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The Effect of Shapes in Input-State Linearization for
Stabilization of Nonprehensile Planar Rolling

Dynamic Manipulation
Vincenzo Lippiello, Fabio Ruggiero, and Bruno Siciliano

Abstract—A control framework for nonprehensile planar
rolling dynamic manipulation is derived in this letter. By rotating
around the center of mass, the manipulator moves a part without
grasping it but exploiting its dynamics. Given some assumptions
on the shapes of both the object and the manipulator, a state trans-
formation is found rendering the state-space system in a chain
of integrators form without internal dynamics, allowing the pos-
sibility to exploit linear controls to stabilize the whole system.
An analysis of the differential flatness property of the system is
also provided. Simulations and experiments validate the derived
framework.

Index Terms—Dexterous manipulation, underactuated robots,
motion and path planning.

I. INTRODUCTION

T HE ROBOTIC manipulation problem aims at finding a
set of suitable controls to change the configuration of

an object from an initial to a desired value. Such manipu-
lation task can be achieved in a nonprehensile—the object
is not grasped—and dynamic—dynamics is exploited to con-
trol the motion—way. This class of manipulation problems is
still rather far from being fully solved and applied in robotic
applications, while indeed there are several benefits [1]. As
examples, vibratory platforms are employed in those industrial
applications where it is not directly possible to manipulate the
object by grasping, while dynamic nonprehensile manipulation
tasks are also performed during surgery to push away arter-
ies and reshape organs. Therefore, in order to perform similar
tasks, the control design has to carefully take into account both
the object and the robot dynamics. A typical approach to tackle
a nonprehensile dynamic manipulation task is to divide com-
plex actions into simpler subtasks, called primitives, such as
rolling, throwing, catching, pushing, batting, and so on. This
letter is focused on the nonprehensile planar rolling primitive,
where an actuated manipulator of a given shape, referred to
as hand, manipulates an object without grasping it through
rotations. The object can only roll upon the hand’s shape.
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Nonprehensile manipulation tasks have been firstly intro-
duced in robotics in [1], [2], [3]. Regarding the nonprehensile
rolling primitive, the ball and plate and the ball and beam are
the most investigated benchmark systems. The former con-
sists of a ball rolling without slipping on an actuated plane.
In such nonholonomic system, the controller steers the ball by
moving the plate from its initial configuration to a desired posi-
tion along an admissible path [4]. A PID-based controller is
employed in [5], while a sliding mode controller in [6]. The
latter, instead, aims at stabilizing the position of a ball along
the beam. No full state feedback linearization can be designed,
but an approximated partial feedback linearization is proposed
in [7]. An output feedback controller is introduced in [8]. A
flatness based approach with an exact feedforward lineariza-
tion (EFL) is introduced in [9]. The butterfly juggling task has
been investigated in [10], [11], [12]. The stabilization of a disk
free to roll on an actuated disk is introduced in [13], while
an input-state linearization is proposed in [14]. Planning and
control of rolling on general curved shapes is studied in [15].
Finally, nonprehensile rolling systems where the object’s cen-
ter of mass does not coincide with its geometric center are
investigated in [16].

The scope of this manuscript is to find and apply a general
diffeomorphism to achieve an input-state linearization of the
whole dynamics. Such state transformation renders the system
in the so-called normal form (i.e., a chain of integrators) with-
out internal dynamics. Given some assumptions on the shapes
of both the object and the hand, EFL is employed to stabilize
the system. A connection with differential flatness theory is also
considered. Case studies validate the approach through simula-
tions and experiments, showing that the whole system has good
performance even when the assumptions regarding the shapes
are not satisfied.

Upon derivation of the general dynamic model for nonpre-
hensile planar rolling manipulation, two main novelties are
highlighted in the letter: (i) a link between nonprehensile pla-
nar rolling manipulation and differential flatness is established;
(ii) given some assumptions on both the hand and object shapes,
a diffeomorphism to build a unified theoretical framework to
plan and control these tasks is derived.

II. MATHEMATICAL BACKGROUND

In order to make the letter self-contained, this section aims
to recap some basic definitions (see [17] for further details).
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Consider a dynamic system in the affine state-space form

ẋ = f(x) + b(x)u, (1)

with x ∈ R
n and u ∈ R representing the state and the input,

respectively, while f : Rn → R
n and b : Rn → R

n are two
smooth vector fields. A system (1) is input-state linearizable
if there exists a diffeomorphism φ : Ω → R

n, where Ω ⊆ R
n,

and a feedback control law u = α(x) + β(x)v, such that the

new state z =
[
z1 z2 . . . zn

]T
= φ(x) and input v render the

system (1) in the following normal form{
żi = zi + 1 (2a)

żn = v, (2b)

with i = 1, . . . , n− 1. The following theorem gives the condi-
tions to verify whether (1) can be transformed in the normal
form (2).

Theorem 1: The nonlinear system (1) is input-state lineariz-
able if and only if there exists a region Ω where the following
conditions hold:

• The controllability matrix T = [b, adfb, . . . , ad
n−1
f b] is

made by linearly independent vector fields in Ω.
• The set [b, adfb, . . . , ad

n−2
f b] is involutive in Ω.

Proof: See [17], Theorem 6.2. �
Notice that adifb = [f , adi−1

f b], where i = 1, 2, . . ., ad0fb =
b, and [·, ·] denotes the Lie bracket [17]. Theorem 1 is not con-
structive to find the diffeomorphism φ(x). Then, the following
steps can be followed:

• In order to find z1 in the diffeomorphism φ(x), the
following equations have to hold

∂z1
∂x

adifb = 0, (3a)

∂z1
∂x

adn−1
f b �= 0, (3b)

with i = 0, . . . , n− 2.
• The complete transformation is given by

z = φ(x) =
[
z1 Lfz1 . . . L

n−1
f z1

]T
. (4)

Notice that Li
fh = Lf (L

i−1
f h), where i = 1, 2, . . ., L0

fh = h
and Lfh denotes the Lie derivative. Finally, the transformation
u = α(x) + β(x)v renders (1) as in (2), where

α(x) = −
Ln
fz1

LbL
n−1
f z1

, β(x) =
1

LbL
n−1
f z1

. (5)

III. MODELLING OF NONPREHENSILE PLANAR ROLLING

Extending what presented in [14], the modelling of a nonpre-
hensile planar rolling manipulation system is now derived.

Referring to Fig. 1, let Σw be the inertia world fixed frame,
while let Σh be the frame attached to the hand, and Σo the
frame attached to the object: both are located at their respective
centres of mass. Let θh ∈ R be the angle of the hand in Σw,
while po ∈ R

2 and θo ∈ R are the position and the orientation,
respectively, of Σo in Σw.

Fig. 1. A general nonprehensile planar rolling manipulation system. In red the
world fixed frame Σw . In green the hand frame Σh, while in blue the object
frame Σo, placed at the respective centres of mass.

The shapes of both the object and the hand are rep-
resented through an arclength parametrization: sh ∈ R and
so ∈ R are the arclength parameters for the hand and the
object, respectively. At least locally, the shapes should be of
class C2. Locally, any point of the hand’s shape is given by

chh(sh) =
[
uh(sh) vh(sh)

]T ∈ R
2, expressed with respect to

Σh, while any point of the object’s shape is given by coo(so) =[
uo(so) vo(so)

]T ∈ R
2, expressed with respect to Σo. Notice

that sh increases counterclockwise along the hand, while so
increases clockwise along the object. With this choice, the pure
rolling assumption is ṡh = ṡo. Without loss of generality, the
frames Σw and Σh coincide at θh = 0, the point sh = 0 is at
the intersection between the vertical (gravitational) axis of Σw

and the hand’s shape, i.e. ch(0) =
[
0 vh(0)

]T
in Σw, and thus

sh = so at all times during rolling. Therefore, the contact loca-
tion will be specified only by sh throughout the remainder of
the letter.

Assumption 1: The hand and the object maintain pure rolling
contact for all the times.

The arclength parametrization implies the property ‖ch′h ‖ =
1, with the symbol ′ indicating the derivative with respect
to the parameter sh. The same holds for coo(sh). At the
contact point chh(sh), the tangent vector to the shapes is
expressed as th(sh) = ch′h ∈ R

2 forming an angle φh(sh) =
atan2(v′h(sh), u

′
h(sh)) in Σh. The same tangent can be

expressed with respect to Σo with an angle φo(sh) =
atan2(v′o(sh), u

′
o(sh)). The signed curvatures of the shapes are

defined as

κh(sh) = φ′h(sh) = u′h(sh)v
′′
h(sh)− u′′h(sh)v

′
h(sh), (6a)

κo(sh) = φ′o(sh) = u′o(sh)v
′′
o (sh)− u′′o(sh)v

′
o(sh). (6b)

The relative curvature at the contact point is given by κr(sh) =
κh(sh)− κo(sh). Notice that κh(sh) > 0 and κo(sh) < 0
denote convexity at the contact point for the hand and the
object, respectively. Hence, κr(sh) > 0 guarantees a single
contact point at least locally [14]. The following constraint
expresses the angle of the tangent th(sh) with respect to Σw:
θh + φh(sh) = θo + φo(sh). Therefore, taking into account
(6), the following relations hold

θo = θh + φh(sh)− φo(sh), (7a)

θ̇o = θ̇h + κr(sh)ṡh. (7b)
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The following constraint expresses instead the coincidence
between the contact points on both the hand and the object

ph +R(θh)c
h
h(sh) = po +R(θo)c

o
o(sh), (8)

where ph ∈ R
2 is the position of Σh in Σw, while R(θ) ∈

SO(2) is the rotation matrix in the 2D space. Notice that the
relation Ṙ(θ) = R(θ̄)θ̇ holds with θ̄ = θ + π

2 .
Assumption 2: The hand can only rotate around its center of

mass.
Therefore, without loss of generality, placing Σw at the

hand’s center of mass and taking into account (8) yield po =
R(θh)c

h
h(sh)−R(θo)c

o
o(sh), and ṗo = γ(q)θ̇h + η(q)ṡh =[

γ(q) η(q)
]
q̇, with q =

[
q1 q2

]T
=

[
θh sh

]T
, and

γ = R(θ̄h)c
h
h −R(θ̄o)c

o
o, (9a)

η = R(θh)c
h′
h −R(θo)c

o′
o − κrR(θ̄o)c

o
o, (9b)

in which dependencies have been dropped, while (7b) is
included and (7a) has to be plugged in.

The dynamic model is derived through the Euler-Lagrange
formalism. The so-called Lagrange function is given by L =
T − U , where T and U represent the kinetic and potential
energies, respectively. The dynamic model equations are then
given by d

dt
∂L
∂q̇i

− ∂L
∂qi

= τi, with i = 1, 2 and τi the associ-
ated generalized force acting on the ith generalized coordi-
nate. Given Assumptions 1 and 2, the kinetic and potential
energies for a nonprehensile planar rolling manipulation task

are T (q, q̇) = 1
2

(
Ihθ̇

2
h +moṗ

T
o (q, q̇)ṗo(q, q̇) + Ioθ̇

2
o(q)

)
=

1
2 q̇

TB(q)q̇ and U(q) = mog
[
0 1

]T
po(q), where mo is the

object mass, Ih and Io are the hand and object inertias, respec-
tively, computed with respect to Σh and Σo, g is the gravity
acceleration (9.81 m/s2 is the value employed in Section V),
B(q) ∈ R

2×2 is the symmetric and positive definite mass
matrix whose elements are

b11(q) = Ih + Io +moγ
T(q)γ(q), (10a)

b12(q) = b21(q) = Ioκr(sh) +moγ(q)
Tη(q), (10b)

b22(q) = Ioκ
2
r(sh) +moη(q)

Tη(q). (10c)

By computing the Lagrange equations and considering the
Christoffel symbols of the first type [18], the dynamic model
can be written as B(q)q̈ +C(q, q̇)q̇ + g(q) = τ , where τ =[
τh 0

]T
represents the generalized input force with τh the

actuating torque around the hand’s center of mass; g(q) =[
g1(q) g2(q)

]T
=

(
∂U(q)
∂q

)T

and C(q, q̇) ∈ R
2×2 is a suit-

able matrix whose generic element is given by

cij(q, q̇) =
1

2

2∑
k=1

(
∂bij(q)

∂qk
+
∂bik(q)

∂qj
+
∂bjk(q)

∂qi

)
q̇k,

(11)
with i, j = 1, 2. By neglecting dependencies, the dynamic
model can be written in the following extended form

b11θ̈h + b12s̈h + c11θ̇h + c12ṡh + g1 = τh, (12a)

b12θ̈h + b22s̈h + c21θ̇h + c22ṡh + g2 = 0, (12b)

with g1 = mog
(
−vhsθh − vo

∂cθo
∂θh

+ uhcθh − uo
∂sθo
∂θh

)
, and

g2 = mog(v
′
hcθh − v′ocθo − voc

′
θo

+ u′hsθh − u′osθo − uos
′
θo
),

in which (7a) has to be plugged in, the elements of C(q, q̇) are
omitted for brevity, and cθ and sθ are used instead of cos θ and
sin θ, respectively.

IV. HYPOTHESES ON THE SHAPES AND INPUT-STATE

LINEARIZATION

During experimentation, when highly-geared harmonic drive
plus DC motors are present, the hand’s angular acceleration is
more convenient than the hand’s torque [14]. It is thus suitable
to rewrite (12) with θ̈h = ah as input

θ̈h = ah, (13a)

s̈h = −b−1
22 (b12ah + c21θ̇h + c22ṡh + g2), (13b)

where dependencies have been neglected. The equation relating
τh and ah is given by

τh = ξ(q, q̇) + σ(q)ah, (14)

with ξ(q, q̇) = g1 + c11θ̇h + c12ṡh − b12
b22

(g2 + c21θ̇h +

c22ṡh) and σ(q) = b11 − b212
b22

.
Assumption 3: The Coriolis terms c21(q, q̇) and c22(q, q̇)

are equal to zero.
Remark 1: Looking at (11), Assumption 3 is verified when

terms b12 = b21 and b22 in (10b) and (10c), respectively, do
not depend on q, and when b11 depends only on θh. Looking
at the particular expressions of bij , this means that κr has
to be constant, i.e. κ′r = 0, the combination of the products
γ(q)Tη(q) and η(q)Tη(q) do not depend on q, and the prod-
uct γ(q)Tγ(q) depends only on θh. Considering (6) and (9),
the aforementioned properties are thus governed by the shapes
of both the hand and the object.

Assumption 3 simplifies (13) as follows

θ̈h = ah, (15a)

s̈h = − 1

b22
(b12ah + g2(q)). (15b)

By indicating the state of the system as x =
[
x1 x2 x3 x4

]T
=[

θh θ̇h sh ṡh
]T

, (15) can be written in the affine state-space
form (1) with u = ah and

f(x) =
[
x2 0 x4 − g2(x)

b22

]T
, (16a)

b =
[
0 1 0 − b12

b22

]T
. (16b)

In order to check whether (15) is input-state linearizable, the
controllability matrix T (x) =

[
b adfb ad2fb ad3fb

]
has to be

invertible in a certain region Ω, and the set given by the first
three columns of T (x) has to be involutive (see Theorem 1 in
Section II). Taking into account (16), the detailed expression of
the controllability matrix is

T (x) =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0

0 b21
b22

0 t34
− b21

b22
0 t43 t44

⎤
⎥⎥⎦ , (17)
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with t34 = 1
b22

∂g2(x)
∂x1

− b12
b222

∂g2(x)
∂x3

, t43 = b12
b222

∂g2(x)
∂x3

−
1
b22

∂g2(x)
∂x1

, and t44 = x4
b12
b22

∂2g2(x)
∂x2

3
− x2

b22

∂2g2(x)
∂x2

1
. Defining

the region Ω =
{
x ∈ R

4 : ∂g2(x)
∂x1

�= b12
b22

∂g2(x)
∂x3

}
, it is possible

to prove that T (x) in (17) is made by linearly independent
columns: the first three of them build an involutive set (proofs
are omitted for brevity). The system (15) is then input-state
linearizable in Ω.

To render (15) in the normal form (2), a diffeomorphism
φ(x) (4) has to be found. Hence, in order to compute the first
component z1, equations (3) have to hold for the vector fields
(16). In particular, looking at the expression of the first three
columns of T (x), condition (3a) yields ∂z1

∂x2
− b12

b22
∂z1
∂x4

= 0,
b12
b22

∂z1
∂x3

− ∂z1
∂x1

= 0, and ∂z1
∂x4

t43 = 0. The solution to this sys-

tem is then given by z1 = b12
b22
x1 + x3. It is easy to verify that

such a choice for z1 also satisfies (3b). Therefore, the complete
diffeomorphism is given by

φ(x) =

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y
ẏ
ÿ
y(3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b12
b22
x1 + x3

b12
b22
x2 + x4

− g2(x)
b22

− 1
b22

(
∂g2(x)
∂x1

x2 +
∂g2(x)
∂x3

x4

)

⎤
⎥⎥⎥⎥⎦ ,

(18)

where y(j) is the jth-order derivative, with j ≥ 3. Considering
(5), the input transformation ah = α(x) + β(x)v finally ren-
ders (15) in the normal form (2), with

α(x) = −

(
∂2g2(x)

∂x2
1
x2 − g2(x)

b22

∂g2(x)
∂x3

+ ∂2g2(x)
∂x2

3
x4

)
(

∂g2(x)
∂x1

− b12
b22

∂g2(x)
∂x3

) , (19a)

β(x) = −b22
(
∂g2(x)

∂x1
− b12
b22

∂g2(x)

∂x3

)−1

. (19b)

This is the core result since, under Assumptions 1, 2 and 3, a
general diffeomorphism is found to change a nonprehensile 2D
rolling manipulation system into a normal form where simple
linear controllers can be applied.

Therefore, in general, any suitable approach can be employed
to control the normal form (2). The exact feedforward lineariza-
tion (EFL) technique [9] is here considered. In detail, a change
of coordinates is applied to (15) through (18). To get the normal
form, the EFL technique does not use the feedback transfor-
mation ah = α(x) + β(x)v, but ah = α(x�) + β(x�)v, where
x� is the desired state1 (in feedforward). The new virtual input
v is instead designed as an extended PIDn−1 plus a feedforward
action

v = z�4 +

4∑
i=0

kiei, (20a)

e0 =

∫ t

o

e1(τ)dτ, (20b)

ei = z�i − zi, (20c)

with ki positive gains such that the resulting characteristic
polynomial is Hurwitz.

1Eventually retrieved from z� through φ−1.

Fig. 2. A representation of the ball and beam system. In red the world fixed
frame Σw . In green the hand frame Σh, while in blue the object frame Σo,
placed at the respective centres of mass.

Remark 2: A SISO input-state linearizable system is also
differentially flat with output y = h(x) = z1 (see Appendix).
Therefore, given Assumptions 1, 2 and 3, a nonprehensile pla-
nar rolling manipulation system is differentially flat with flat
output y = b12

b22
x1 + x3. For both motion planning and control-

ling purposes under differential flatness theory, it is essential
to express the state x and input ah as function of y and its
derivatives (see (22) in Appendix). In many cases this might be
cumbersome. Even if it is possible to use some symbolic math-
ematical computation software, some guidelines are provided
in the following. The first step is to write x3 = y − b12

b22
x1 and

x4 = ẏ − b12
b22
x2 from (18). Later, substitute x3 and x4 from the

previous step in the last row of (18) and solve for x2. Plug x3
from the first step in ÿ = − g2(x)

b22
and solve for x1 (this will be

function of only y and ÿ). Substitute back x1 in x2 and, in turn,
in x3 and x4 from previous steps (it comes out that x3 depends
only on y and ÿ, while x2 and x4 are generally function of y, ẏ,
ÿ and y(3)). Finally, it is possible to express ah as function of y
and its derivatives by considering ah = α(x) + β(x)y(4) from
(2b), and substituting xi, with i = 1, . . . , 4, from the previous
steps. Notice that not every desired trajectory can be imposed
to y. As it will be highlighted in the case studies, some desired
behaviours could make unbounded the state of a nonprehensile
planar rolling manipulation system.

V. CASE STUDIES

A. Ball and Beam

1) Formulation: Referring to Fig. 2, the beam can
rotate around its center of mass while the ball can only
roll along the beam. The shape of the hand, i.e. the

beam, is parametrized through chh(sh) =
[
−sh dh

]T
,

with dh ∈ R
+ a fixed distance between the beam’s center

of mass and its surface where the ball rolls. The ball’s
shape is parametrized by coo(sh) = −ρo

[
sin sh

ρo
cos sh

ρo

]T
,

with ρo ∈ R
+ the radius of the ball. Considering (6), the

signed curvatures of the beam and the ball are κh = 0 and
κo = −1/ρo, respectively. The relative curvature is thus given
by κr = 1/ρo. The ball’s angular velocity is instead given
by (7b) θ̇o = θ̇h + ṡh

ρo
. In order to compute the mass matrix

of the system, the vectors γ(q) and η(q) in (9) are γ(q) =[
−(ρo + dh)cθh + shsθh −(ρo + dh)sθh − shcθh

]T
, and

η(q) = −
[
cθh sθh

]T
. Therefore, the parameters in (12) are

b11 = Ih + Io +mod
2
h + 2modhρo +moρ

2
o +mos

2
h, b12 =

b21 = Io
ρo

+modh +moρo, b22 = Io
ρ2
o
+mo, c11 = moshṡh,
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Fig. 3. Time histories related to the first simulation test about the ball and beam system.

c12 = moshθ̇h, c21 = moshθ̇h, c22 = 0, g1 = −mog((dh +
ρo) sin θh + sh cos θh) and g2 = −mog sin θh. Considering
the acceleration ah of the beam as input, the system can be
written as in (13), with τh as in (14). However, it is possible
to verify that Assumption 3 is not verified for the ball and
beam case since c21 �= 0. Even if κr is constant and the
products γ(q)Tη(q) and η(q)Tη(q) do not depend on q,
the product γ(q)Tγ(q) does not depend only on θh, but it
depends on the arclength parameter. Therefore, the ball and
beam system is not input-state linearizable. This result is
well known in the literature, nevertheless, in many cases it
is possible to approximate c21 to zero [7]. This is true for
small velocities of the beam, small masses of the ball and not
so long beam. Hence, by putting c21 = 0, only for control
design purposes, it is possible to write the approximated
ball and beam system like in (15). The affine state space
form of the approximated ball and beam system has the

following vector fields (16) f(x) =
[
x2 0 x4

moρ
2
og sin x1

Io+moρ2
o

]T
and b =

[
0 1 0 −ρo moρ

2
o+dhmoρo+Io
Io+moρ2

o

]T
. Computing the

matrix T (x) as in (17), it is possible to verify that the
approximate dynamic model is input-state linearizable in
the region Ω = {x ∈ R

4 : cos θh �= 0 ⇒ |θh| < π
2 }. Notice

that such a region is not restrictive because, with no bound
on other states, Ω covers all practical situations since
outside it the ball falls down from the hand. Finally, it
is possible to compute the diffeomorphism (18) φ(x) =[
b12
b22
x1 + x3

b12
b22
x2 + x4

mog
b22

sinx1
mogx2

b22
cosx1

]T
,

yielding the normal form

ż1 = z2, (21a)

ż2 = z3, (21b)

ż3 = z4, (21c)

ż4 = β(x)|−1
x=φ−1(z)(ah − α(x)|x=φ−1(z)), (21d)

with α(x) = mogx2 tanx1 and β(x) = b22
mog cos x1

from (19).
The control is then performed with the EFL technique described
in Section IV.

For the differential flatness, the flat output is y = h(x) =
b12
b22
x1 + x3. Following the steps in Remark 2, the state

variables can be then expressed as function of y and its

derivatives x1 = asin
(

b22ÿ
mog

)
, x2 = b22y

(3)

mog cos(asin( b22ÿ
mog ))

, x3 =

y − b12
b22

asin
(

b22ÿ
mog

)
and x4 = ẏ − b12y

(3)

mog cos(asin( b22ÿ
mog ))

.

Remark 3. Notice that within this framework it is not pos-
sible to choose as flat output only the arclength parameter
as usually done in the literature [7], [9]. This is because the
dynamic model of the ball and beam system here derived is
slightly different from [7] since it takes into account the dis-
tance dh between the hand’s center of mass and the rolling
surface. An approximation to neglect the hand and put Σw

aligned with the ball’s center of mass is instead usually con-
sidered: this yields b12 = 0, meaning that moγ(q)

Tη(q) =
−Ioκr(sh). Such approximation, verified to be effective in the
practice in the above cited papers, is not considered here since
the scope of such a work is to consider a general framework for
nonprehensile planar rolling manipulation in which the assump-
tion of b12 = 0 would be too much restrictive and valid only
for the ball and beam case. The price to pay is the impos-
sibility to have as flat output y = sh = x3. However, since

x3 = y − b12
b22

asin
(

b22ÿ
mog

)
, with y = b12

b22
x1 + x3, it is possible

to approximate y 	 x3 when b22 
 b12.
2) Simulations: Simulations are performed for the ball and

beam system. The control law has been designed with refer-
ence to the approximated model with c21 = 0. The ball and
beam dynamic system, instead, has been simulated without
such approximation. The value employed to simulate the effec-
tive ball and beam system are: mo = 0.5 kg, ρo = 10 cm,
Ih = 0.2 kg m2, dh = 1 cm and Io = moρ

2
o. To emulate param-

eter uncertainties, such values have been augmented of the 5%
in the control law. A time delay of about 0.01 s is considered
for the measurements.

As a first task, the hand starts at the desired condition θ�h = 0,
but the ball is placed at sh = −1 m while its desired con-
figuration is at s�h = 0. The initial and desired velocities for
both the hand and the arclength parameter are 0. Looking at
the diffeomorphism φ(x), the goal can be achieved through
z� = 0. The control gains ki with i = 0, . . . , 4 in (20a) have
been chosen as (0.01, 81, 108, 54, 12), respectively. The errors
ei in (20c) asymptotically go to zero as shown in Fig. 3(a),
meaning that the state z tends to zero. As previously high-

lighted, this means also that the state x =
[
θh θ̇h sh ṡh

]T
goes

to zero as desired: this is depicted in Fig. 3(b). The behaviour
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Fig. 4. Time histories related to the second simulation test about the ball and beam system.

Fig. 5. A representation of the disk on disk system. In red the world fixed frame
Σw . In green the hand frame Σh, while in blue the object frame Σo, placed at
the respective centres of mass.

of the torque τh in (14) is represented in Fig. 3(c). The time
history does not start from zero since at the beginning the ball
is not aligned with the hand’s center of mass causing a torque
around this last. The balancing task is then satisfied despite the
control law has been designed on an approximate system with
parameters uncertainty.

As noticed in Remark 3, it is not possible to impose a
desired behaviour directly to sh = x3, but to y = b12

b22
x1 + x3.

However, since the chosen parameters (not so far from a real
system) are such that b22 
 b12, it is a good approximation to
impose the reference behaviour for sh to y. As a second test,
it is then desired that z�1 = y� = 0.05 cos t, with t the time.
The desired values for z�i , with i = 2, . . . , 4, are the time time
derivatives of y�. The control gains are chosen like the previous
test, while initially the ball is placed at sh = −10 cm. Again,
the errors ei in (20c) go asymptotically to zero as shown in
Fig. 4(a). Fig. 4(b) shows that the time history of sh follows the
desired trajectory given to y�, validating the considered approx-
imation. Therefore, under the conditions given in Remark 3,
differential flatness can be employed also under this framework
as in literature [7], [9]. The behaviour of τh in (14) is repre-
sented in Fig. 4(c). Again, the related plot does not start from
zero because of the misalignment of the ball with respect to the
hand’s center of mass.

Finally, notice that it is not possible to stabilize the ball with
a non-zero beam’s angle. Looking at the dynamic model, this
requires a constant torque resulting in unbounded velocities.

Fig. 6. Experimental prototype of the disk-on-disk system available at
PRISMA Lab.

B. Disk on Disk (DoD)

1) Formulation: This case study considers the balanc-
ing of a disk free to roll on an actuated disk. Referring
to Fig. 5, the shape of the hand, i.e. the actuated disk,

is parametrized by chh(sh) = ρh
[
− sin sh

ρh
cos sh

ρh

]T
, with

ρh ∈ R
+ the radius of the hand. The upper disk’s shape

is parametrized as in the previous case study. Considering
(6), the relative curvature is given by κr = ρh+ρo

ρhρo
. The

upper disk angular velocity is given by θ̇o = θ̇h + κr ṡh. The
vectors γ(q) and η(q) are computed like in (9): γ(q) =

−(ρh + ρo)
[
cos

(
θh + sh

ρh

)
sin

(
θh + sh

ρh

)]T
, and η(q) =

−ρoκr
[
cos

(
θh + sh

ρh

)
sin

(
θh + sh

ρh

)]T
. Therefore, the

parameters in (12) are b11 = Ih + Io +mo(ρh + ρo)
2, b12 =

b21 = Ioκr +mo
(ρh+ρo)

2

ρh
, b22 = Ioκ

2
r +moρ

2
oκ

2
r , c11 =

c12 = c21 = c22 = 0, g1 = −mog(ρh + ρo) sin
(
θh + sh

ρh

)
and g2 = −mogρoκr sin

(
θh + sh

ρh

)
. Notice that the quantity

θh + sh
ρh

is the angle of the object’s center of mass with
respect to the vertical axis of Σw. It is possible to verify
that the DoD dynamic model fully verifies Assumption 3.
Hence, considering the acceleration ah of the actuated disk
as input, the DoD dynamics can be written as in (15) with τh
as in (14). The affine state space form assumes the following
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Fig. 7. Time histories related to the first simulation test about the disk on disk system.

vector fields (16) f(x) =

[
x2 0 x4

mogρo sin
(
x1+

x3
ρh

)
Ioκr+moρ2

oκr

]T
and

b =
[
0 1 0 −moρ

2
o+moρhρo+Io

κr(moρ2
o+Io)

]T
. Computing the matrix

T (x) as in (17), it is possible to verify that the approximate
dynamic model is input-state linearizable in the region Ω =

{x ∈ R
4 : cos

(
x1 +

x3

ρh

)
�= 0 ⇒ |x1 + x3

ρh
| < π

2 }. Notice that

such a region is not restrictive because, with no bound on
other states, Ω covers all practical situations since outside it
the disk falls down from the hand. Finally, diffeomorphism

(18) is φ(x) =

[
b12
b22
x1 + x3

b12
b22
x2 + x4

mogρo sin
(
x1+

x3
ρh

)
Ioκr+moρ2

oκr

mogρoκr

(
x2+

x4
ρh

)
cos

(
x1+

x3
ρh

)
b22

]T
, with α(x) =

sin
(
x1+

x3
ρh

)
x2−

(
mogρoκr

b22ρh
sin

(
x1+

x3
ρh

)
+

x4
ρ2
h

)
cos

(
x1+

x3
ρh

)
(
1− b12

b22ρh

)
cos

(
x1+

x3
ρh

) and

β(x) = b22

(
mogρoκr

(
1− b12

b22ρh

)
cos

(
x1 +

x3

ρ3

))−1

. The

control is again performed with the EFL technique described
in Section IV.

Within differential flatness, the flat output is y = h(x) =
b12
b22
x1 + x3. Following Remark 2, the state variables can be

expressed as function of y and its derivatives. Only x1 =(
1− b12

b22ρh

)−1 (
asin

(
Ioκr+moρ

2κr

mogρo
ÿ
)
− y

ρh

)
and x3 = y −

b12ρh

b22ρh−b12

(
asin

(
Ioκr+moρ

2κr

mogρo
ÿ
)
− y

ρh

)
are here expressed

for brevity.
Remark 4: Notice that in this case study the only possibility

of balancing is with the object directly above the hand’s center
of mass, i.e. θh + sh

ρh
= 0. As noticed in [14], any other balanc-

ing position leads to constant angular acceleration resulting in
unbounded velocities.The differential flatness loses thus some
sense for the disk on disk.

Looking at φ(x), stabilizing the origin z = 0 is equivalent
to stabilizing x = 0 and then x1 +

x3

ρh
= 0. However, notice

that through the following further change of coordinates z̄ =[
z1 −

(
b12−b22ρh

b22
θ�h

)
z2 z3 z4

]T
it is possible to balance the

object with θh at a desired constant angle θ�h = x�1. It is easy
to verify that such additional diffeomorphism does not change
the normal form (2) expressed now in terms of z̄. With some
algebra, it is possible to show that stabilizing the origin z̄ = 0
yields x1 = x�1, x1 +

x3

ρh
= 0 and x2 = x4 = 0.

2) Experiments: Performance are evaluated through some
experiments by using the experimental disk on disk proto-
type shown in Fig 6. The hand is actuated by a DC motor
(Harmonic Drive RH-8D 3006) equipped with a harmonic drive
whose gearhead ratio is 100 : 1. Rubber bands of small thick-
ness encircle both the object and the hand. The commands to the
motor are provided by an ARM CORTEX M3 microcontroller
(32 bit, 75 MHz). The microcontroller receives current refer-
ences from an external PC through a USB cable. The output of
the microcontroller is the current reference for the motor servo,
which is transformed in torque for the hand disk. Therefore, the
control v in (20a) is first transformed in ah = α(x�) + β(x�)v
and then in τh as in (14). Finally τh has to be transformed
through a current control law as icom = (1/ςm)(τh + μdθ̇h +
fssgn(θ̇h)) + kp(θ

d
h − θh) + kd(θ̇

d
h − θ̇h), where θdh and θ̇dh are

the desired hand position and velocity, respectively, obtained by
integrating ah; kp and kd are two gains, set to 10 and 1, respec-
tively, during the experiments; ςm = 4.2 is the motor constant
available from the motor data-sheet; μd = 0.29 is a viscous
coefficient and fs = 0.3 is the torque required to overcome
friction at rest. These two last parameters have been experimen-
tally identified. In addition, the microcontroller also provides
the measured position of the hand to the external PC. The posi-
tion of the upper disk, instead, is given by an external visual
system. This consists of a uEye UI-122-xLE camera provid-
ing (376× 240) pixel images to the PC at 75 Hz, that is also
the controller sample rate. With respect to [13], [14] this is a
slower sample time. Moreover, with respect again to the two
above cited works, the employed set-up is mounted in full grav-
ity between two plexiglass plates. Finally, the other parameters
are ρh = 15 cm, ρo = 7.5 cm, mo = 16 g, Ih = 5.3 · 10−3 kg
m2 and Io = 12.15 · 10−5 kg m2, while the control gains ki,
with i = 0, . . . , 4, in (20a) are (0.7, 180, 70, 110, 10).

Experiments are focused on the balancing of the object on
the upright unstable position. A video of the performed exper-
iments is present in the multimedia attachment, along with the
case of stabilizing the angle of the hand at a desired θ�h. Since
θh starts from 0 and the upper disk starts at about θh + sh

ρh
= 5

degrees with respect to the vertical axis of Σw, then sh has
an initial value of 1.57 cm. Therefore, to stabilize the upright
unstable position, the desired values for the normal form state
system is z� = 0: this yields x� = 0 and then θh + sh

ρh
= 0.

After the stabilization, the object has been voluntarily perturbed
by pushing it away from the balancing position: the control law
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is able to recover such perturbation as shown in the time his-
tories of Fig. 7. The time histories of ei in (20c) go to zero as
in Fig. 7(a). The oscillations are because of the noisy visual
measurements and the numerical derivation, without filtering,
performed to obtain the velocity measurements of θ̇h, from the
encoder, and ṡh, from the visual system. As mentioned above,
since z goes to zero, also x goes to zero as represented in
Fig. 7(b). The time history of the angle θh + sh

ρh
of the object’s

center of mass with respect to the vertical axis of Σw is depicted
in Fig. 7(c): the balancing task is then successfully achieved.

It is worth highlighting that an input-state linearization
technique for the sole DoD system is presented in [14].
Nevertheless, another change of coordinate is performed in
that letter before applying the final diffeomorphism, while an
exact feedback linearization control is used instead of the EFL
approach here employed.

VI. CONCLUSION AND FUTURE WORK

A general framework to control nonprehensile planar rolling
dynamic manipulation systems has been derived in this let-
ter. In particular, a dynamic model for these tasks has been
introduced. Under certain assumptions on both the hand and
the object shapes, these systems are input-state linearizable
with output y = b12

b22
θh + sh. A connection with the differen-

tial flatness theory has been also highlighted. Simulation and
experiments for two case studies have been presented. The
proposed method works also in cases where the considered
assumptions are not fully verified. Future work is devoted to
removing Assumptions 2 and 3.

APPENDIX

The single-input system (1) is differentially flat [19], [20] if,
and only if, there exists a flat output y = h(x) ∈ Cn such that
it is possible to express the state and the input as function of the
flat output and its derivatives

x = δ(y, ẏ, . . . , y(n−1)), (22a)

u = ψ(y, ẏ, . . . , y(n)), (22b)

where δ : R× . . .× R → R
n and ψ : R× . . .× R → R are

smooth functions at least in an open set of R
n and R

n+1,
respectively. Differentially flat systems are useful when explicit
trajectory generation is required since it is possible to determine
the full behaviour of the system from the flat output and its
derivatives. It is then possible to map them in the proper input
by considering the nominal control u� = ψ(y�, ẏ�, . . . , y�(n))
in feedforward, where y� is the desired behaviour of the
flat output. The exact feedback linearizability (i.e., condi-
tions of Theorem 1 are verified and it is possible to find the

diffeomorphism φ(x) as in (4)) is a necessary and sufficient
condition for flatness of a system [19]. Therefore, each system
(1) that is input-state linearizable and that can be transformed
in the normal form (2) through the diffeomorphism (4) is also
a differentially flat system with flat output y = h(x) = z1, and
in which relations (22) hold.
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