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Nonprehensile manipulation of an underactuated
mechanical system with second order nonholonomic

constraints: the robotic hula-hoop
Alejandro Gutiérrez–Giles, Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano

Abstract—A mechanical system consisting of a hoop and a
pole is considered, for which the corresponding dynamic model
represents an underactuated system subject to second-order
nonholonomic constraints. The pursued goal is to simultaneously
track a trajectory in the unactuated coordinates and to stabilize
the actuated ones. For the model under consideration, the well-
known noncollocated partial feedback linearization algorithm
fails since the corresponding zero dynamics is unstable. In this
work, we show that the actuated coordinates, i.e., the pole can
be stabilized by exploiting the null space of the coupling inertia
matrix without affecting the performance in the underactuated
coordinates tracking. We present a formal mathematical anal-
ysis, which guarantees ultimate boundedness of all coordinates.
Performed simulations bolster the proposed approach.

Index Terms—Nonholonomic Mechanisms and Systems, Mo-
tion Control, Dynamics, Underactuated Robots

I. INTRODUCTION

MANY applications that involve manipulating an object
with a robotic system carry out this task in a prehensile

way, e.g., pick and place. Alternatively, this manipulation can
be made in a nonprehensile fashion [1]. Nonprehensile manip-
ulation has the advantage of extending the robot workspace
and the number of tasks that can be performed with the same
robot kinematics. Nevertheless, these advantages come along
with a considerable increase in the complexity of the design of
suitable control strategies. To deal with complex nonprehensile
tasks, they are usually decomposed into simpler basic sub-tasks
called nonprehensile manipulation primitives. Such primitives
include rolling [2], batting [3], pushing [4], throwing [5],
sliding [6], and so on. Several of these primitives often involve
unilateral control inputs, e.g., the actuator can only push the
object but cannot pull it, which complicates even more the
controller design. Additionally, in nonprehensile manipulation
problems, not only the dynamic but the geometric properties
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of both the object and the robot end-effector are important at
the trajectory planning and controller designing stages [7].

In this paper, we consider an example of the rolling prim-
itive, i.e., a hoop and a pole system, where only the pole is
actuated. Our goal is to induce a constant spinning of the hoop
around the pole on a desired position over the pole surface
while maintaining a stable pole motion. In the context of the
rolling primitive, most works consider only planar movement,
with holonomic kinematic constraints [8], [9], [10]. In con-
trast, the problem treated here is a mechanical underactuated
system subject to nonholonomic constraints evolving in the 3D
Cartesian space. Furthermore, contrarily to [11] and [12], we
have solved the pole drifting problem.

To design a control strategy we assume that a kinematic and
a dynamic model obtained by means of the Montana’s equa-
tions and the Lagrange–d’Alembert formulation (as in [12]),
are available. However, in this work we do not assume a priori
which coordinates of the pole are actuated, but we carry out
an analysis to compare among several possible choices. We
also assume that the pole motion can be provided by a robotic
system, as the one depicted in Fig. 11, which has the additional
advantage of a possible change of the pole apparent dynamics.
By exploiting the particular properties of the model, we divide
the control input in two parts, one which affects the hoop
motion and another that does not affect it. Then, we first design
a nonlinear controller to satisfy the control objective for the
hoop coordinates and later we employ a LQR controller to
locally stabilize the pole motion.

II. MODEL AND PROPERTIES

Consider the hoop and pole system shown in Fig. 1. Let
the orthonormal frames owxwywzw be the inertial frame,
opxpypzp a frame attached to the pole, ohxhyhzh a frame
attached to the hoop, and ocxcyczc the contact frame defined as
follows: oc is the contact point, xc is a vector passing through
the contact point and pointing outwards the pole surface, yc a
vector in the intersection of the pole surface tangent plane at
the contact point and the hoop equatorial plane, and zc defined
to form an orthonormal frame.

The contact kinematics can be obtained by employing local
coordinates, i.e., the pole surface coordinates zo ∈ R and θ ∈
R, the hoop surface coordinates γ ∈ R and ψ ∈ R, and the
relative rotation coordinate φ ∈ R described as follows [12]:

1The actual humanoid-like robot is available at the PRISMA Lab and is a
part of the RoDyMan project (www.rodyman.eu).
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Fig. 1. Pole and hoop system.

• zo is the distance to the contact point measured over the
zp axis.

• θ is the angle from one arbitrary point on the pole surface
to the contact point measured over the zp axis.

• γ is the angle from one arbitrary point on the hoop surface
to the contact point over the zh axis.

• ψ is the angle from an arbitrary point on the equator of
the hoop to the contact point measured over the yc axis.

• φ is the angle between two tangent vectors, one of each
surface, measured over the xc axis (see [13, Section 6.2]
for details).

Furthermore, we group the contact coordinates in qc ,[
γ ψ zo θ φ

]T
. We denote by qp ∈ Rm the pole config-

uration vector, where m ≤ 6 is the number of pole degrees of
freedom. The complete generalized coordinates for the system
under consideration are given by the vector q ,

[
qc ; qp

]
,

where
[
x ; y

]
is a shorthand notation for

[
xT yT

]T
. We also

define the vector of hoop coordinates qh ,
[
γ ψ

]T
, which

is a subset of qc, and the vector qr ,
[
qh ; qp

]
. From these

definitions and by following the same modeling procedure as
in [12], we obtain the dynamic model

Mh(q)q̈h + ch(q, q̇r) + T h(q)q̈p = 0 (1)

Mp(q)q̈p + cp(q, q̇r) + T
T
h (q)q̈h = u , (2)

subject to the nonholonomic constraints

θ̇ = (lhcφ/rp) γ̇ (3)
żo = −lhsφγ̇ (4)

φ̇ = −sψγ̇ , (5)

where lh > 0 is the hoop radius, rp > 0 is the pole radius,
and sx and cx are shorthand notations for sin(x) and cos(x),
respectively. In the above equations Mh(q) ∈ R2×2 and
Mp(q) ∈ Rm×m are symmetric positive definite matrices,
ch(q, q̇r) ∈ R2 and cp(q, q̇r) ∈ Rm are vectors accounting for
centripetal, Coriolis and gravitational forces, u ∈ Rm is the
vector of input forces acting on the pole, and T h(q) ∈ R2×m

is the inertia coupling matrix. If rank(T h(q)) = 2,∀q, the un-
deractuated system is said to be strong inertially coupled [14].
If the system is strong inertially coupled, the Penrose’s right
pseudoinverse matrix

T+
h , T

T
h

(
T hT

T
h

)−1

(6)

is well defined and therefore we can construct the following
orthogonal projection matrices

P h , T
+
h T h (7)

Qh , I3 − P h . (8)

Notice that P h projects every Rm-vector onto the rank space
of T h. Conversely, Qh makes the projection into the null space
of T h. It is straightforward to verify that the following relations
hold: P hT

T
h = TT

h , T hP h = T h, QhT
T
h = O, and T hQh =

O.

Nonlinear controllability

The controllability of the dynamic system (1)–(2) depends
on the actuation of the pole. We have analyzed several con-
figurations of interest (2 rotations, 3 translations, 2 rotations
+ 2 translations, and 3 rotations + 3 translations) with the
aid of a symbolic computing software (Wolfram Mathemat-
ica [15]). For all the configurations mentioned above, the
corresponding dynamic model is strong inertially coupled.
Thus, the motivation for comparison is to find the configuration
with fewer degrees of freedom having the best controllability
properties. The conclusions given below are valid for all the
cases mentioned.

First, for the model (1)–(2) the gravity torque in the under-
actuated part is not constant and the inertia matrix depends
on the unactuated variables, so it never fulfills the structural
necessary and sufficient conditions given in [16], and the
nonholonomic constraints are thus of the second-order kind.
As a consequence, the dynamic system is strongly accessi-
ble [17], i.e., in principle, every possible configuration can be
reached. However, the strong accessibility property “is far from
being sufficient for the existence of a feedback control which
asymptotically stabilizes the underactuated system” [17]. For
the system (1)–(2), it turns out from [18] that the Brockett’s
necessary condition for the existence of a continuous asymp-
totically stabilizing feedback control law is equivalent to check
if the image of

M−1
h (q)ch(q, q̇r) (9)

contains a neighborhood of the origin in Rn−m. Although the
preceding condition is satisfied by all the case studies, it does
not imply that there exists such a control law.

A stronger notion of controllability is the so called small
time local controllability (STLC), which in fact guarantees
the existence of a piecewise asymptotic stabilizing feedback
control law [19]. For underactuated mechanical systems, the
STLC property also guarantees the existence of an asymptotic
stabilizing continuous time-periodic controller [20]. A suffi-
cient condition to check the STLC property for mechanical
systems is given in [17]. Regrettably, this condition is not
met by any of the case studies, and therefore no conclusion
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can be made about the STLC property of the system (1)–(2).
A necessary and sufficient condition for the STLC is given
in [21]. Unfortunately, this condition is much more difficult to
check even with the help of symbolic computing software.

Finally, the control design and the subsequent analysis can
be simplified by transforming the system into a normal form
as proposed in [22]. Once again, this sufficient condition is not
met by any of the cases under consideration.

Challenges from the control perspective

The control objective is to spin the hoop at a desired constant
angular velocity γ̇d > 0 while simultaneously driving it to a
desired position zod over the pole surface, and maintaining it
perpendicular to the pole. The design of a feedback model-
based control for the representation (1)–(5) is a challenging
problem from the nonlinear control point of view. Some of
the main difficulties are listed below.

• The kinematic constraints (3)–(5) are completely non-
holonomic [13, p. 320]. Moreover, the relative grow
vector of the associated control system is (2,1,2), and thus
it cannot be transformed into a chained form [23, p. 319].

• The dynamic model (1)–(2) is underactuated, and in the
simplest case the shape coordinates are not actuated,
hence the result of [24] cannot be directly applied. In
the remaining cases, the inertia matrices depend on both
actuated and unactuated coordinates.

• Because the system trajectories must satisfy the nonholo-
nomic constraints (3)–(5), it is not clear whether it is
possible to induce a periodic motion within the unactuated
coordinates fulfilling the control objective stated above,
which is a crucial step to apply the methodology of [25],
[26].

• Due to the nonholonomic nature of the system, the
control objective cannot be translated into a regulation
problem, but tracking on the unactuated coordinates must
be ensured, for which the result of [27] does not apply.

III. MAIN RESULT

Let the input u be defined as

u =Mp (P huP +QhuQ) , (10)

where uP and uQ are two independent inputs belonging to
orthogonal subspaces. Since Mp is always invertible, one can
solve (2) for q̈p with the input defined as in (10) to obtain2

M rq̈h + cr = −T huP , (11)

where

M r =Mh − T hM
−1
p TT

h (12)

cr = ch − T hM
−1
p cp . (13)

Now, we define the noncollocated partial feedback lineariza-
tion (NPFL) [14] input

uP = −T+
h (cr +M rvP) , (14)

2Notice that by effect of the projection, the input uQ does not affect the
q̈h dynamics.

and since M r is always full rank [28] we obtain

q̈h = vP , (15)

with zero dynamics given in (35).
The control objective consists in designing the input vP to

drive γ̇ → γ̇d and (zo, ψ, φ)→ (zod, 0, 0), while satisfying the
nonholonomic constraints (3)–(5).

To design the control strategy, first define

ξ =

ξ1ξ2
ξ3

 =

zo − zod−lhsφ
lhcφsψ

 , (16)

whose time derivative is given by

ξ̇ =

ξ̇1ξ̇2
ξ̇3

 =

 ξ2γ̇
ξ3γ̇

lhsφs
2
ψγ̇ + lhcφcψψ̇

 . (17)

Now, consider the following auxiliary definitions

η =

[
η1
η2

]
=

[
γ̇ − γ̇d
ψ̇ − fψ

]
, (18)

where

fψ , fψ(ψ, φ, γ̇, ξ) = −
(
lhsφs

2
ψ + kTξ ξ

)
γ̇/ (lhcφcψ) ,

(19)
defined for −π/2 < φ,ψ < π/2, with kξ =[
kξ1 kξ2 kξ3

]T
a vector of positive constant gains. By

substituting (18) into (17) yields

ξ̇ =

 ξ2γ̇d + ξ2η1
ξ3γ̇d + ξ3η1

−kTξ ξγ̇d − k
T
ξ ξη1 + lhcφcψη2

 . (20)

To analyze the resulting dynamics, first define the state

ζ ,
[
ξ ; η

]
. (21)

Proposition 3.1: Define the region Br , {ζ : ‖ζ‖ ≤ lh}
and let the control law be given by

vP =

[
vP1

vP2

]
=

[
−kη1η1

d
dtfψ − kη2η2

]
, (22)

where kη1, kη2 are positive constant gains. There exists a
bounded region Bδ ⊂ Br, and a combination of gains
kξ, kη1, kη2 in (19) and (22), such that if the initial condition
satisfies ζ(t0) ∈ Bδ , then ζ(t) ∈ Br ,∀t ≥ t0. Furthermore,
the system trajectories are ultimately bounded within an arbi-
trarily small region Bµ ⊂ Br, centered at the origin. �

Proof 1: First, notice that if η = 0 in (20) one gets

ξ̇ =

 0 1 0
0 0 1
−kξ1 −kξ2 −kξ3

 ξ , Aξξ , (23)

which is a linear time-invariant system with Aξ Hurwitz. By
a well-established result of linear control [29, Theorem 4.6]
there exist two symmetric positive definite matrices P ξ ∈ R3

and Qξ ∈ R3 satisfying the Lyapunov equation

AT
ξ P ξ + P ξAξ = −Qξ . (24)
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These matrices fulfill the bounds λPm‖x‖2 ≤ xTP ξx ≤
λPM‖x‖2 and λQm‖x‖2 ≤ xTQξx ≤ λQM‖x‖2 for every
x ∈ R3, with 0 < λPm ≤ λPM, and 0 < λQm ≤ λQM, where
we denote by λHm and λHM the minimum and the maximum
eigenvalue, respectively, of a generic matrix H . Now, consider
the positive definite function

V = ξTP ξξ +
1

2
ηTη , (25)

which satisfies the bounds

λVm‖ζ‖2 ≤ V (ζ) ≤ λVM‖ζ‖2 , (26)

where λVm = min{1, λPm} and λVM = max{1, λPM}.
Define a region Bδ ,

{
ζ : ‖ζ‖ <

√
λVm

λVM
lh

}
and assume that

the initial condition fulfills ζ(t0) ∈ Bδ . Notice that, since
(λVm/λVM) ≤ 1, Bδ is a subset of Br.

Taking the time derivative of V along the system trajectories
yields

V̇ = −(γ̇d + η1)ξ
TQξξ + 2ξTP ξbη2 + η1η̇1 + η2η̇2 , (27)

where b =
[
0 0 lhcφcψ

]T
. By taking into account (15)

and (18) and substituting the control law (22) yields

V̇ = −γ̇dξTQξξ − η1ξ
TQξξ − kη1η21 + 2η2ξ

TP ξb− kη2η22 .
(28)

In the set Br this function can be upper bounded by

V̇ ≤− γ̇dξTQξξ + λQMl
2
h|η1| − kη1|η1|2

+ 2λPMl
2
h|η2| − kη2|η2|2

≤− γ̇dλQm‖ξ‖2 − |η1|
(
kη1|η1| − λQMl

2
h

)
− |η2|

(
kη2|η2| − 2λPMl

2
h

)
=− γ̇dλQm‖ζ‖2 − |η1|

(
(kη1 − γ̇dλQm) |η1| − λQMl

2
h

)
− |η2|

(
(kη2 − γ̇dλQm) |η2| − 2λPMl

2
h

)
, (29)

since ‖ζ‖2 = ‖ξ‖2 + |η1|2 + |η2|2. Notice that the term
−|η1|

(
(kη1 − γ̇dλQm) |η1| − λQMl

2
h

)
is zero for |η1| = 0 and

negative for |η1| > λQMl
2
h/ (kη1 − γ̇dλQm), so by continuity

there must exist a maximum for |η1|. This maximum can be
easily verified to be at |η1|max = λQMl

2
h/ (2 (kη1 − γ̇dλQm)).

Similar arguments can be used for the last term of (29).
Overall, one has

V̇ ≤ −γ̇dλQM‖ζ‖2 + cη1 + cη2 , (30)

where cη1 , λ2QMl
4
h/ (2 (kη1 − γ̇dλQm)) and cη2 ,

2λ2PMl
4
h/ ((kη2 − γ̇dλQm)), with kη1, kη2 > γ̇dλQm. There-

fore V̇ ≤ 0 for

‖ζ‖ ≥
√
(cη1 + cη2)/ (γ̇dλQm) , µ , (31)

and thus the system trajectories are ultimately bounded by a
region Bµ , {ζ : ‖ζ‖ ≤ µ}. Since kη1 and kη2 can be chosen
freely, the ultimate bound radius µ can be driven arbitrarily
small. Furthermore, µ can be easily forced to satisfy

µ <

√
λVm

λVM
lh , (32)

in order to guarantee Bµ ⊂ Br.

There is a circularity in the proof3 because when obtain-
ing (29) it is implicitly assumed that ζ ∈ Br,∀t ≥ t0. To
show that this is indeed the case, first notice that ‖ζ(t0)‖ ∈
Bδ =⇒ ‖ζ(t0)‖ <

√
λVm

λVM
lh ≤ lh. Suppose that ζ leaves

Br, so by continuity there must exist a time T > t0 such that
‖ζ(T )‖ = lh. Notice that in order to leave Br, the trajectories
cannot enter in Bµ, since this set is positively invariant because
V̇ ≤ 0 in its frontier. Therefore, the trajectories must remain
in Br\Bµ before leaving Br. On one hand, since V̇ ≤ 0 for
t ∈ [t0, T ), and after (26), we have

V (ζ(T )) ≤ V (ζ(t0)) < λVml
2
h . (33)

On the other hand, from the assumption ζ(T ) = lh and (26),
one has

V (ζ(T )) = V (lh) ≥ λVml
2
h . (34)

By noticing that (33) and (34) are in contradiction, we can
conclude that the original assumption is incorrect, and thus ζ
must remain in Br.
Notice that in the interior of Br, after (16) and (18), ζ ≈ 0
implies (zo, φ, ψ) ≈ (zod, 0, 0) and γ̇ ≈ γ̇d, satisfying the
control objective.

Remark 1: For simplicity’s sake, we have chosen the
upper-bound for the state ζ, which defines the region Br in
Proposition 3.1, to be lh. This choice makes the stability proof
clearer yet it is very conservative. Nevertheless, notice that this
bound is arbitrary and can be modified to enlarge the domain
of attraction of the controller. �

To design a control strategy to stabilize the pole dynamics,
we assume that the hoop has reached stationary state, so that
q̈h ≡ 0. From (1)–(2) and (10) one gets

q̈p = fp + fuP +QhuQ , (35)

where fp =M−1
p cp and fuP = P huP.

As discussed in Section II, investigating the controllability
of the nonlinear system (35) is a very difficult task. For this
reason, only a local result will be pursued, based on the
linearization of (35) around its nominal trajectories

q∗ ,
[
γ̇dt 0 zod (lh/rp)γ̇dt 0 q∗Tp

]T
(36)

q̇∗ ,
[
γ̇d 0 0 (lh/rp)γ̇d 0 q̇∗Tp

]T
, (37)

where q∗p is the pole coordinates nominal trajectories vector,
and depends on the pole degrees of freedom. Only two of the
study cases are analyzed here: (i) three Cartesian directions
of movement along the xw, yw, and zw inertial frame axes4

and (ii) two Cartesian degree-of-freedom along xw and yw,
and two rotations around the same axes. The configuration
coordinates for the three Cartesian degree-of-freedom case are
the pole center of mass coordinates (opx, opy, opz). For the
latter case, the rotation matrix of the pole with respect to the
inertial frame is given by the composition of two basic rotation
matrices, namely

Rh = Rx(α1)Ry(α2) , (38)

3See [30], remarks on Theorem 5.3.1.
4This is the configuration studied in [12].
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and thus the configuration coordinates for the pole are
(opx, opy, α1, α2). Therefore, the nominal trajectories for the
pole in both cases are q∗p = q̇∗p = 0m.

By defining the state space coordinates x ,
[
qp ; q̇p

]
, we

obtain the following linearized model

ẋ = A(t)x+B(t)uQ , (39)

where

A(t) =

[
O I

a21(t) a22(t)

]
(40)

B(t) =Qh|q∗,q̇∗ (41)

a21(t) =
∂fp

∂qp
|q∗,q̇∗ (42)

a22(t) =
∂fp

∂q̇p
|q∗,q̇∗ . (43)

Notice that for carrying out the linearization, the term fuP

in (35) is considered as an external bounded input. It can be
shown that the periodic linear time-varying system (39) is not
controllable [31, Theorem 6.11] for the three pole Cartesian
inputs case, but it is controllable [31, Theorem 6.12] for
the two translations-two rotations pole inputs case. For this
last case, it is possible to find a stabilizing controller of the
form [32]

uQ = −Γ−1BT(t)R(t)x , (44)

where R(t) ∈ R8×8 is a symmetric positive definite matrix
which satisfies the Riccati equation

Ṙ(t) +AT(t)R(t) +R(t)A(t)

+G = R(t)B(t)Γ−1BT(t)R(t) , (45)

with G ∈ R8×8 and Γ ∈ R4×4 positive definite matrices
of constant gains. An approximation for the solution of the
Riccati equation (45) can be found by employing the quasi–
linearization of the periodic Riccati equation method [33, p.
137].

Conditions for maintaining contact

For the modeling and control design presented in the above
sections we have assumed rolling without slipping between
the objects surfaces. Intuitively speaking, one can argue that
there must be a minimal spinning speed for the hoop in
order to not losing contact with the pole. To get an idea of
the magnitude of this minimum speed, assume that stationary
state has reached, i.e., the hoop is spinning in the orthogonal
plane to the pole main axis. The computation of the Lagrange
multipliers from the Lagrange-d’Alembert formulation, which
was used to obtain the model (1)–(2), can be employed to
compute the internal forces [13, p. 279]. A straightforward
calculation of the radial component gives the contact condition

mhlhθ̇
2 −mhg0 > 0 , (46)

which is just the difference between the centripetal and gravity
forces acting on the hoop, with g0 the gravity acceleration
constant. Since this minimum velocity is intended for the
best scenario (the hoop perpendicular to the pole), the desired

velocity and the initial conditions should fulfill θ̇ >>
√
g0/lh.

For the case when the pole is in vertical position the contact
keeping depends on the static friction between the surfaces,
hence the desired and initial condition for the spinning speed
must satisfy θ̇ >>

√
g0/ (fclh), where fc is the static friction

coefficient. On the other hand, the upper limit for the spinning
speed depends on the bandwidth of the system, which is mainly
limited by the signals acquisition and processing time, and the
actuators maximum speed and acceleration.

Remark 2: As an assumption for maintaining contact as
well as to fulfill the requirements of Proposition 3.1, the
desired hoop spinning velocity γ̇d must be sufficiently close
to the initial velocity γ̇, which in turn must be strictly greater
than zero. For simplicity’s sake we consider the initial swing
controller, to obtain this initial spinning, out of the scope of
this paper, although it can be induced by some planar-motion
open-loop controller, e.g. the one proposed in [34]. �

Discussion on the generalization of the results

Although the problem addressed in this work is a particular
case study, the dynamic model (1)–(2) represents a more
general class of underactuated mechanical systems. For this,
consider qh ∈ Rk with m > k, i.e. the input vector dimension
is greater than the underactuated coordinates dimension. As
mentioned in Section II, the system is strongly inertially
coupled if the matrix T h(q) has rank k, and thus the well-
known NPFL method can be employed. The key property
exploited in this work arises in the case when the dimension
of the column space of T h(q) is strictly greater than k. In
this case one can construct the projection matrices (7)–(8) to
decouple the system directions of motion into two orthogonal
subspaces before applying the NPFL technique. While the
evolution of the underactuated coordinates is exactly the same
as with the direct application of NPFL, there are still control
directions on the zero dynamics. As shown in the case study,
this zero dynamics can be unstable but stabilizable when using
the proposed projectors.

To design a controller for the underactuated coordinates sub-
jected to nonholonomic constraints, the backstepping technique
is employed, which is a natural tool to deal with these kind
of systems, as has been shown in [35], [36]. The remaining
coordinates controllability can be studied by means of the
several tools currently available in the literature. Due to the
complexity of the present case study, here we have employed
a linearization around the periodic nominal trajectories to show
controllability, and a quasi-linearization of the periodic Riccati
equation to design a controller for practical stabilization of the
actuated coordinates. However, in principle any valid tool can
be employed to deal with this subsystem.

Potential applications of the current approach include un-
deractuated mechanical systems subjected to nonholonomic
constraints, with unstable zero dynamics when employing
NPFL, and with coupling inertia matrix column rank greater
than the underactuated coordinates dimension. Examples of
such systems could be the non-planar generalizations of the
drone-driven ball and beam [37] and the devil stick [38].



2377-3766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2792403, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

IV. SIMULATION

In this section we present the results of a numerical sim-
ulation carried out to test the validity of the approach. The
parameters employed for the simulation are listed in Table I.
The corresponding matrices and vectors in (1)–(2) were ob-
tained by means of a symbolic computing software (Wolfram
Mathematica) and are not included here due to space con-
straint. For the pole not to be affected by the hoop motion we
assume that the pole apparent inertia can be assigned by the
manipulator e.g., as proposed in [39], so the pole actual mass
must not have to be large, but only its apparent inertia. It is
considered that the pole sample time is T = 0.005 s, while the
hoop coordinates are measured by means of a vision system
with sample time Tv = 0.02 s. An animation video is included
as an attachment to have a better visualization of the simulation
results.

TABLE I
SIMULATION PARAMETERS

Meaning Parameter Value
Hoop mass mh 0.05 kg
Pole mass mp 10 kg

Hoop radius lh 0.3m
Hoop thickness radius rh 0.005m

Pole radius rp 0.025m
Pole length lp 0.7m

Gravity constant g0 9.81m/s2

Fig. 2. Contact coordinates evolution: real (—), desired (- - -).

The desired coordinates are γ̇d = 4πrp/lh ≈ 1.0472 rad/s
and zod = 0.3m. The gains for the LQR controller in (44)–
(45) are chosen as Γ = diag{0.5, 0.5, 1, 1} and G =
diag{200, 200, 40000, 40000, 10, 10, 4, 4}. The boundary con-
dition for approximating R(t) is chosen as R(Ts) = O8×8,
where Ts is the period of the linearized system (39), which
is given by Ts = (lh/rp)γ̇d. The hoop controller gains are
chosen as kη1 = 20, kη2 = 10, kξ1 = 40, kξ2 = 40, and
kξ3 = 4. The initial conditions for the generalized positions
are set to γ(t0) = 0 rad, ψ(t0) = 0.05 rad, zo(t0) = 0.05m,
θ(t0) = π rad, and φ(t0) = −0.05 rad, while the initial
conditions for the velocities are set to γ̇(t0) = 0.8 rad/s,
ψ̇(t0) = 0 rad/s, żo(t0) = −lh sin(φ(t0))γ̇(t0)m/sec,

Fig. 3. Asymptotic stabilization of the ψ and φ coordinates.

Fig. 4. Evolution of θ̇ (—) and the minimum value required to maintain
contact (- - -).

Fig. 5. Pole Cartesian coordinates with respect to the initial position.

θ̇(t0) = lh cos(φ(t0))γ̇(t0)/rp rad/s, and φ̇(t0) =
− sin(ψ(t0))γ̇(t0) rad/s.

The time evolution of the contact coordinates is shown in
Fig. 2, where it can be seen that the control objective is
satisfied. In Fig. 3 the graph of the ψ and φ coordinates
is displayed, showing their ultimately boundedness within a
small region around the origin. The time evolution of the θ̇
coordinate is displayed in Fig. 4, along with the minimum
speed required to maintain contact. It can be seen that this
condition is satisfied during all the simulation time with a
considerably large margin. The Cartesian coordinates of the
pole center of mass are shown in Fig. 5, while the time
evolution of the two angles describing the pole orientation is
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Fig. 6. Stabilization of the pole rotation angles.

Fig. 7. Force and torque inputs on the pole.

shown in Fig. 6. In these figures, it can be seen that all the pole
coordinates are stabilized by the proposed controller. Finally,
the control inputs, i.e. the forces and torques acting on the
pole, for the first 10 seconds of the simulation are shown in
Figure 7.

V. CONCLUSIONS AND FUTURE WORK

In this work we have addressed the problem of a robotic
hula-hoop system, which is an underactuated mechanical sys-

tem subject to second order nonholonomic constraints. For
this system we designed a locally stable controller scheme
by exploiting the null space of the inertia coupling matrices,
making it possible to simultaneously satisfy the control objec-
tive of spinning the hoop at a desired angular velocity on a
desired position over the pole surface and to stabilize the pole
coordinates. We developed a formal proof which guarantees
locally ultimate boundedness of the hoop coordinates with
arbitrary small ultimate bound on the tracking error and
boundedness of the pole coordinates. To validate the proposed
approach, we presented a numerical simulation which showed
the good performance of our solution.

For further research, the structural properties of the system
model can be exploited to enlarge the domain of validity
of the proposed controller, since at its present form it only
guarantees local stability within a rather conservative domain.
The same structural properties can be also employed to avoid
the dynamic cancellation in the control law so as to render
the strategy less dependent on the model accuracy. Another
interesting solution to deal with the parametric uncertainties
is the Model Predictive Control approach, which has been
successfully employed in recent years for the control of non-
linear systems. Finally, it remains to perform an experimental
validation. Some of the main challenges for the experimental
setup are the necessity of a very fast reconstruction of the hoop
position and orientation (in the simulation is was considered
to be implemented at a 20Hz rate) with good resolution, and
the high velocities and acceleration required for the actuator
(e.g., for the humanoid-like robot used in the simulations).

ACKNOWLEDGMENT

The authors want to thank the anonymous reviewers, whose
invaluable comments and suggestions helped to greatly im-
prove this work. The first author wants to thank Andrea
Fontanelli for providing the code to make the accompanying
animation video.

REFERENCES

[1] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” The International Journal of
Robotics Research, vol. 18, no. 1, pp. 64–92, 1999.

[2] P. Choudhury and K. M. Lynch, “Rolling manipulation with a single
control,” The International Journal of Robotics Research, vol. 21, no.
5-6, pp. 475–487, 2002.

[3] D. Serra, A. C. Satici, F. Ruggiero, V. Lippiello, and B. Siciliano,
“An optimal trajectory planner for a robotic batting task: The table
tennis example.” in Proceedings of the 13th International Conference
on Informatics in Control, Automation and Robotics (ICINCO), 2016,
pp. 90–101.

[4] S. Akella and M. T. Mason, “Posing polygonal objects in the plane by
pushing,” The International Journal of Robotics Research, vol. 17, no. 1,
pp. 70–88, 1998.

[5] J.-S. Hu, M.-C. Chien, Y.-J. Chang, S.-H. Su, and C.-Y. Kai, “A ball-
throwing robot with visual feedback,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2010, pp. 2511–2512.

[6] M. Erdmann, “An exploration of nonprehensile two-palm manipulation,”
The International Journal of Robotics Research, vol. 17, no. 5, pp. 485–
503, 1998.

[7] V. Lippiello, F. Ruggiero, and B. Siciliano, “The effect of shapes in
input-state linearization for stabilization of nonprehensile planar rolling
dynamic manipulation,” IEEE Robotics and Automation Letters, vol. 1,
no. 1, pp. 492–499, 2016.



2377-3766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2792403, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

[8] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “The roles of shape and
motion in dynamic manipulation: The butterfly example,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), vol. 3, Leuven, Belgium, 1998, pp. 1958–1963.

[9] J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonprehensile
rolling manipulation: Balancing a disk on a disk,” IEEE Transactions on
Robotics, vol. 29, no. 5, pp. 1152–1161, 2013.

[10] A. Donaire, F. Ruggiero, L. R. Buonocore, V. Lippiello, and B. Siciliano,
“Passivity-based control for a rolling-balancing system: The nonprehen-
sile disk-on-disk,” IEEE Transactions on Control Systems Technology,
2016.

[11] J. Nishizaki, S. Nakaura, and M. Sampei, “Modeling and control of hula-
hoop system,” in Proceedings of the 48th IEEE Conference on Decision
and Control (CDC/CCC 2009), Shanghai, China, 2009, pp. 4125–4130.

[12] A. Gutiérrez-Giles, F. Ruggiero, V. Lippiello, and B. Siciliano, “Mod-
elling and control of a robotic hula-hoop system without velocity
measurements,” in 20th World Congress of the International Federation
of Automatic Control (Accepted), Toulouse, France, 2017.

[13] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical
introduction to robotic manipulation. CRC press, 1994.

[14] M. W. Spong, “Partial feedback linearization of underactuated mechan-
ical systems,” in Proceedings of IEEE/RSJ/GI International Conference
on Intelligent Robots and Systems (IROS), Munich, Germany, 1994, pp.
314–321.

[15] Wolfram Research, Inc., “Mathematica 11.” [Online]. Available:
https://www.wolfram.com

[16] G. Oriolo and Y. Nakamura, “Control of mechanical systems with
second-order nonholonomic constraints: Underactuated manipulators,”
in Proceedings of the 30th IEEE Conference on Decision and Con-
trol (CDC), 1991, pp. 2398–2403.

[17] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch, and I. Kol-
manovsky, “Dynamics and control of a class of underactuated mechanical
systems,” IEEE Transactions on Automatic Control, vol. 44, no. 9, pp.
1663–1671, 1999.

[18] R. W. Brockett et al., Asymptotic stability and feedback stabilization.
Birkhauser, Boston, MA, 1983, vol. 27, no. 1.

[19] H. J. Sussmann et al., “Subanalytic sets and feedback control,” Journal
of Differential Equations, vol. 31, no. 1, pp. 31–52, 1979.

[20] J.-M. Coron, “On the stabilization in finite time of locally controllable
systems by means of continuous time-varying feedback law,” SIAM
Journal on Control and Optimization, vol. 33, no. 3, pp. 804–833, 1995.

[21] H. J. Sussmann and V. Jurdjevic, “Controllability of nonlinear systems,”
Journal of Differential Equations, vol. 12, no. 1, pp. 95–116, 1972.

[22] R. Olfati-Saber, “Cascade normal forms for underactuated mechanical
systems,” in Proceedings of the 39th IEEE Conference on Decision and
Control (CDC), vol. 3, 2000, pp. 2162–2167.

[23] A. De Luca and G. Oriolo, “Modelling and control of nonholonomic
mechanical systems,” in Kinematics and dynamics of multi-body systems.
Springer Vienna, 1995, pp. 277–342.

[24] A. Donaire, J. G. Romero, R. Ortega, B. Siciliano, and M. Crespo,
“Robust IDA-PBC for underactuated mechanical systems subject to
matched disturbances,” International Journal of Robust and Nonlinear
Control, 2016.

[25] A. S. Shiriaev, L. B. Freidovich, and S. V. Gusev, “Transverse lineariza-
tion for controlled mechanical systems with several passive degrees of
freedom,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp.
893–906, 2010.

[26] A. S. Shiriaev, L. B. Freidovich, and M. W. Spong, “Controlled invariants
and trajectory planning for underactuated mechanical systems,” IEEE
Transactions on Automatic Control, vol. 59, no. 9, pp. 2555–2561, 2014.

[27] A. Donaire, R. Mehra, R. Ortega, S. Satpute, J. G. Romero, F. Kazi,
and N. M. Singh, “Shaping the energy of mechanical systems without
solving partial differential equations,” IEEE Transactions on Automatic
Control, vol. 61, no. 4, pp. 1051–1056, 2016.

[28] Y.-L. Gu and Y. Xu, “A normal form augmentation approach to adaptive
control of space robot systems,” Dynamics and Control, vol. 5, no. 3,
pp. 275–294, 1995.

[29] H. Khalil, Nonlinear systems, 3rd ed. Prentice-Hall, Englewood Cliffs,
NJ, 2002.

[30] M. Vidyasagar, Nonlinear systems analysis, 2nd ed. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2002.

[31] C.-T. Chen, Linear system theory and design, 3rd ed. Oxford University
Press, New York, NY, 1999.

[32] A. Shiriaev, J. W. Perram, and C. Canudas-de Wit, “Constructive tool
for orbital stabilization of underactuated nonlinear systems: Virtual
constraints approach,” IEEE Transactions on Automatic Control, vol. 50,
no. 8, pp. 1164–1176, 2005.

[33] S. Bittanti, A. J. Laub, and J. C. Willems, The Riccati equation, 1st ed.
Springer-Verlag, New York, NY, 1991.

[34] A. P. Seyranian and A. O. Belyakov, “How to twirl a hula hoop,”
American Journal of Physics, vol. 79, no. 7, pp. 712–715, 2011.

[35] T. Hamel and C. Samson, “Transverse function control of a motorboat,”
Automatica, vol. 65, pp. 132–139, 2016.

[36] Z.-P. JIANGdagger and H. Nijmeijer, “Tracking control of mobile robots:
a case study in backstepping,” Automatica, vol. 33, no. 7, pp. 1393–1399,
1997.

[37] A. A. Rubio, A. Seuret, Y. Ariba, and A. Mannisi, “Optimal control
strategies for load carrying drones,” in Delays and Networked Control
Systems. Springer, 2016, pp. 183–197.

[38] Y. Kawaida, S. Nakaura, R. Ohata, and M. Sampei, “Feedback control
of enduring rotary motion of devil stick,” in Proceedings of the 42nd
IEEE Conference on Decision and Control (CDC), vol. 4. IEEE, 2003,
pp. 3396–3401.

[39] F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control of
redundant manipulators for intuitive human–robot physical interaction,”

IEEE Transactions on Robotics, vol. 31, no. 4, pp. 850–863, 2015.


