowadays. Apart from the models developed
rom IP, there are other nonlinear multi-link pendulums such as 7-link model [17]. These models are more accurate and allow
or the vertical motion. Their distinguishing feature lies in the addition of links representing the limbs for geometric similarities,
esulting in a higher number of degrees of freedom (DoFs) and increased complexity in the models. Currently, these models primarily
ocus on the planar motion of robots. The previously mentioned categories primarily explore energetic and geometric similarities.
nother category, centered around the spring loaded inverted pendulum (SLIP) [18], delves into additional aspects such as ground
eaction force (GRF) and elastic behaviors. The vertical motion is also allowed. To capture the characteristics of human walking more
ccurately, a torso is incorporated into the SLIP [19], and a passive spring is introduced to the hip joint [20]. The most distinctive
eature of such models is the utilization of springs to simulate human muscles, enabling the storage and release of energy. In this
aper, however, the elastic behaviors and energy storage are not investigated. Another class of models [21–24], evolving from the
P, focuses on the primary characteristics of human walking, such as the shifting of the CoM and the movement of the torso. The
otion of the torso rotation is beneficial to improving the stability and efficiency of walking [12]. More importantly, the rotation
otion of the torso cannot be neglected in the implementation of complex locomotion, such as bending underneath an obstacle

nd turning. Indeed, the multi-link model may well describe the dynamics of biped locomotion. However, finding a periodic gait
or such a multidimensional model is complex and computationally expensive. For real-time biped control, simplified models are
nstrumental in producing locomotion [2]. However, for dealing with variable CoM height locomotion and effective steering, a new
eliable simplified model is suggested to abstractly determine the overall dynamics.

In this paper, we introduce a full 3D template model named full centroid dynamics inverted pendulum (FCDIP), which can perform
flexibility and adaptability while navigating a complex world. The model helps to produce more natural motions in different
scenarios, resembling human locomotion. FCDIP comprises two mass-less legs and a 3D rotating flywheel that mainly captures
torso translational and rotational motion, as shown in Fig. 1. The torso accounts for most of the robot’s mass and inertia. Therefore,
capturing the main characteristics of the torso can approximately describe the dynamics of the biped robot [25]. Compared to
LIPF [21] and VIP [23]/NIPF [24], FCDIP not only supports vertical motion but also specifically accommodates the yaw motion of
the torso. This is in line with observations regarding human walking, where the height of the pelvis changes with time and describes
approximately an arc when walking, to keep the mechanical energy of the torso, i.e., the sum of potential and kinetic energy,
constant [26]. Some results also showed that the variable CoM height could improve the robot’s walking ability, e.g., disturbance
recovery capacity [16]. Moreover, the yaw dynamics of the torso of the robot are also important, especially while steering or
running [27]. In FCDIP, the vertical and yaw dynamics are considered, therefore, it can generate more natural biped locomotion
and perform more tasks. In brief, the FCDIP is an advanced version developed from LIP and LIPF. Moreover, we aim to explain the
stable conditions of yaw motion as ZMP does in a straight motion. A new criterion (or constraint) named zero frictional moment
point (ZFMP) is proposed for yaw motion stability. The ZFMP is defined as the point where the vertical component of the moment
of the GRF becomes zero. With ZMP and ZFMP constraints, the nonlinear model predictive control (NMPC) automatically generates
the biped locomotion trajectory, allowing the robot to perform the tasks without falling. Usually, it is challenging to complete
nonlinear optimization effectively, but the closed-form formulation allows the gradient and the Hessian of the SQP to be calculated
numerically in this case. In comparison to NMPC implementations in other studies, such as those by Heerden [16], Ding et al. [24],
and Negri et al. [28], the inclusion of the FCDIP and ZFMP constraint within NMPC allows for the execution of additional tasks for
biped robots, such as stable steering.

Different from other abstract models, e.g., [29], the FCDIP is a six-dimensional model that allows 3D translation and rotation.
However, a complicating factor here is that the horizontal and vertical motion is coupled in ZMP dynamics, resulting in the dynamics
being nonlinear. In this paper, unlike other typical linear ZMP dynamics strategies [13,30–32], we treat the ZMP constraint as a
quadratic constraint instead of the linear constraint for including the vertical CoM motion. Then, the related optimization can
be expressed in closed form as a nonlinear constrained quadratic program other than a quadratic program. As a result, the CoM
trajectory, torso angle, and footholds are formulated through the NMPC framework with the sequential quadratic program (SQP)
strategy. SQP is a well-known strategy in the aviation and vehicle industry for solving nonlinear constraints issues, and some results
for the humanoid robot have been detailed in [28,33].

Currently, most of the work in biped locomotion using ZMP does not deal with variable-height walking. Besides, the yaw motion
is independent of the ZMP, i.e., the ZMP cannot guarantee yaw stability. According to the ZMP criterion [14], ZMP only guarantees
that the feet cannot be rolled over, but it cannot affirm the presence of the yaw rotation motion of the feet. To avoid the rotation
and slipping of the support sole due to the insufficient friction moment between the support foot sole and the floor, a few works
have been discussed for yaw moment compensation [34–41]. Among them, to suppress the yaw moment, the upper body motion,
e.g., arms swing motion [36,38] and waist rotation motion [34,35,38,39], is controlled for yaw compensation. However, it needs
extra operation for the precise motion of the waist and arm for yaw moment compensation. In [41], a bevel-geared mechanical
2

bioinspired robotic foot was presented to emulate the rotational motions of the human subtalar and oblique midtarsal joints. From
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Fig. 1. Different abstract models introduced in the literature for walking. For models without swing dynamics, we treat the swing leg in a gray color. We point
out some important features such as the 3D model, inclusion of the torso, variable CoM height and yaw motion. Note that, some models are only in 2D while
some are in 3D. Some linear models do not allow the vertical motion for dynamics decoupling, such as LIP. Many of these models do not include the torso or
do not allow for torso yaw, however, FCDIP can describe the roll, yaw and pitch motion of the robot. Overall, FCDIP offers more DoFs that do not exist in
other abstract models, particularly, it includes the yaw motion.
3
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their proposed figures of the foot, so many DoFs result in an extremely complex structure. More importantly, few of them have
discussed the actual friction on the soles of the feet detailedly. Zhu et al. [42] explained the real friction, including the vertical
frictional moment in biped walking. The mechanism of slipping with rotation was also introduced. Regrettably, the yaw stability
criterion was not discussed. In [36], similar to [42], the nature of the ZMP and yaw moment is explained. Moreover, a threshold is
set for that if the angular momentum mostly exceeds the predefined threshold, the residual motion of the links is triggered to slow
down by the compensation. However, the rule for setting the threshold was not specified. This threshold is, in a sense, a constraint.
In this paper, the yaw motion stability constraint is explained to address the limitations of ZMP.

With the above considerations in mind, the main contributions of this work are listed below.

• A new 3D biped abstract model is proposed. The proposed model allows six dimensional motion, including three dimensional
translation and three dimensional rotation. In particular, it accounts for vertical translation and rotation which are often
overlooked in other locomotion research [3,19,24].

• A new additional stability criterion, the ZFMP, is introduced. The ZFMP is proposed to guarantee stable natural steering without
foot yaw rotation.

The remainder of this paper is structured in the following manner. In Section 2, we introduce the dynamics of FCDIP. Then,
he nonlinear ZMP dynamics and ZFMP are explained. Section 3 presents the trajectory generation method using NMPC to obtain
table locomotion. Moreover, the SQP is also explained. Some simulations, e.g., walking underneath the low door and steering, are
eported in Section 4. Section 5 provides the discussion and conclusion.

. FCDIP dynamics

This section is devoted to simplifying the biped robot mathematical model and introducing the proposed FCDIP model. Moreover,
ts stability criterion will be discussed.

.1. Evaluation of the FCDIP

Traditionally, the biped robot can be approximated easily as an imaginary 3D LIP, which consists of the CoM and a massless leg
connecting the CoM and the supporting point. Later, this model is extended to LIPF with rotational inertia. With the acceleration
of the CoM and angular momentum stored in the flywheel, the ZMP location’s coordinates

[

𝑝𝑥, 𝑝𝑧
]T ∈ R2 is given as [21]

𝑝𝑥 = 𝑐𝑥 −
𝑐𝑦
𝑔
𝑐𝑥 −

𝐿̇𝑧
𝑚𝑔

, (1)

𝑝𝑧 = 𝑐𝑧 −
𝑐𝑦
𝑔
𝑐𝑧 +

𝐿̇𝑥
𝑚𝑔

, (2)

here
[

𝑐𝑥, 𝑐𝑧
]T ∈ R2 are the CoM’s coordinates in the horizontal plane, 𝑐𝑦 ∈ R represents the vertical height of the CoM,

𝐿𝑥, 𝐿𝑧
]T ∈ R2 denotes the angular momentum’s coordinates around the 𝑥 - and 𝑧-axes, respectively, 𝑚 > 0 is the mass, and

≃ 9.81 m∕s2 is the gravity acceleration. Herein, to deal with variable CoM’s height due to the variable-height base, the friction
orce coordinates,

[

𝑓𝑥, 𝑓𝑧
]T ∈ R2, and the ZMP location (see Fig. 2) can be expressed as

𝑓𝑥 = 𝑚𝑥̈, 𝑓𝑧 = 𝑚𝑧̈, (3)

𝑝𝑥 = 𝑐𝑥 −
𝑐𝑦 − 𝑠𝑦
𝑐𝑦 + 𝑔

𝑐𝑥 −
𝐽𝑧𝜃̈𝑧

𝑚
(

𝑔 + 𝑐𝑦
) , 𝑝𝑧 = 𝑐𝑧 −

𝑐𝑦 − 𝑠𝑦
𝑐𝑦 + 𝑔

𝑐𝑧 +
𝐽𝑥𝜃̈𝑥

𝑚
(

𝑔 + 𝑐𝑦
) , (4)

where 𝑠𝑦 ∈ R is the height of the support polygon,
[

𝐽𝑥, 𝐽𝑧
]T ∈ R2 is inertia around the 𝑥 - and 𝑧-axes, respectively, and

[

𝜃𝑥, 𝜃𝑧
]T ∈ R2

is the roll and pitch angles of the torso, respectively.
For stable walking without foot rotation, the ZMP should be inside the support polygon [14], which is determined by the

geometry of the supporting feet.

2.2. ZFMP for yaw motion stability

The ZMP expression in (4) appears independent from the yaw motion. Consider the condition of the single support phase:
according to the definition of the ZMP [14], this is the point where the moment of the horizontal component of the GRF becomes
zero, as shown in Fig. 3, then

𝑝𝑥 =
∫𝑆 𝑥𝜌(𝑥, 𝑧)𝑑𝑆
∫𝑆 𝜌(𝑥, 𝑧)𝑑𝑆

, (5)

𝑝𝑧 =
∫𝑆 𝑧𝜌(𝑥, 𝑧)𝑑𝑆 , (6)
4

∫𝑆 𝜌(𝑥, 𝑧)𝑑𝑆
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Fig. 2. ZMP dynamics on the uneven terrain. If the configuration of the foot is rectangular, ZMP should be within the red line in each plane. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. GRF in 3D.

where 𝜌(𝑥, 𝑧) is the pressure over the surface of the sole, 𝑆. In other words, the ZMP is equivalent to the center of pressure (CoP),
𝒑 =

[

𝑝𝑥, 𝑝𝑦, 𝑝𝑧
]T ∈ R3. Let 𝝉𝑝 =

[

𝜏𝑝𝑥 𝜏𝑝𝑦 𝜏𝑝𝑧
]T ∈ R3 be the ground reaction moment around the ZMP, where 𝜏𝑝𝑥 = 0, 𝜏𝑝𝑧 = 0,

and the vertical component equal to

𝜏𝑝𝑦 = ∫𝑆

{(

𝑥 − 𝑝𝑥
)

𝜎𝑧(𝑥, 𝑧) −
(

𝑧 − 𝑝𝑧
)

𝜎𝑥(𝑥, 𝑧)
}

𝑑𝑆. (7)

In the previous section, we pointed out that the motion in the sagittal and coronal planes can determine the friction forces and the
ZMP location. In the translation direction, the resultant friction force must be inside the friction angle to avoid the slide. Besides, the
vertical moment generated by the friction cannot be an arbitrary value in practice as the contact surface is geometrically bounded.
That is, it must have a threshold. According to Newton’s law, the yaw motion of the robot generates the vertical component of the
ground reaction moment at the ZMP, and the force/moment applied by the robot to the ground can be obtained by

(8)
5

𝒇 𝑝 = 𝑚(𝒈 − 𝒄̈),
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𝝉𝑝 = −𝑳̇𝑐 + 𝑚(𝒄 − 𝒑) × (𝒈 − 𝒄̈), (9)

where 𝑳𝑐 =
[

𝐿𝑥, 𝐿𝑦, 𝐿𝑧
]T ∈ R3 ∈ R3 denotes the angular momentum about the CoM, 𝒄 =

[

𝑐𝑥, 𝑐𝑦, 𝑐𝑧
]T ∈ R3 is the full CoM location,

𝒈 = [0,−𝑔, 0]T ∈ R3 is the gravity vector, and the symbol × denotes the vector product. Herein, we propose a new indication point, the
ZFMP, which represents the point where the vertical moment becomes zero thus complementing the standard ZMP criterion. Indeed,
tribology, as a scientific discipline, has a long history of research. However, it is not fully understood yet due to its complexity [43].
Here, thanks to the simplification of the robot in FCDIP, the friction force is determined by the horizontal motion of the CoM. If
the CoM lacks rotational moment, the GRF should pass directly through the CoM, and ZFMP should be at the intersection of the
GRF and the ground in the horizontal plane. ZFMP starts to move when the CoM experiences a rotational moment. The maximum
movement is constrained by the support polygon formed by the foot and the ground, reaching the maximum yaw moment once it
moves to the edge of the foot. Thus, the ZFMP must be on the line expressed as

𝑚𝑐𝑧𝑥 − 𝑚𝑐𝑥𝑧 + 𝐿̇𝑦 − 𝑚𝑐𝑧𝑐𝑥 + 𝑚𝑐𝑥𝑐𝑧 = 0. (10)

Fig. 4 illustrates how to determine ZFMP at the case of the components of friction in the 𝑥 and 𝑦 directions are both positive or
negative. Given the upper and lower bound of the support polygon’s length 𝑙𝑠𝑝, 𝑙𝑠𝑛 ∈ R and width 𝑤𝑠𝑝, 𝑤𝑠𝑛 ∈ R, the diagonal line of
the support polygon is

𝑧 − 𝑙𝑠𝑝
𝑙𝑠𝑛 − 𝑙𝑠𝑝

−
𝑥 −𝑤𝑠𝑛
𝑤𝑠𝑝 −𝑤𝑠𝑛

= 0. (11)

Here, we specify the ZFMP is the intersection of the two lines. Then, the ZFMP could be expressed as

𝑥 =
(

𝑐𝑧
𝑐𝑧 − 𝑐𝑥𝑘𝑑

)

(

𝑐𝑥 −
𝑐𝑥

(

𝑐𝑧 − 𝑏𝑑
)

𝑐𝑧
−
𝐿̇𝑦
𝑚𝑐𝑧

)

, (12)

where 𝑘𝑑 =
(

𝑙𝑠𝑝 − 𝑙𝑠𝑛
)

∕
(

𝑤𝑠𝑝 −𝑤𝑠𝑛
)

and 𝑏𝑑 = 𝑙𝑠𝑝 − 𝑘𝑑𝑤𝑠𝑛.
The ZFMP must lie in the support polygon for stable walking without sliding. Hence, taking components of friction in the 𝑥 and

𝑦 directions are both positive or negative as an example (Fig. 4), the yaw moment must satisfy the constraint as follows

𝑤𝑠𝑛𝑚𝑐𝑥 − 𝑙𝑠𝑝𝑚𝑐𝑧 ≤ 𝐿̇𝑦 ≤ 𝑤𝑠𝑝𝑚𝑐𝑥 − 𝑙𝑠𝑛𝑚𝑐𝑧, (13)

3. Optimization based on NMPC

In this section, we formulate an NMPC problem to find stabilizing locomotion for the robot. The controller inputs are the jerks
of the six-dimensional motion of the CoM and footholds.

3.1. Definitions and common nomenclature

Assume the CoM motions to have piece-wise constant jerks 𝑐𝑤 ∈ R and 𝜃𝑤 ∈ R over time intervals of constant length 𝑇 > 0.
In this paper, the 𝑥 − 𝑧 plane is the horizontal plane and the 𝑦 axes are the vertical direction. The letter 𝑤 is used to succinctly
represent the symbols 𝑥, 𝑦, or 𝑧 in equations that apply to different axes. Hence, 𝑤 ∈ {𝑥, 𝑦, 𝑧}, and the corresponding dynamics of
the CoM at discrete time 𝑡𝑘 = 𝑘𝑇 , with 𝑘 ∈ Z, are

𝒄̂𝑤𝑘+1 = 𝒄̂𝑤(𝑡𝑘+1) = 𝑨𝒄̂𝑤(𝑡𝑘) + 𝑩𝑐𝑤
(

𝑡𝑘
)

,

𝜽̂𝑤𝑘+1 = 𝜽̂𝑤(𝑡𝑘+1) = 𝑨𝜽̂𝑤(𝑡𝑘) + 𝑩𝜃𝑤
(

𝑡𝑘
)

,
(14)

with

𝒄̂𝑤𝑘 =

⎛

⎜

⎜

⎜

⎝

𝑐𝑤
(

𝑡𝑘
)

𝑐̇𝑤
(

𝑡𝑘
)

𝑐𝑤
(

𝑡𝑘
)

⎞

⎟

⎟

⎟

⎠

, 𝜽̂𝑤𝑘 =

⎛

⎜

⎜

⎜

⎝

𝜃𝑤
(

𝑡𝑘
)

𝜃̇𝑤
(

𝑡𝑘
)

𝜃̈𝑤
(

𝑡𝑘
)

⎞

⎟

⎟

⎟

⎠

, (15)

and

𝑨 =

⎛

⎜

⎜

⎜

⎝

1 𝑇 𝑇 2∕2

0 1 𝑇

0 0 1

⎞

⎟

⎟

⎟

⎠

, 𝑩 =

⎛

⎜

⎜

⎜

⎝

𝑇 3∕6

𝑇 2∕2

𝑇

⎞

⎟

⎟

⎟

⎠

. (16)

Let 𝒄̃𝑤𝑘 =
[

𝑐𝑤𝑘+1,… , 𝑐𝑤𝑘+𝑁ℎ

]T
∈ R𝑁ℎ and 𝜽̃𝑤𝑘 =

[

𝜃𝑤𝑘+1,… , 𝜃𝑤𝑘+𝑁ℎ

]T
∈ R𝑁ℎ be the CoM translation and rotation trajectories at

either coordinate over 𝑁ℎ > 0 time intervals of the discretized system, respectively. Hence, the CoM translation trajectory vector
can be defined as 𝝌𝑘 =

[

𝒄̃𝑥𝑘; 𝒄̃
𝑦
𝑘; 𝒄̃

𝑧
𝑘
]

∈ R3𝑁ℎ . To ease the notation, we use the compact form [𝒂; 𝒃]T =
[

𝒂T, 𝒃T]T, where 𝒂, 𝒃 are
to generic vectors, to stack vectors in column. Similarly, let 𝝑𝑘 =

[

𝜽̃𝑥𝑘; 𝜽̃
𝑦
𝑘; 𝜽̃

𝑧
𝑘
]

∈ R3𝑁ℎ be the rotational angle vector. Assume
6

there are 𝑀 support phases, i.e., the left, right or double support of the robot’s feet, involved in the 𝑁ℎ predicted time steps.
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Fig. 4. The friction force and moment are applied to the foot. The friction force must be within the scope between the two dashed arrows to avoid foot yaw
rotation. At any point on the blue dashed line, the friction moment is zero. However, only some of the points on the blue dashed line are within the support
polygon formed by the foot and the ground. To further determine the position of ZFMP, we take the two points farthest from the vertical distance on both sides
of the friction force at the ankle. Then, we connect these two points with a line, represented by the red dotted line. The intersection of the blue dotted line and
the red dotted line indicates the location of ZFMP. Note that, the upper and lower bound of the support polygon’s length and width in this case is obtained by
the two point. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Let 𝒇𝑤𝑘 =
[

𝑓 𝑙−𝑤𝑘+1 ,…;𝑓 𝑙−𝑤𝑘+𝑀 , 𝑓
𝑟−𝑤
𝑘+1 ,… , 𝑓 𝑟−𝑤𝑘+𝑀

]T
∈ R2𝑀 where 𝑓 𝑙−𝑤𝑘+𝑖 ∈ R and 𝑓 𝑟−𝑤𝑘+𝑖 ∈ R are the left and right foot locations at either

coordinate during the 𝑖th support phase which belongs to the locomotion at the time 𝑘, respectively. As a result, the foot location
vector can be defined as 𝑭 𝑘 =

[

𝒇𝑥𝑘;𝒇
𝑦
𝑘;𝒇

𝑧
𝑘
]

∈ R6𝑀 Finally, the input vector at time 𝑘, 𝒖𝑘 ∈ R𝑁𝑡 , with 𝑁𝑡 = 6𝑁ℎ + 6𝑀 , is expressed
as

𝒖𝑘 =
[

𝝌⃛𝑘; 𝝑⃛𝑘;𝑭 𝑘
]

=
[

𝒄𝑥𝑘; 𝒄
𝑦
𝑘; 𝒄

𝑧
𝑘; 𝜽⃛

𝑥
𝑘; 𝜽⃛

𝑦
𝑘; 𝜽⃛

𝑧
𝑘;𝒇

𝑥
𝑘;𝒇

𝑦
𝑘;𝒇

𝑧
𝑘
]

. (17)

Besides, let 𝑺𝑤𝑓 ∈ R2𝑀×𝑁𝑡 , 𝑺𝑤𝜃 ∈ R𝑁ℎ×𝑁𝑡 , 𝑺𝑤𝑗 ∈ 𝑅𝑁ℎ×𝑁𝑡 , and 𝑺 𝑖 ∈ R1×𝑁ℎ be the selection matrices to extract the foot location and
CoM jerk from the input vector

𝒇𝑤𝑘 = 𝑺𝑤𝑓 𝒖𝑘, (18)

𝜽⃛𝑤𝑘 = 𝑺𝑤𝜃 𝒖𝑘, (19)

𝒄𝑤𝑘 = 𝑺𝑤𝑗 𝒖𝑘, (20)

𝑐𝑤𝑘+𝑖 = 𝑺 𝑖𝑪⃛
𝑤
𝑘 . (21)

Using (14) recursively, the position, velocity and acceleration of the CoM at time 𝑘 + 𝑖 can be expressed as

𝑐𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑝𝑠𝒄̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑝𝑢𝑺𝑤𝑗 𝒖𝑘,

𝑐̇𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑣𝑠𝒄̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑣𝑢𝑺𝑤𝑗 𝒖𝑘,

𝑐𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑎𝑠𝒄̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑎𝑢𝑺𝑤𝑗 𝒖𝑘.

(22)

imilarly, the conditions of the rotational angle are given as

𝜃𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑝𝑠𝜽̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑝𝑢𝑺𝑤𝜃 𝒖𝑘,

𝜃̇𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑣𝑠𝜽̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑣𝑢𝑺𝑤𝜃 𝒖𝑘,

𝜃̈𝑤𝑘+𝑖 = 𝑺 𝑖𝑷 𝑎𝑠𝜽̂
𝑤
𝑘 + 𝑺 𝑖𝑷 𝑎𝑢𝑺𝑤𝜃 𝒖𝑘.

(23)

he matrices 𝑷 𝑝𝑠,𝑷 𝑣𝑠 and 𝑷 𝑎𝑣 ∈ R𝑁ℎ×3 and 𝑷 𝑝𝑢,𝑷 𝑣𝑢 and 𝑷 𝑎𝑢 ∈ R𝑁ℎ×𝑁ℎ introduced here are determined directly from the recursive
pplication of the CoM dynamics. The detailed expression of these matrices are shown in Appendix A.
7
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3.2. Optimization objective formulation

To obtain a smooth trajectory with low energy consumption, the jerks 𝝌̈𝑘 and 𝝑̈𝑘 need to be minimized for stable walking
over a prediction time horizon of 𝑁ℎ𝑇 with the tacking of the reference positions and angles given by 𝝌 𝑟𝑒𝑓𝑘 = [𝒄̄𝑥𝑘; 𝒄̄

𝑦
𝑘; 𝒄̄

𝑧
𝑘] and

𝝑𝑟𝑒𝑓𝑘 = [𝜽̄𝑥𝑘; 𝜽̄
𝑦
𝑘; 𝜽̄

𝑧
𝑘], respectively. Besides, to minimize the errors between the desired and actual foot locations as well as between

the velocity of the CoM, the following cost function is designed

min
𝑢𝑘

𝛼𝑝
2

‖

‖

‖

𝝌𝑘 − 𝝌
𝑟𝑒𝑓
𝑘

‖

‖

‖

2
+
𝛼𝑣
2

‖

‖

𝝌̇𝑘‖‖
2 +

𝛼𝑗
2

‖

‖

𝝌⃛𝑘‖‖
2 +

𝛽𝑝
2

‖

‖

‖

𝝑𝑘 − 𝝑
𝑟𝑒𝑓
𝑘

‖

‖

‖

2

+
𝛽𝑣
2

‖

‖

‖

𝝑̇𝑘
‖

‖

‖

2
+
𝛽𝑗
2

‖

‖

‖

𝝑⃛𝑘
‖

‖

‖

2
+
𝛾
2
‖

‖

‖

𝑭 𝑘 − 𝑭
𝑟𝑒𝑓
𝑘

‖

‖

‖

2
.

(24)

This optimization formulation with some constraints, namely, the quadratically constrained quadratic programming (QCQP), can
be expressed canonically as [16,30,31]

min
𝑢𝑘

𝜓
(

𝒖𝑘
)

= 𝒖T𝑘𝑸𝒖𝑘 + 𝒒
T
𝑘𝒖𝑘

s.t.
ℎ𝑖

(

𝒖𝑘
)

≤ 0,

ℎ𝑛𝑙,𝑖
(

𝒖𝑘
)

= 𝒖T𝑘𝑷 𝑖𝒖𝑘 + 𝒑
T
𝑖 𝒖𝑘 + 𝜎𝑖,

ℎ𝑙,𝑖
(

𝒖𝑘
)

= 𝒗T𝑖 𝒖𝑘 + 𝜌𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑘,

(25)

where ℎ𝑖
(

𝒖𝑘
)

represents an inequality constraint later detailed, ℎ𝑛𝑙,𝑖
(

𝒖𝑘
)

and ℎ𝑙,𝑖
(

𝒖𝑘
)

are the nonlinear and linear constraints,
respectively; 𝑷 𝑖 ∈ R𝑁𝑡×𝑁𝑡 ,𝒑𝑖 ∈ R𝑁𝑡 and 𝜎𝑖 ∈ R are parameters specifying the nonlinear constraints; similarly, 𝒗𝑖 ∈ R𝑁𝑡 and 𝜌𝑖 ∈ R
are parameters specifying the linear constraints; 𝛼𝑝, 𝛼𝑣, 𝛼𝑗 > 0 and 𝛽𝑝, 𝛽𝑣, 𝛽𝑗 > 0 are the position tracking, velocity, and jerk penalty
terms of the CoM translation and rotation motion, respectively; 𝛾 > 0 is the foot-tracking penalty term. These penalties are positive
so that the Hessian matrix 𝑸 ∈ R𝑁𝑡×𝑁𝑡 is positive-definite, and 𝑸 can be formulated in the following quadratic form

𝑸 = blkdiag
(

𝝍𝑥,𝝍𝑦,𝝍𝑧,𝝋𝑥,𝝋𝑦,𝝋𝑧,𝝓𝑥,𝝓𝑦,𝝓𝑧
)

,

𝝍𝑤 =
𝛼𝑗
2
𝑰𝑁ℎ×𝑁ℎ +

𝛼𝑣
2
𝑷 T
𝑣𝑢𝑷 𝑣𝑢 +

𝛼𝑝
2
𝑷 T
𝑝𝑢𝑷 𝑝𝑢,

𝝋𝑤 =
𝛽𝑗
2
𝑰𝑁ℎ×𝑁ℎ +

𝛽𝑣
2
𝑷 T
𝑣𝑢𝑷 𝑣𝑢 +

𝛽𝑝
2
𝑷 T
𝑝𝑢𝑷 𝑝𝑢,

𝝓𝑤 =
𝛾
2
𝑰2𝑀×2𝑀 ,

(26)

here blkdiag (𝑥) construct a block diagonal matrix. The vector 𝒒𝑘 ∈ R𝑁𝑡 in (25) is expressed as

𝒒𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑝𝑥𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 + 𝛼𝑣𝑥𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥
𝑘 − 𝛼𝑝𝑥𝑷

T
𝑝𝑢𝒄̄

𝑥
𝑘

𝛼𝑝𝑦𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑦
𝑘 + 𝛼𝑣𝑦𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑦
𝑘 − 𝛼𝑝𝑦𝑷

T
𝑝𝑢𝒄̄

𝑦
𝑘

𝛼𝑝𝑧𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑧
𝑘 + 𝛼𝑣𝑥𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑧
𝑘 − 𝛼𝑝𝑧𝑷

T
𝑝𝑢𝒄̄

𝑧
𝑘

𝛽𝑝𝑥𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝜽̂

𝑥
𝑘 + 𝛽𝑣𝑥𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝜽̂

𝑥
𝑘 − 𝛽𝑝𝑥𝑷

T
𝑝𝑢𝜽̄

𝑥
𝑘

𝛽𝑝𝑦𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝜽̂

𝑦
𝑘 + 𝛽𝑣𝑦𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝜽̂

𝑦
𝑘 − 𝛽𝑝𝑦𝑷

T
𝑝𝑢𝜽̄

𝑦
𝑘

𝛽𝑝𝑧𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝜽̂

𝑧
𝑘 + 𝛽𝑣𝑥𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝜽̂

𝑧
𝑘 − 𝛽𝑝𝑧𝑷

T
𝑝𝑢𝜽̄

𝑧
𝑘

−𝛾𝑥𝒇̄
𝑥
𝑘

−𝛾𝑦𝒇̄
𝑦
𝑘

−𝛾𝑧𝒇̄
𝑧
𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

The detailed processes of derivation to obtain 𝑸 and 𝒒𝑘 are shown in Appendix B.

The reference footholds
[

𝒇̄𝑥𝑘; 𝒇̄
𝑦
𝑘, 𝒇̄

𝑧
𝑘
]

according to environmental conditions needs to be supplied in advance. Similarly, the user
should also supply the reference height of the CoM and the rotational angle of the torso. To simplify the calculation, the CoM
reference position is associated with the central position of the supporting foot of each period, i.e., the foothold of each period

𝒄̄𝑤𝑘 =
[

𝑐𝑤𝑘+1,… , 𝑐𝑤𝑘+𝑁ℎ

]T
= 𝑼𝑺𝑤𝑓𝑐𝒖𝑘, (28)

where 𝑼 ∈ R𝑁ℎ×2𝑀 is a selection matrix mapping the left and right footholds at the different phases into the support polygon centers
over the prediction horizon of length 𝑁 𝑇 . Here, we take the prediction time, which just successively includes the single support
8

ℎ
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of the left foot, the double support, and the single support of the right foot, as an example. The 𝑼 can be expressed as

𝑼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟏1×𝑚𝑠𝑝 𝟎1×𝑛𝑑𝑝 𝟎1×𝑚𝑠𝑝

𝟎1×𝑚𝑠𝑝 𝟎.𝟓1×𝑛𝑑𝑝 𝟎1×𝑚𝑠𝑝

𝟎1×𝑚𝑠𝑝 𝟎1×𝑛𝑑𝑝 𝟎1×𝑚𝑠𝑝

𝟎1×𝑚𝑠𝑝 𝟎1×𝑛𝑑𝑝 𝟎1×𝑚𝑠𝑝

𝟎1×𝑚𝑠𝑝 𝟎.𝟓1×𝑛𝑑𝑝 𝟎1×𝑚𝑠𝑝

𝟎1×𝑚𝑠𝑝 𝟎1×𝑛𝑑𝑝 𝟏1×𝑚𝑠𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

, (29)

here 𝟏1×𝑚𝑠𝑝 and 0.51×𝑛𝑑𝑝 are a 1 × m row vector filled with ones and a 1 × n vector row filled with 0.5, respectively; while 𝑚𝑠𝑝 and
𝑑𝑝 are determined by the single and double support duration, 𝑡𝑠𝑝 and 𝑡𝑑𝑝, as

𝑡𝑠𝑝 = 𝑚𝑠𝑝𝑇 ,

𝑡𝑑𝑝 = 𝑛𝑑𝑝𝑇 .
(30)

.3. Feasibility constraints

To ensure the feasibility of the generated gait, the feasibility constraints, that is, ZMP and ZFMP stability constraints, foothold
ange limitations and hip torque limitations need to be considered.

.3.1. ZMP constraints with variable CoM height
According to the ZMP criterion [14], the ZMP needs to be inside the support polygon to guarantee that the biped robot’s

ocomotion is physically reliable. Here, we take the ZMP in the 𝑥-direction as an example

𝑐𝑥𝑘+𝑖 + 𝑙𝑠𝑛 ≤ 𝑝𝑥𝑘+𝑖 ≤ 𝑐𝑥𝑘+𝑖 + 𝑙𝑠𝑝. (31)

ere, we just consider the upper bound of the ZMP constraint while multiplying
(

𝑐𝑘+𝑖 + 𝑔
)

and substitute (4) into (31). Then, we
btain the following quadratic constraint

𝑐𝑥𝑘+𝑖𝑐
𝑦
𝑘+𝑖 + 𝑐

𝑥
𝑘+𝑖𝑔 − 𝑐

𝑦
𝑘+𝑖𝑐

𝑥
𝑘+𝑖 + 𝑠̄

𝑦
𝑘+𝑖𝑐

𝑥
𝑘+𝑖 −

𝐽𝑧
𝑚
𝜃̈𝑧𝑘+𝑖 − 𝑠̄

𝑥
𝑘+𝑖𝑐

𝑦
𝑘+𝑖 − 𝑙𝑠𝑝𝑐

𝑦
𝑘+𝑖 − 𝑠̄

𝑥
𝑘+𝑖𝑔 − 𝑙𝑠𝑝𝑔 ≤ 0. (32)

he lower bound of the ZMP can be considered similarly. Substituting (22) and (23) into (32) and collecting the terms and kneading
hem into a neat frame, the ZMP constraints in (25) can be expressed as

𝜼𝑖,𝑥 =
(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑺

T
𝑖 𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑦
𝑗 −

(

𝑺𝑦𝑗
)T
𝑷 T
𝑝𝑢𝑺

T
𝑖 𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑥
𝑗 +

(

𝑺𝑥𝑗
)T
𝑷 T
𝑎𝑢𝑺

T
𝑖 𝑺 𝑖𝑼𝑺

𝑦
𝑓 −

(

𝑺𝑦𝑗
)T
𝑷 T
𝑎𝑢𝑺

T
𝑖 𝑺 𝑖𝑼𝑺

𝑥
𝑓 ,

𝒑T𝑖,𝑥 = −𝑙𝑠𝑝𝑺 𝑖𝑷 𝑎𝑢𝑺
𝑦
𝑗 + 𝑔𝑷 𝑝𝑢𝑺

𝑥
𝑗 −

𝐽𝑧
𝑚
𝑺 𝑖𝑷 𝑝𝑢𝑺𝑧𝜃 + 𝑔𝑺 𝑖𝑼𝑺

𝑥
𝑓 +

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑺
T
𝑖 𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑦
𝑗

+
(

𝒄̂𝑦𝑘
)T 𝑷 T

𝑎𝑠𝑺
T
𝑖 𝑺 𝑖𝑷 𝑝𝑢𝑺

𝑥
𝑗 −

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑺
T
𝑖 𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑥
𝑗 −

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑎𝑠𝑺
T
𝑖 𝑺 𝑖𝑷 𝑝𝑢𝑺

𝑦
𝑗

+
(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑎𝑠𝑺
T
𝑖 𝑺 𝑖𝑼𝑺

𝑦
𝑓 −

(

𝒄̂𝑦𝑘
)T 𝑷 T

𝑎𝑠𝑺
T
𝑖 𝑺 𝑖𝑼𝑺

𝑥
𝑓 ,

𝜎𝑖,𝑥 = 𝑔𝑺 𝑖𝑷 𝑝𝑠𝒄̂𝑥𝑘 −
𝐽𝑧
𝑚
𝑺 𝑖𝑷 𝑎𝑠𝜽̂

𝑧
𝑘 − 𝑙𝑠𝑝𝑺 𝑖𝑷 𝑎𝑠𝒄̂

𝑦
𝑘 − 𝑙𝑠𝑝𝑔 + 𝒄̂

𝑥
𝑘𝑷

T
𝑝𝑠𝑺

T
𝑖 𝑺 𝑖𝑷 𝑎𝑠𝒄̂

𝑦
𝑘 − 𝒄̂

𝑥
𝑘𝑷

T
𝑎𝑠𝑺

T
𝑖 𝑺 𝑖𝑷 𝑝𝑠𝒄̂

𝑦
𝑘.

(33)

These equations should be computed in parallel at each time step. To obtain the gradient or Hessian of the quadratic constraint
form, i.e., 𝒖T𝑘𝑷 𝑖,𝑥𝒖𝑘 + 𝒑

T
𝑖,𝑥 + 𝜎𝑖,𝑥, it is necessary to find the symmetric matrix 𝑷 𝑖,𝑥. However, 𝜼𝑖,𝑥 determined in (33) is not symmetric.

Since any square matrix can be decomposed in the sum between a symmetric and a skew-symmetric matrix, the symmetric matrix
𝑷 𝑖,𝑥 can be obtained by the following operation

𝑷 𝑖,𝑥 = 1
2
(

𝜼𝑖,𝑥 + 𝜼T𝑖+𝑥
)

, 𝑖 = 1,… , 𝑁ℎ. (34)

As a result, the upper bound of ZMP in the 𝑥-direction is added, the lower bound can be obtained by replacing 𝑙𝑠𝑝 with 𝑙𝑠𝑛 and
multiplied by −1.

This process can be repeated to establish the ZMP constraints in the 𝑦-direction.

3.3.2. ZFMP for no-yaw rotation sliding
In Sec.2, we have discussed the limitation of ZMP in biped locomotion stability since it only indicates two-dimensional

information of the GRF, while the dynamics of the CoM are six dimensions. Thus, we add the ZFMP criterion to ensure no slips occur
during the walk. Similarly, taking the situation in Fig. 4 as an example, we also consider the upper bound of the ZFMP constraint
while squaring (13), then we obtain the constraint as follows

𝐽 𝑦𝑘+𝑖𝜃̈
𝑦
𝑘+𝑖 −𝑤𝑠𝑝𝑚𝑐

𝑥
𝑘+𝑖 + 𝑙𝑠𝑛𝑚𝑐

𝑧
𝑘+𝑖 ≤ 0. (35)

Here, we only take the upper and lower bounds in the single support phase as a simplification. Substituting (22) and (23) to (35),
the ZFMP constraints in (25) can be expressed as

𝒗T𝑖 = 𝐽𝑦𝑺 𝑖𝑷 𝑎𝑢𝑺
𝑦
𝜃 −𝑤𝑠𝑝𝑚𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑥
𝑗 + 𝑙𝑠𝑛𝑚𝑺 𝑖𝑷 𝑎𝑢𝑺

𝑧
𝑗 ,

𝑦 𝑥 𝑧
(36)
9
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3.3.3. Constraints on the foot location
The actual foot landing point changes according to the current state, which is constrained by leg length, joint angular velocity,

elf-collision, etc.. Thus, it needs to be constrained for physical realizability.
Let us assume, without loss of generality, that the left foot is the starting support foot in the prediction horizon, followed by the

ouble support phase and, finally, the right support one, respectively. Then, the following constraints need to be implemented

𝑓𝑙𝑐 (1) = 𝑓𝑙𝑐 (2), 𝑓𝑙𝑐 (2) = 𝑓𝑙𝑐 (3), 𝑓𝑟𝑐 (2) = 𝑓𝑟𝑐 (3). (37)

ote that the foot location in the current support phase no longer participates in optimizing

𝑓𝑙𝑐 (1) = 𝑓 ∗
𝑙𝑐 , 𝑓𝑟𝑐 (1) = 𝑓 ∗

𝑟𝑐 , (38)

here 𝑓 ∗
𝑙𝑐 and 𝑓 ∗

𝑟𝑐 are the initial location of the left and right foot at the current support phase.
Next, due to the limitation of robot structure size and actuator ability, the walking parameters such as step length and step width

hould be limited. Here, taking the foot location in the 𝑥-direction as an example, we can get the constraint as follows

𝑓min
𝑥 ≤ 𝑓𝑙𝑥(𝑖) − 𝑓𝑟𝑥(𝑖) ≤ 𝑓max

𝑥 , 𝑖 = {1,… ,𝑀}, (39)

here 𝑓min
𝑥 and 𝑓max

𝑥 are the lower and upper boundaries of the step size constraint.

.3.4. Other constraints
(1) CoM height constraint : to avoid overstretching of the leg, the CoM height should be constrained within a reliable range. Similar

o the ZFMP constraint, a linear constraint is applied as follows

𝑦min ≤ 𝑺 𝑖𝑷 𝑝𝑢𝑺
𝑦
𝑗𝒖𝑘 + 𝑺 𝑖𝑷 𝑝𝑠𝒄̂

𝑦
𝑘 ≤ 𝑦max, 𝑖 ∈

{

1,… , 𝑁ℎ
}

, (40)

here 𝑦min and 𝑦max are the minimum and maximum CoM values, respectively.
(2) Torso rotation angle and torque constraint : the rotation range of the torso is limited by the structure size and driving ability.

aking the rotation of the torso around the 𝑥 axis (the change of roll joint) as an example, the following constraints are used

𝜃𝑥min ≤ 𝑺 𝑖𝑷 𝑝𝑢𝑺
𝑥
𝜃𝒖𝑘 + 𝑺 𝑖𝑷 𝑝𝑠𝜽̂

𝑥
𝑘 ≤ 𝜃𝑥max, 𝑖 ∈

{

1,… , 𝑁ℎ
}

, (41)

𝜏𝑥min ≤ 𝐽𝑥
(

𝑺 𝑖𝑷 𝑎𝑢𝑺𝑥𝜃𝒖𝑘 + 𝑺 𝑖𝑷 𝑎𝑠𝜽̂
𝑥
𝑘

)

≤ 𝜏𝑥min, 𝑖 ∈
{

1,… , 𝑁ℎ
}

, (42)

here 𝜃𝑥min and 𝜃𝑥max are minimum and maximum values of roll angle, respectively, 𝜏𝑥min and 𝜏𝑥max are the minimum and maximum
orques of the roll joint, respectively.

.4. Optimization for walk

.4.1. SQP for linearization of QCQP
Once the QCQP in (25) is generated, it can be transformed to a SQP. The SQP we used here is quite simple. The SQP linearizes

he QCQP around the initial iteration point [44]

min
𝛿

1
2
𝜹T∇2

𝒖𝑘

(

𝜓
(

𝒖𝑘
))

𝜹 +
(

∇𝒖𝑘𝜓
(

𝒖𝑘
)

)T
𝜹

s.t
(

∇𝒖𝑘ℎ𝑖
(

𝒖𝑘
)

)T
𝜹 + ℎ𝑖

(

𝒖𝑘
)

≤ 0,

𝑖 ∈
{

1,… , 𝑁ℎ
}

.

(43)

As a result, we can obtain a QP, and it can be solved easily via QP solver.

3.4.2. Optimal CoM height for walk
We note that the CoM height seems to be held on a constant value with the optimization of (25) since the optimization always

tries to minimize the jerks. It was found through experiments that the trajectory of the centroid height of human walking was
approximately a sine function [45,46]. The height of the CoM reaches the highest point in the single support phase and decreases to
the minimum value in the double support phase. For simplification, we only set the reference CoM height in the single and double
support phases, 𝑐max

𝑦 and 𝑐min
𝑦 , to constant values by trial and error, as shown in Fig. 5.

Fig. 6 shows the detailed block diagram of our proposed method. Inputs to the planner are the actual and reference CoM height,
torso rotation angles and footholds. As a result, the proposed framework can find a reliable solution for the robot to perform
some given tasks. With the optimized CoM trajectory, torso rotational angle and footholds, a singularity-tolerant inverse kinematics
solver [47] is used to compute the joint trajectories.

4. Simulations

In this section, different scenarios are produced to evaluate the proposed NMPC applied to the FCDIP. All the simulations are
finished in Matlab/Simcape.
10
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Fig. 5. Changes in the height of CoM during walking. The height of the robot’s CoM reaches the maximum in the single support phase and the minimum in
the double support phase.

Table 1
Physical parameters of the robot.

Limb Mass ∕kg Inertia (simplification) ∕kg m2 Size∕m

Foot 0.214 [65.054 0 0;0 793.176 0;0 0 730.63] × 10−6 Length:0.22 Width:0.16 Height: 0.051

Shank 1.385 [13906.193 0 0;0 1797.345 0;0 0 13374.942] × 10−6 0.282

Thigh 3.305 [30502.901 0 0 ; 0 5065.5470 ; 0 0 27530.223] × 10−6 0.35

Pelvis 9.912 [30517.03 0 0 ; 0 48884.036 0 ; 0 0 6285.625] × 10−6 0.333

Waist 5.019 [45714.741 0 0 ; 0 7616.767 0 ; 0 0 46090.578] × 10−6 0.133

Torso 8.907 [52532.919 0 0;0 21641.936 0;0 0 40705.475] × 10−6 0.391

Scapula 0.312 [2378.86 0 0;0 2457.132 0;0 0 181.043] × 10−6 0.447

Arm 3.447 [165613.583 0 0;0 7700.712 0;0 0 160759.296] × 10−6 0.605

4.1. Modeling reality

The humanoid robot is developed and currently under construction in the Bionic Robotics Laboratory at SEU, supported by the
National Natural Science Foundation of China. The robot’s height is about 1.34 m (not including the head), and its mass is about
40 kg. It is designed to have a full-sized body with 23 deg. Herein, we will fix some joints appropriately as needed. Table 1 provides
the physical parameters which are derived from SolidWorks. In the simulation, the robot joints are position-servo-controlled to track
the trajectories generated by the NMPC and inverse kinematics algorithm. The sampling time of the simulation is 0.0001s. The CoM
is assumed to be set at the waist of the robot. Besides, the walking surface is modeled as a nonlinear spring-damper system [48].

4.2. Case.1 steering from the straight walking

To test the effects of the proposed ZFMP, in the first set of experiments, the robot steers from straight walking. Firstly, the
robot begins to walk from standing still. The robot performs 10◦ turning in each step while steering. The reference walking period
and stride length are 0.5 s (20% for the double support phase) and 0.25 m, respectively. The torso is expected to keep upright for
stabilization; thus, the reference torso rotation angles are all set to zero. Besides, the motion of the arm is described by a sinusoidal
timing law characterized by the same frequency of the gait. This choice has been made based on trials carried out to counteract the
swing dynamics of the leg. The modulation is visible in Video 1.

The results are shown in Figs. 7–9. Fig. 7(a) shows that the height of the CoM fluctuates around the desired value. Besides, the
robot can quickly reach the desired average speed, as shown in Fig. 7(b). Fig. 7(c) records the position of the robot’s foothold and
the trajectory of its CoM. Empirically, it has been found that the path of a human’s CoM while walking resembles a parabola [49].
The result also shows that the CoM moves back and forth like a parabola between the left and right feet. In Fig. 8, the measured
GRFs indicate there are larger landing impacts during steering, which may be the reason that the ZFMP is sometimes not inside the
support polygon (see Fig. 9). The ZFMP is only outside the theoretical bounds for a few moments, not an extended period; therefore,
there is no significant rotational slippage on the feet. Here, it should be noted that the upper and lower boundaries of the ZFMP
are determined only by the geometry of the support polygon in the single support phase.

To further reflect the necessity of our ZFMP in steering, we input an extreme reference trajectory, turning 90◦ in a single step.
Next, the robot is tested with and without the ZFMP constraints. As shown in Fig. 10, due to the ZFMP constraints, the robot cannot
execute a 90-degree turn in a single step. During a steering, a significant yaw moment is eliminated to prevent the ZFMP from
11
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Fig. 6. Planner block diagram. The blocks in the shaded area in the center of the figure applies to NMPC which consists of the abstract model, FCDIP, and the
QP. After inputting the reference CoM height, rotational angles and foothold, the QCQP can be obtained with the discretization of centroid dynamics. Next, the
QP approach linearizes the QCQP such that it would be a QP, the solution of QP, 𝜹, is then used to update the input, 𝒖𝑘, via 𝒖𝑘 = 𝒖𝑘 + 𝜹. Then, the footholds,

CoM positions and rotational angles are updated via (22) and (23) with a timestep. Finally, the whole procedure is repeated to generate the future trajectory.

moving outside the support polygon. Therefore, the robot must navigate a 90-degree turn by executing several small-angle turns.
(see Fig. 10(a)). Conversely, not enforcing the ZFMP constraint may cause instability and even falling, as shown in Figs. 10 and 11.
Fig. 10(c) shows that the hip yaw torque is limited between about −20 Nm and 20 Nm with ZFMP constraint while the hip yaw
torque is much higher without ZFMP constraint. In Fig. 10(a), the dotted line is the foot location after its rotation. Fig. 11 shows
the time instant when rotation and sliding occur. The results indicate the importance of the ZFMP constraint during sharp turning.
Note that, if the dynamics of yaw motion and ZFMP are not considered, FCDIP degenerates into something similar to VIP [23] and
NIPF [24]. Thus, the steering test with or without ZFMP can also be seen as a contrast between FCDIP and VIP as well as NIPF. The
results indicate that considering yaw dynamics and ZFMP is what makes FCDIP an advanced version of VIP and NIPF.

4.3. Case.2 walking underneath a low door

Walking with variable CoM height enhances the robot’s flexibility and enables it to perform a wider range of tasks. The second
experiment considers the robot crossing underneath a door whose top frame is low. Here, we assume the location and height of the
door are known relative to that of the robot; therefore, the reference footholds and postures are also given in advance. The robot
12
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Fig. 7. The motion of the robot steers from straight walking.

Fig. 8. GRFs during walking (top: left foot, bottom: right foot).

Fig. 9. ZFMP during the walking.

owers its CoM by about 0.1 m and bends its torso forward by 60◦ while crossing the low door. After passing the door, the robot
eturns to its original CoM height and upper posture.

Fig. 12 shows the snapshots of the experimental results. The humanoid robot can successfully pass a low door, as shown in
igs. 13–15. We observe that the robot can track the desired optimized trajectory well with an average speed of 0.5 m∕s. Figs. 13

(c, d) show that the robot bends its torso to pass the door between 4 s and 6 s. Fig. 13(d) also exhibits the orientation of the torso
while the robot walks upright, which is probably influenced by the dynamics of walking, e.g., the swing and landing of the legs.
The phenomenon is supported by the GRF as shown in Fig. 14. The support force increases rapidly when the foot lands on the
ground. Ideally, the sum of support forces should be roughly the same as the gravitation force; however, they differ due to the
13
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Fig. 10. The results of the robot steers with and without ZFMP constraint.

swing dynamics. Fig. 15 shows the feet’s positions and ZMP trajectory. The ZMP trajectory always stays close to the feet positions
and generally inside the support polygon. Sometimes the ZMP reaches the edge of the support polygon due to landing impact.

Walking with the variable CoM height also has another merit. Fig. 16 illustrates the integral of the joint torque required when
the robot takes one step with constant and variable CoM height at different walking speeds. We refer to the integral of the required
joint torque as the sthenic criterion. In this case, the walking period is 0.5 s. Furthermore, the CoM height is set to 0.76 m while
walking without CoM height changes, and the highest and lowest CoM heights for variable-height walking are 0.81 m and 0.75 m,
14
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Fig. 11. The moment the rotation and sliding occur.

Fig. 12. The snapshots of the robot passing a low door.

respectively. The sthenic criterion 𝐶 of the robot each joint is obtained as1

𝐶 = ∫

𝑇

0
𝜏2𝑑𝑡, (44)

where 𝑇 are the action duration of the joints, respectively. 𝜏 is the joint torque. Fig. 16 shows that it is evident that the sthenic
criterion of walking with variable CoM height is less than that of walking with constant CoM height. The robot can reduce about
20% energy consumption per meter with variable CoM height. Besides, we can also observe that the difference in the total energy
consumption between the two situations is similar to that in the knee. In other words, the knee is the critical joint that accounts for
this phenomenon. The knee needs more power to support the upper body if the robot stretches its legs, which is understandable.
Thus, our proposed method copes with tasks in complex environments and generates a more natural gait.

Moreover, the robot could perform more tasks if the DoF of the CoM height is free. Fig. 17 shows the robot’s locomotion going
upstairs using our proposed method. In this case, the height and length of the stairs are 0.2 m and 0.25 m, respectively.

4.4. Case.3 push recovery during walking

In this case, the robustness of our proposed method is tested by suddenly applying horizontal external forces those at the torso
(1.2 m) during walking. In [24,50], push recovery via reactive step strategy and angular momentum strategy (also called hip strategy)
was analyzed. Similarly, in this section, benefiting from FCDIP supporting six-dimensional motion, the rotation of the torso and stride
adjustment could be utilized for maintaining balance. As a comparison, we also tested the robustness of LIP and VHIP. We conduct
repeated tests with push magnitudes of 150 N and 250 N, each lasting 0.1 s. The push recovery results under different external
forces are demonstrated in Figs. 18 and 19.

1 In this study, we do not choose the cost of transport or mechanical work as an evaluation criterion for joints. Instead, the time integral of the joint torques
is chose to evaluate the energy consumption. This is because the torque output is connected to the current, which is directly associated with the actual electric
power consumption.
15
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Fig. 13. The motion of passing a low door.

Fig. 14. GRFs during walking while passing a low door.

As depicted in Fig. 18, whether utilizing LIP, VHIP, or FCDIP, the robot could preserve balance amid external interference by
djusting the landing foothold. The distinction lies in the fact that, with FCDIP, the robot exhibits a shorter reaction step length due
o the active bending of the torso (see Figs. 19 (a) and (b)). Actively adjusting the angular momentum of the robot can enhance the
obot’s anti-interference ability [24,51]. In this scenario, to enlarge the stride length for maintaining balance under the forward push,
he robot needs to slightly adjust its height to attain a reachable foothold as shown in Figs. 19 (c) and (d). For LIP, it cannot change
ts height, thus, it should always bend its knees for the event of needing to take a large stride. As mentioned earlier, walking with
onstantly bent knees is not only unnatural but also more energy-consuming. As depicted in Fig. 19(d), the minimum CoM height
ith FCDIP is the lowest among the three strategies as a result of stooping. FCDIP supports the rotating motion of the torso, and the
ending motion results in reducing the robot’s CoM height. It is also interesting to notice that there is no significant difference in the
bility to resist external interference between LIP and VHIP as shown in Table 2. Even with a prolonged duration of external force
16
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Fig. 15. The actual feet and ZMP trajectories while passing a low door.

Fig. 16. The one-step energy consumption of the robot with different walking speed.

Fig. 17. The snapshots of the robot going upstairs.

application, the anti-external force capability of using VHIP weakens. When using LIP, the CoM is lower, resulting in minimized
heavy and external moments. Moreover, whether VHIP or FCDIP is employed, the knee joint approaches singularity, i.e., the straight
leg, resulting in strong vertical bearing capacity and poor horizontal support capacity [52]. The strong vertical bearing capacity is
also consistent with the low energy consumption of our straight-leg walking.

5. Discussion and conclusion

This work demonstrates how to generate biped locomotion for humanoid robots walking in complicated environments. The
complex mechanism and nonlinear dynamics of the robot brought many problems. Motivated to solve these practical issues, we
17
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Fig. 18. Reaction step of robot under the forward pushes. In each row, the first two columns represent trajectories of feet and CoM in the presence of external
forces of 150 N and 250 N, respectively. The last column denotes a snapshot of the robot’s reactive motion under the push with the magnitude of 250 N.

Table 2
Robot’s ability to maintaining balance from the forward pushes with different action duration.
Model LIP VHIP FCDIP

0.1 s 305 N 315 N 340 N
0.2 s 210 N 205 N 235 N
0.3 s 160 N 145 N 180 N

introduced a new 3D simplified model with more DoFs. Compared to other simplified models, the proposed model considered
vertical and yaw dynamics. The variable CoM height affected the ZMP dynamics, thus, trajectory planning using ZMP was a classical
nonlinear problem. This issue was skillfully expressed as a QCQP in closed form. Thanks to the SQP, this closed-form formulation
could find the gradients and Hessian of the QCQP numerically to solve the QCQP. Besides, we also introduced a new stability
criterion named ZFMP for robot steering. Using only the ZMP information, one cannot determine whether the sole is slipping on
the ground surface as the ZMP represents two-dimensional information about the GRF. Determining the transition of contact states
requires six-dimensional information about the force/moment. Here, we considered adopting the full-dimensional force/moment
corresponding to FCDIP. The ZFMP is similar to the ZMP and should be within the support polygon to ensure a stable turn. To the
best of our knowledge, no similar criteria have been proposed to evaluate the stability of turning. To demonstrate the efficiency
of our proposed method, we simulate various aperiodic locomotion scenarios, including walking underneath a low door, steering,
and recovering from a push. These results showed that the proposed method can automatically generate the CoM trajectory, torso
rotational angle and foot placement positions for robot walking in complex environments. In addition, we also noticed that walking
with variable CoM height can slightly reduce the energy consumption for walking.

Although the proposed method can handle various walking environments and tasks, it still lacks of some natural locomotion
behaviors, e.g., heel-strike and toe-off motion. Therefore, our future work will continue to investigate more natural biped walking.
18
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Fig. 19. The results of push recovery.
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Appendix A

The coefficient matrices 𝑷 𝑝𝑠,𝑷 𝑝𝑢,𝑷 𝑣𝑠,𝑷 𝑣𝑢,𝑷 𝑎𝑠 and 𝑷 𝑎𝑢 can be calculated by iteration of (16). Here, we take 𝑷 𝑝𝑠 and 𝑷 𝑝𝑢 as
examples

𝑷 𝑝𝑠 =
[

𝒄𝑝𝑨, 𝒄𝑝𝑨2, ⋯ , 𝒄𝑝𝑨𝑁ℎ
]T =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝑇 𝑇 2∕2
1 2𝑇 2𝑇 2

⋮ ⋮ ⋮
1 𝑁ℎ𝑇 𝑁2

ℎ𝑇
2∕2

⎤

⎥

⎥

⎥

⎥

⎦

, (A.1)

𝑷 𝑝𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒄𝑝𝐵 0 ⋯ 0

𝒄𝑝𝐴1𝐵 𝒄𝑝𝐵 ⋯ 0

⋮ ⋮ ⋱ 0

𝒄𝑝𝑨𝑁ℎ−1𝑩 𝒄𝑝𝑨𝑁ℎ−2𝑩 ⋯ 𝒄𝑝𝑩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 3∕6 0 ⋯ 0

7𝑇 3∕6 𝑇 3∕6 ⋯ 0

⋮ ⋮ ⋱ 0
(

3𝑁2
ℎ − 3𝑁ℎ + 1

)

𝑇 3∕6
(

3
(

𝑁ℎ − 1
)2 − 3

(

𝑁ℎ − 1
)

+ 1
)

𝑇 3∕6 ⋯ 𝑇 3∕6

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.2)

here 𝒄𝑝 =
[

1 0 0
]

represent the selection matrix to extract the position component from the centroid condition vector.
imilarly, the 𝑷 𝑣𝑠,𝑷 𝑣𝑢,𝑷 𝑎𝑠 and 𝑷 𝑎𝑢 can be obtained by replacing 𝒄𝑝 with 𝒄𝑣 =

[

0 1 0
]

and 𝒄𝑎 =
[

0 0 1
]

, respectively.

𝑷 𝑣𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 𝑇
0 1 2𝑇
⋮ ⋮ ⋮
0 1 𝑁𝑇

⎤

⎥

⎥

⎥

⎥

⎦

, (A.3)

𝑷 𝑣𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 2∕2 0 ⋯ 0

3𝑇 2∕2 𝑇 2∕2 ⋯ 0

⋮ ⋮ ⋱ 0

(2𝑁 − 1)𝑇 2∕2 (2(𝑁 − 1) − 1)𝑇 2∕2 ⋯ 𝑇 2∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (A.4)

𝑷 𝑎𝑠 =
⎡

⎢

⎢

⎣

0 0 1
⋮ ⋮ ⋮
0 0 1

⎤

⎥

⎥

⎦

, (A.5)

𝑷 𝑎𝑢 =
⎡

⎢

⎢

⎣

𝑇 0 0
⋮ ⋱ 0
𝑇 … 𝑇

⎤

⎥

⎥

⎦

. (A.6)

Appendix B

Here, we consider the optimization problem in 𝑥-direction as an example. Substituting (18)–(23) into (24) and eliminating the
election matrix 𝑆𝑖, we obtain

min
𝑢𝑘

𝛼𝑝
2

(

𝑷 𝑝𝑠𝒄̂𝑥𝑘 + 𝑷 𝑝𝑢𝑺
𝑥
𝑗 𝒖𝑘 − 𝒄̄

𝑥
𝑘

)T (
𝑷 𝑝𝑠𝒄̂𝑥𝑘 + 𝑷 𝑝𝑢𝑺

𝑥
𝑗 𝒖𝑘 − 𝒄̄

𝑥
𝑘

)

+
𝛼𝑣
2

(

𝑷 𝑣𝑠𝒄̂𝑥𝑘 + 𝑷 𝑣𝑢𝑺
𝑥
𝑗 𝒖𝑘

)T (
𝑷 𝑣𝑠𝒄̂𝑥𝑘 + 𝑷 𝑣𝑢𝑺

𝑥
𝑗 𝒖𝑘

)

+
𝛼𝑗
2

(

𝑺𝑥𝑗 𝒖𝑘
)T
𝑺𝑥𝑗 𝒖𝑘 +

𝛽𝑝
2

(

𝑷 𝑝𝑠𝜽̂
𝑥
𝑘 + 𝑷 𝑝𝑢𝑺

𝑥
𝜃𝒖𝑘 − 𝜽

𝑥
𝑘

)T (
𝑷 𝑝𝑠𝜽̂

𝑥
𝑘 + 𝑷 𝑝𝑢𝑺

𝑥
𝜃𝒖𝑘 − 𝜽

𝑥
𝑘

)

+
𝛽𝑣
2

(

𝑷 𝑣𝑠𝜽̂
𝑥
𝑘 + 𝑷 𝑣𝑢𝑺

𝑥
𝜃𝒖𝑘

)T (
𝑷 𝑣𝑠𝜽̂

𝑥
𝑘 + 𝑷 𝑣𝑢𝑺

𝑥
𝜃𝒖𝑘

)

+
𝛽𝑗
2

(

𝑺𝑥𝜃𝒖𝑘
)T 𝑺𝑥𝜃𝒖𝑘 +

𝛾
2

(

𝑺𝑥𝑓𝒖𝑘 − 𝒇̄
𝑥
𝑘

)T (
𝑺𝑥𝑓𝒖𝑘 − 𝒇̄

𝑥
𝑘

)

.

(B.1)

Next, we take the position states, i.e., the first three terms of (B.1), as an example and expand them
𝛼𝑝
2

(

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑷 𝑝𝑠𝒄̂
𝑥
𝑘 +

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑷 𝑝𝑢𝑺
𝑥
𝑗 𝒖𝑘 −

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝒄
𝑥
𝑘 + 𝒖

T
𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 + 𝒖

T
𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑢𝑺

𝑥
𝑗 𝒖𝑘

)

+
𝛼𝑝
2

(

−𝒖T𝑘
(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝒄

𝑥
𝑘 −

(

𝒄𝑥𝑘
)T 𝑷 𝑝𝑠𝒄̂𝑥𝑘 −

(

𝒄𝑥𝑘
)T 𝑷 𝑝𝑢𝑺𝑥𝑗 𝒖𝑘 +

(

𝒄𝑥𝑘
)T 𝒄𝑥𝑘

)

+
𝛼𝑣

(

(

𝒄̂𝑥
)T 𝑷 T

𝑣𝑠𝑷 𝑣𝑠𝒄̂
𝑥 +

(

𝒄̂𝑥
)T 𝑷 T

𝑣𝑠𝑷 𝑣𝑢𝑺
𝑥
𝑗 𝒖𝑘 + 𝒖

T
(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥 + 𝒖T
(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑢𝑺

𝑥
𝑗 𝒖𝑘

)

+
𝛼𝑗 𝒖T

(

𝑺𝑥𝑗
)T
𝑺𝑥𝑗 𝒖𝑘.

(B.2)
20

2 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 2 𝑘
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Here, these terms
(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑷 𝑝𝑠𝒄̂
𝑥
𝑘, −

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝒙̄
𝑥
𝑘, −

(

𝒄̄𝑥𝑘
)T 𝑷 𝑝𝑠𝒄̂𝑥𝑘,

(

𝒄̄𝑥𝑘
)T 𝒄̄𝑥𝑘, and

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑣𝑠𝑷 𝑣𝑠𝒄̂
𝑥
𝑘 are constants. Therefore, they are not

involved in the optimization process and can be removed. Then (B.2) becomes
𝛼𝑝
2

(

𝒖T𝑘
(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑢𝑺

𝑥
𝑗 𝒖𝑘 +

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑷 𝑝𝑢𝑺
𝑥
𝑗 𝒖𝑘 + 𝒖

T
𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 − 𝒖

T
𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝒄̄

𝑥
𝑘 −

(

𝒄̄𝑥𝑘
)T𝑷 𝑝𝑢𝑺𝑥𝑗 𝒖𝑘

)

+
𝛼𝑣
2

(

𝒖T𝑘
(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑢𝑺

𝑥
𝑗 𝒖𝑘 +

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑣𝑠𝑷 𝑣𝑢𝑺
𝑥
𝑗 𝒖𝑘 + 𝒖

T
𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥
𝑘

)

+
𝛼𝑗
2
𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑺𝑥𝑗 𝒖𝑘.

(B.3)

Note that,
(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑝𝑠𝑷 𝑝𝑢𝑺
𝑥
𝑗 𝒖𝑘 and 𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 are the same terms. Similarly, −𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝒄̄

𝑥
𝑘 and −

(

𝒄̄𝑥𝑘
)T𝑷 𝑝𝑢𝑺𝑥𝑗 𝒖𝑘,

(

𝒄̂𝑥𝑘
)T 𝑷 T

𝑣𝑠

𝑷 𝑣𝑢𝑺𝑥𝑗 𝒖𝑘 and 𝒖T𝑘
(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥
𝑘 also represent identical terms. Hence, (B.3) simplifies as follows

(𝛼𝑝
2
𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑝𝑢𝑷 𝑝𝑢𝑺

𝑥
𝑗 𝒖𝑘 +

𝛼𝑣
2
𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑷 T
𝑣𝑢𝑷 𝑣𝑢𝑺

𝑥
𝑗 𝒖𝑘 +

𝛼𝑗
2
𝒖T𝑘

(

𝑺𝑥𝑗
)T
𝑺𝑥𝑗 𝒖𝑘

)

+
(

𝛼𝑝
(

𝒄̂𝑥𝑘
)T𝑷 T

𝑝𝑠𝑷 𝑝𝑢𝑺
𝑥
𝑗 𝒖𝑘 + 𝛼𝑣

(

𝒄̂𝑥𝑘
)T𝑷 T

𝑣𝑠𝑷 𝑣𝑢𝑺
𝑥
𝑗 𝒖𝑘 − 𝛼𝑝

(

𝒄̄𝑥𝑘
)T𝑷 𝑝𝑢𝑺𝑥𝑗 𝒖𝑘

)

.
(B.4)

Finally, let us tidy up the (B.4) and transform it into

𝒖𝑇𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝛼𝑗
2 𝑰

𝑁ℎ×𝑁ℎ + 𝛼𝑣
2 𝑷

T
𝑣𝑢𝑷 𝑣𝑢 +

𝛼𝑝
2 𝑷

T
𝑝𝑢𝑷 𝑝𝑢 𝟎 ⋯ 𝟎

𝟎 □ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 𝟎 □

⎤

⎥

⎥

⎥

⎥

⎦

𝒖𝑘 +

⎡

⎢

⎢

⎢

⎢

⎣

𝛼𝑝𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 + 𝛼𝑣𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥
𝑘 − 𝛼𝑝𝑷

T
𝑝𝑢𝑐

𝑥
𝑘

□
⋮
□

⎤

⎥

⎥

⎥

⎥

⎦

T

𝒖𝑘, (B.5)

where 𝑸 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼𝑗
2 𝑰

𝑁ℎ×𝑁ℎ + 𝛼𝑣
2 𝑷

T
𝑣𝑢𝑷 𝑣𝑢 +

𝛼𝑝
2 𝑷

T
𝑝𝑢𝑷 𝑝𝑢 𝟎 ⋯ 𝟎

𝟎 □ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 𝟎 □

⎤

⎥

⎥

⎥

⎥

⎦

and 𝒒𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼𝑝𝑷 T
𝑝𝑢𝑷 𝑝𝑠𝒄̂

𝑥
𝑘 + 𝛼𝑣𝑷

T
𝑣𝑢𝑷 𝑣𝑠𝒄̂

𝑥
𝑘 − 𝛼𝑝𝑷

T
𝑝𝑢𝑐

𝑥
𝑘

□
⋮
□

⎤

⎥

⎥

⎥

⎥

⎦

.

The terms represented by the remaining squares in (B.5), namely, the optimization matrices or vectors of the position states in
the 𝑦-direction, the 𝑧-direction, the rotation of the CoM, and the footholds can be obtained in a similar manner.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.mechmachtheory.2024.105651.

References

[1] S. Kajita, H. Hirukawa, K. Harada, K. Yokoi, Introduction to Humanoid Robotics, Springer, 2014.
[2] S. Faraji, A.J. Ijspeert, 3LP: A linear 3D-walking model including torso and swing dynamics, Int. J. Robot. Res. 36 (4) (2017) 436–455.
[3] Z. Xie, L. Li, X. Luo, Three-dimensional aperiodic biped walking including the double support phase using LIPM and LPM, Robot. Auton. Syst. 143 (2021)

103831.
[4] S.E. Ada, E. Ugur, H.L. Akin, Generalization in transfer learning: Robust control of robot locomotion, Robotica 40 (11) (2022) 3811–3836.
[5] J. Englsberger, Combining Reduced Dynamics Models and Whole-Body Control for Agile Humanoid Locomotion (Ph.D. thesis), Technische Universität

München, 2016.
[6] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd, P. Abeles, D. Stephen, N. Mertins, A. Lesman, et al., Team IHMC’s lessons learned

from the DARPA robotics challenge trials, J. Field Robotics 32 (2) (2015) 192–208.
[7] H. Herr, M. Popovic, Angular momentum in human walking, J. Exp. Biol. 211 (4) (2008) 467–481.
[8] J. Ding, L. Han, L. Ge, Y. Liu, J. Pang, Robust locomotion exploiting multiple balance strategies: An observer-based cascaded model predictive control

approach, IEEE/ASME Trans. Mechatronics 27 (4) (2022) 2089–2097.
[9] T. McGeer, Passive dynamic walking, Int. J. Robot. Res. 9 (2) (1990) 62–82.

[10] X. Luo, W. Xu, Planning and control for passive dynamics based walking of 3D biped robots, J. Bion. Eng. 9 (2) (2012) 143–155.
[11] X. Luo, L. Zhu, L. Xia, Principle and method of speed control for dynamic walking biped robots, Robot. Auton. Syst. 66 (2015) 129–144.
[12] X. Luo, D. Xia, C. Zhu, Impact dynamics-based torso control for dynamic walking biped robots, Int. J. Humanoid Robot. 15 (03) (2018) 1850004.
[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment

point, in: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 2, IEEE, 2003, pp. 1620–1626.
[14] M. Vukobratović, B. Borovac, Zero-moment point—thirty five years of its life, Int. J. Humanoid Robotics 1 (01) (2004) 157–173.
[15] J. Liu, H. Chen, P.M. Wensing, W. Zhang, Instantaneous capture input for balancing the variable height inverted pendulum, IEEE Robot. Autom. Lett. 6

(4) (2021) 7421–7428.
[16] K. Van Heerden, Real-time variable center of mass height trajectory planning for humanoids robots, IEEE Robot. Autom. Lett. 2 (1) (2016) 135–142.
[17] B. Kaddar, Y. Aoustin, C. Chevallereau, Arm swing effects on walking bipedal gaits composed of impact, single and double support phases, Robot. Auton.

Syst. 66 (2015) 104–115.
[18] F. Iida, Y. Minekawa, J. Rummel, A. Seyfarth, Toward a human-like biped robot with compliant legs, Robot. Auton. Syst. 57 (2) (2009) 139–144.
[19] H. Sun, J. Yang, Y. Jia, C. Wang, Posture control of legged locomotion based on virtual pivot point concept, J. Bion. Eng. 20 (6) (2023) 2683–2702.
[20] M.A. Sharbafi, A. Seyfarth, FMCH: A new model for human-like postural control in walking, in: 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IROS, IEEE, 2015, pp. 5742–5747.
[21] J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: A step toward humanoid push recovery, in: 2006 6th IEEE-RAS International Conference on

Humanoid Robots, IEEE, 2006, pp. 200–207.
[22] S. Caron, A. Escande, L. Lanari, B. Mallein, Capturability-based pattern generation for walking with variable height, IEEE Trans. Robot. 36 (2) (2019)

517–536.
21

https://doi.org/10.1016/j.mechmachtheory.2024.105651
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb1
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb2
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb3
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb3
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb3
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb4
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb5
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb5
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb5
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb6
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb6
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb6
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb7
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb8
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb8
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb8
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb9
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb10
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb11
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb12
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb13
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb13
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb13
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb14
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb15
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb15
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb15
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb16
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb17
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb17
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb17
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb18
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb19
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb20
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb20
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb20
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb21
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb21
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb21
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb22
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb22
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb22


Mechanism and Machine Theory 197 (2024) 105651Z. Xie et al.
[23] K. Guan, K. Yamamoto, Y. Nakamura, Virtual-mass-ellipsoid inverted pendulum model and its applications to 3D bipedal locomotion on uneven terrains,
in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2019, pp. 1401–1406.

[24] J. Ding, C. Zhou, S. Xin, X. Xiao, N.G. Tsagarakis, Nonlinear model predictive control for robust bipedal locomotion: exploring angular momentum and
CoM height changes, Adv. Robot. 35 (18) (2021) 1079–1097.

[25] J. Reher, A.D. Ames, Dynamic walking: Toward agile and efficient bipedal robots, Annu. Rev. Control Robot. Autonom. Syst. 4 (2021) 535–572.
[26] W. Zijlstra, A.L. Hof, Displacement of the pelvis during human walking: experimental data and model predictions, Gait Posture 6 (3) (1997) 249–262.
[27] T. Otani, K. Hashimoto, S. Miyamae, H. Ueta, A. Natsuhara, M. Sakaguchi, Y. Kawakami, H.-O. Lim, A. Takanishi, Upper-body control and mechanism of

humanoids to compensate for angular momentum in the yaw direction based on human running, Appl. Sci. 8 (1) (2018) 44.
[28] G.H. Negri, L.K. Rosa, M.S. Cavalca, L.A. Celiberto Jr., E.B. de Figueiredo, Nonlinear predictive control applied to a biped walker with adjustable step

length using a passive walking-based reference generator, Optim. Control Appl. Methods 41 (3) (2020) 729–747.
[29] A.D. Kuo, Stabilization of lateral motion in passive dynamic walking, Int. J. Robot. Res. 18 (9) (1999) 917–930.
[30] J. Ding, X. Xiao, Y. Wang, Preview control with adaptive fuzzy strategy for online biped gait generation and walking control, Int. J. Rob. Autom. 31 (6)

(2016) 677–699.
[31] B. Park, J. Park, Heel-strike and toe-off walking of humanoid robot using quadratic programming considering the foot contact states, Robot. Auton. Syst.

163 (2023) 104396.
[32] W.Z. Peng, C. Mummolo, H. Song, J.H. Kim, Whole-body balance stability regions for multi-level momentum and stepping strategies, Mech. Mach. Theory

174 (2022) 104880.
[33] Z. Sun, B. Zhang, Y. Sun, Z. Pang, C. Cheng, A novel superlinearly convergent trust region-sequential quadratic programming approach for optimal gait

of bipedal robots via nonlinear model predictive control, J. Intell. Robot. Syst. 100 (2) (2020) 401–416.
[34] J. Ueda, K. Shirase, Y. Matsumoto, S. Oda, T. Ogasawa, Momentum compensation for fast dynamic walking of humanoids based on pelvic rotation of

contact sport athletes, in: Humanoid Robots, 2004 4th IEEE/RAS International Conference on, IEEE, 2005, pp. 592–597.
[35] T. Hirabayashi, B. Ugurlu, A. Kawamura, C. Zhu, Yaw moment compensation of biped fast walking using 3D inverted pendulum, in: IEEE International

Workshop on Advanced Motion Control, IEEE, 2008, pp. 230–296.
[36] Y. Liang, C. Deng, Yaw moment compensation for humanoid robot via arms swinging, Open Auto. Control Syst. J. 6 (1) (2014) 1371–1377.
[37] R. Cisneros, M. Benallegue, M. Morisawa, E. Yoshida, F. Kanehiro, Partial yaw moment compensation using an optimization-based multi-objective motion

solver, in: 2018 IEEE-RAS 18th International Conference on Humanoid Robots, Humanoids, IEEE, 2018, pp. 1017–1024.
[38] A. Miyata, S. Miyahara, D.N. Nenchev, Walking with arm swinging and pelvis rotation generated with the relative angular acceleration, IEEE Robot.

Autom. Lett. 5 (1) (2019) 151–158.
[39] B. Ugurlu, J.A. Saglia, N.G. Tsagarakis, D.G. Caldwell, Yaw moment compensation for bipedal robots via intrinsic angular momentum constraint, Int. J.

Human. Robot. 9 (04) (2012) 1250033.
[40] D.N. Nenchev, R. Iizuka, Emergent humanoid robot motion synergies derived from the momentum equilibrium principle and the distribution of momentum,

IEEE Trans. Robot. 38 (1) (2021) 536–555.
[41] T.-Y. Chen, S. Shigaki, K. Hosoda, Bevel-geared mechanical foot: a bioinspired robotic foot compensating yaw moment of bipedal walking, Adv. Robot.

36 (13) (2022) 631–640.
[42] C. Zhu, A. Kawamura, What is the real frictional constraint in biped walking? - discussion on frictional slip with rotation, in: 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS 2006, October 9-15, 2006, Beijing, China, IEEE, 2006, pp. 5762–5768.
[43] S. Huang, Z. Wei, Z. Duan, C. Sun, Y. Wang, Y. Tao, Y. Zhang, Y. Kan, E. Meyer, D. Li, et al., Reexamination of damping in sliding friction, Phys. Rev.

Lett. 132 (5) (2024) 056203.
[44] J. Jian, P. Liu, J. Yin, C. Zhang, M. Chao, A QCQP-based splitting SQP algorithm for two-block nonconvex constrained optimization problems with

application, J. Comput. Appl. Math. 390 (2021) 113368.
[45] L. Tesio, V. Rota, The motion of body center of mass during walking: A review oriented to clinical applications, Front. Neurol. 10 (2019) 999.
[46] A.E. Minetti, C. Cisotti, O.S. Mian, The mathematical description of the body centre of mass 3D path in human and animal locomotion, J. Biomech. 44

(8) (2011) 1471–1477.
[47] S. Bertrand, O. Bruneau, F. Ouezdou, S. Alfayad, Closed-form solutions of inverse kinematic models for the control of a biped robot with 8 active degrees

of freedom per leg, Mech. Mach. Theory 49 (2012) 117–140.
[48] Z. Xie, L. Li, X. Luo, A foot-ground interaction model based on contact stability optimization for legged robot, J. Mech. Sci. Technol. 36 (2) (2022)

921–932.
[49] C.-C. Wu, V. Zordan, Goal-directed stepping with momentum control, in: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, 2010, pp. 113–118.
[50] Z. Xie, L. Li, X. Luo, Human-like strategies exploiting momentum for biped robot balance recovery, Iran. J. Sci. Technol. Trans. Mech. Eng. 46 (3) (2022)

599–615.
[51] Z. Xie, L. Li, X. Luo, Optimization of the ground reaction force for the humanoid robot balance control, Acta Mech. 232 (10) (2021) 4151–4167.
[52] B. Siciliano, O. Khatib, Springer Handbook of Robotics, Springer, 2016.
22

http://refhub.elsevier.com/S0094-114X(24)00078-8/sb23
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb23
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb23
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb24
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb24
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb24
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb25
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb26
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb27
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb27
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb27
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb28
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb28
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb28
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb29
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb30
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb30
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb30
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb31
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb31
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb31
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb32
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb32
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb32
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb33
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb33
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb33
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb34
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb34
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb34
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb35
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb35
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb35
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb36
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb37
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb37
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb37
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb38
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb38
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb38
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb39
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb39
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb39
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb40
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb40
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb40
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb41
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb41
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb41
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb42
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb42
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb42
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb43
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb43
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb43
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb44
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb44
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb44
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb45
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb46
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb46
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb46
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb47
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb47
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb47
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb48
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb48
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb48
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb49
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb49
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb49
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb50
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb50
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb50
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb51
http://refhub.elsevier.com/S0094-114X(24)00078-8/sb52

	Three-dimensional variable center of mass height biped walking using a new model and nonlinear model predictive control
	Introduction
	FCDIP dynamics
	Evaluation of the FCDIP
	ZFMP for yaw motion stability

	Optimization based on NMPC
	Definitions and common nomenclature
	Optimization objective formulation
	Feasibility constraints
	ZMP constraints with variable CoM height
	ZFMP for no-yaw rotation sliding
	Constraints on the foot location
	Other constraints

	Optimization for walk
	SQP for linearization of QCQP
	Optimal CoM height for walk


	Simulations
	Modeling reality
	Case.1 Steering from the straight walking
	Case.2 Walking underneath a low door
	Case.3 Push recovery during walking

	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C. Supplementary data
	References


