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A question that often arises, among researchers working on artificial hands and robotic manipulation, concerns 
the real meaning of synergies. Namely, are they a realistic representation of the central nervous system control of 
manipulation activities at different levels and of the sensory-motor manipulation apparatus of the human being, or do 
they constitute just a theoretical framework exploiting analytical methods to simplify the representation of grasping 
and manipulation activities? Apparently, this is not a simple question to answer and, in this regard, many minds 
from the field of neuroscience and robotics are addressing the issue [1]. The interest of robotics is definitely oriented 
towards the adoption of synergies to tackle the control problem of devices with high number of degrees of freedom 
(DoFs) which are required to achieve motor and learning skills comparable to those of humans. The synergy concept is 
useful for innovative underactuated design of anthropomorphic hands [2], while the resulting dimensionality reduction 
simplifies the control of biomedical devices such as myoelectric hand prostheses [3]. Synergies might also be useful 
in conjunction with the learning process [4]. This aspect is less explored since few works on synergy-based learning 
have been realized in robotics. In learning new tasks through trial-and-error, physical interaction is important. On 
the other hand, advanced mechanical designs such as tendon-driven actuation, underactuated compliant mechanisms 
and hyper-redundant/continuum robots might exhibit enhanced capabilities of adapting to changing environments 
and learning from exploration. In particular, high DoFs and compliance increase the complexity of modelling and 
control of these devices. An analytical approach to manipulation planning requires a precise model of the object, 
an accurate description of the task, and an evaluation of the object affordance, which all make the process rather 
time consuming. The integration of learning into control naturally leads to relaxing the above requirements through 
the adoption of coordinated motion patterns and sensory-motor synergies as useful tools leading to a problem of 
reduced dimension. To this purpose, model-based control strategies relying on synergistic models of manipulation 
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activities learned from human experience can be integrated with real-time learning from actions strategies [5]. In [6]
a classification of learning strategies for robotics is provided, while the difference between imitation learning and 
reinforcement learning (RL) is highlighted in [7]. From recent research in the field [8,9], it seems that RL represents 
the future toward autonomous and intelligent robots since it provides learning capabilities as those of humans, i.e. 
based on exploration and trial-and-error policies. In this context, suitable policy search methods to be implemented 
in a synergy-based framework are to be sought in order to reduce the search space dimension while guaranteeing the 
convergence and efficiency of the learning algorithm.
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