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n this  article, a vision-based technique for obstacle 
avoidance and target identification is combined with haptic 
feedback to develop a new teleoperated navigation system 
for underactuated aerial vehicles in unknown 
environments. A three-dimensional (3-D) map of the 

surrounding environment is built by matching the keypoints 
among several images, which are acquired by an onboard 
camera and stored in a buffer together with the 
corresponding estimated odometry. Hence, based on the 3-D 
map, a visual identification algorithm is employed to localize 
both obstacles and the desired target to build a virtual field 
accordingly. A bilateral control system has been developed 
such that an operator can safely navigate in an unknown 
environment and perceive it by means of a vision-based 
haptic force-feedback device. Experimental tests in an indoor 
environment verify the effectiveness of the proposed 
teleoperated control. 

Vision-Based Obstacle-Avoidance Techniques
Interest in unmanned aerial vehicles (UAVs) has increased 
due to the wide range of their application fields, which 
include surveillance, rescue, and inspection. So far, UAVs 
have mainly been used outdoors with the support of a global 
positioning system (GPS) for navigation purposes. However, 
when UAVs are flying indoors in an unknown and unstruc-
tured environment, GPS information will not be available. 
Therefore, in such situations, different navigation and obsta-
cle-avoidance techniques have been investigated using 
onboard sensors such as lasers, sonars, cameras, radars, and 
inertial measurement units (IMUs) that give a perception of 
the environment. Obstacle avoidance is a core issue since any 
autonomous navigation system must preserve the safety of 
both the UAV and the surrounding environment. 

Several approaches can be found to address this problem. 
In [1] and [2],  radar-based navigation and  obstacle avoid-
ance are implemented, while a laser range finder for obstacle 
detection is employed in [3]. The main drawbacks are the 
high power consumption and weight of these sensors. 
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A camera is a lightweight sensor with low power con-
sumption. Different vision-based obstacle-avoidance tech-
niques are implemented in this article, most of which are 
based on the biologically inspired concept of optical flow. In 
[4], fruit flies avoid obstacles when turning away from a 
region with high optical flow, while in [5], honeybees flying 
through a tunnel try to balance the amount of lateral optical 
flow to keep the same distance from the walls. By exploiting 
this concept, a fisheye camera pointing downwards is 
employed in [6]–[8] to get image frames and to compute the 
lateral optical flow: by using this information, a depth map of 
a corridor is built to control the UAV along a trajectory cen-
tered in the middle of the observed obstacles. In [9], two opti-
cal flow controllers for a fully actuated UAV that flies in con-
fined  indoor and outdoor environments are used: the first 
controller regulates the UAV’s forward thrust, and the second 
one controls the UAV’s side-slip thrust. 

Two different approaches with and without optical flow are 
proposed in [10], and are based on the concept of the time-to-
contact needed before the vehicle collides with an obstacle 
while the UAV is moving with a specific translational velocity. 
A triangulation-based method for the computation of the dis-
tances of detected objects is shown in [11], where a stereo 
camera system is used. Although stereo images benefit in 
terms of accuracy of the estimation and odometry of the 
obstacles position, a high payload and computational power is 
required from the UAV. On the other hand, the main draw-
back in the use of a monocamera system is the need of a trans-
lational movement of the UAV to detect the surrounding 
obstacles. In [12], a single-camera front-obstacles collision-
avoidance approach for a microflyer is presented based on the 
divergence of the optical flow on the left and right side of the 
direction of travel. 

In this article, two main problems are addressed: 1) a 
monocamera vision-based obstacle avoidance for a safe navi-
gation of a bilateral teleoperated UAV by means of a haptic 
device that endows the human operator with a vision-based 
haptic feedback of the environment and 2) an image target 
identification system to generate a force field that leads the 
human operator to safely reach the target. This new approach 
makes use of a single onboard cali-
brated camera together with a 
monocamera odometry estimation 
system based on Parallel Tracking 
and Mapping (PTAM) [13]. The 
images, grabbed by the onboard 
camera, are stored in a buffer 
together with the corresponding 
UAV position estimation, i.e., the 
UAV odometry. Then, robust 
image keypoints are extracted and 
matched between image pairs by 
means of a Pyramidal Lukas-
Kanade algorithm [14], [15]. 
Moreover, a Random Sample 
Consensus (RANSAC)-based 

algorithm [16] is adopted for outlier rejection [17]. A new sta-
tistically robust triangulation-based approach is then proposed 
to estimate the corresponding 3-D points, which are used to 
build a 3-D occupancy grid map of the obstacles in the sur-
rounding environment. 

The map is updated by adding the data provided by a target 
identification algorithm, based on an elaboration flow similar 
to the obstacle localization method. Based on this map, a sys-
tem of repulsive forces from obstacles and attractive forces to 
the target is built. This force is then applied to generate a feed-
back force on the haptic device, provide the human operator 
with a perception of the environment, and generate an addi-
tional position reference for the UAV controller. With this new 
navigation support system, the human operator is able to steer 
the UAV to the identified target while avoiding obstacles along 
its trajectory. In the experimental validation, the UAV pose 
(position and orientation) is stabilized by means of an external 
motion capture system to achieve higher robustness. 

System Overview
In this section, the main functionalities of the developed tele-
operation system are described, as depicted in Figure 1. 

The Haptic Interface
The human operator interacts with a haptic device to give a 
reference command to the UAV. At the same time, the opera-
tor can feel a force feedback, which provides a haptic feeling 
of the identified environment, i.e., how close the UAV is to the 
localized obstacles and target. 

The Ground Station
In the proposed framework, the ground station has to: 1) 
send the desired reference to the onboard controller, 2) gener-
ate the force feedback to be displayed by the haptic device, 3) 
estimate the UAV’s odometry by using the images acquired by 
the onboard camera, and 4) process the images to build a 
local map of the environment. Based on the map and the esti-
mated state of the UAV, a virtual interaction force applied to 
the UAV is built when obstacles and/or the target are 
detected. This force arises when either an obstacle enters in a 
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Figure 1. A block diagram of the overall teleoperated control system. 
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safety volume around the vehicle or when the target is in the 
field of view of the vehicle. In particular, this force depends on 
the distance between the UAV and the obstacles/target. 

Pose Estimation
The proposed approach requires the pose estimation of the 
UAV flying in a cluttered unknown environment. Several 
approaches have been developed  to estimate the UAV pose  
using one onboard camera. In [18] and [19], the pose is esti-
mated by fusing data extracted from a camera flow and IMU 
measurements. A square root unscented Kalman filter is used 
in [20] to solve the simultaneous localization and mapping 
(SLAM) problem for a single camera. In [21], a real-time 
monocular SLAM is implemented that uses an extended 
Kalman filter and a straight-line detector. 

In the proposed scheme, the odometry of the UAV is eval-
uated on the basis of an onboard monocamera video stream-
ing, which is the input to a module based on PTAM [13], 
originally developed as a camera tracking system for aug-
mented reality. It requires no markers, premade maps, known 
templates, or inertial sensors. The low-level egomotion esti-
mation provided by PTAM and the available IMU measure-
ments have been suitably combined with an extended 
Kalman filter to develop an effective odometry estimation 
module. Figure 2 illustrates the odometry of a test path, where 
the initial and the final pose of the vehicle are coincident. The 
total length of the considered path is 11.3 m, while the norm 
of the residual positional error is 2.8 cm. 

In the indoor experiments, as described in the 
“Experiments” section, an external tracker has been used to 
enhance the stabilization of the pose of the UAV. 

3-D Environment Map
The visual measurements together with the vehicle odometry 
are employed for the online estimation of a 3-D occupancy 

map of the surrounding environment. Simultaneously, an 
image-target identification algorithm runs to localize the target, 
which could be present in the observed scene, in the map. In 
the following subsections, the employed camera model and 
obstacle localization algorithm, as well as the 3-D occupancy 
map construction procedure, are presented. 

Camera Model
In this article, the well-known pinhole camera model is 
employed [22]. The perspective relation between the 3-D coor-
dinate of a point [ ]p p p px y z

T=  expressed in the world ref-
erence frame and its 2-D projection on the image plane of the 
camera, expressed in pixel coordinate, is given by 
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b= -  where Tv

c  is the constant homoge-
neous transformation matrix between the camera frame and 
the UAV body frame, i.e., the camera extrinsic parameters, 
with the origin in the center of mass of the vehicle, and Tv

b  is 
the current homogeneous transformation matrix between the 
body frame and the base frame, provided by the odometry 
estimation algorithm. More details can be found in [22]. 

Obstacle Localization
In the proposed approach, the estimation of the positions of 
the obstacles present in the observed scene is evaluated  using 
information extracted by a single camera and the odometry. 
In detail, since only one camera is available, while at least two 
different views of an image feature are required, the image 
flow is continuously stored in a buffer. First, the grabbed 
images are synchronized temporally with the pose estimation 
of the vehicle, provided by the odometry estimation system. 
Then, only the most robust keypoints of the image are 
extracted and linked to the corresponding image-odometry 
pair. For this purpose, the well-known Shi-Tomasi corner 
detector [23] is employed, even if other keypoints extractors 
could also be used as well. Finally, this set of information, i.e., 
the key-frames, is stored in a finite-length buffer. 

Hence, an image elaboration algorithm selects a pair of key-
frames, grabbed from positions a sufficient distance from each 
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Figure 2. The vehicle trajectory estimated by the proposed PTAM-
based module of a spiral-like path of 11.3-m length (the initial pose 
is coincident with the final pose). (a) A 3-D representation of the 
estimated vehicle odometry. (b) The estimated positional trajectory 
(x-component in red, y-component in green, and z-component in 
blue) with respect to the camera frame, which results in a norm of 
the final residual positional error of 2.8 cm.
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other so as to potentially guarantee a good spatial triangula-
tion. Then, the second elaboration step consists of a matching 
process between the two sets of keypoints, performed using a 
Pyramidal Lucas-Kanade algorithm [14]. As often happens 
with image matching algorithms, some outlier might be pres-
ent. To reduce this, a RANSAC-based outlier rejection algo-
rithm on the epipolar constraint is performed [17]. Finally, the 
normalized image coordinates, corresponding to the matched 
keypoints, are computed. An example of this process on real 
images is shown in Figure 3. 

By using the extracted pairs of normalized image points 
(the projections of the 3-D point p, expressed in the camera 
frame, on the image planes of the cameras P X Y1 1 1

T=6 @  
and P X Y2 2 2

T=6 @ ), a spatial triangulation problem is 
solved, thus estimating the position of the corresponding 3-D 
points p  (see Figure 4). A robust least-squares solution can be 
found in [22], where the poses of the camera frames corre-
sponding to the grabbed images are required. 

The accuracy of the triangulation process increases if a large 
baseline between the two camera frames is employed, i.e., the 
normal distance between the two camera positions corre-
sponds to the employed images. On the other hand, the accu-
racy of the vehicle odometry between camera poses degrades 
with the distance traveled by the UAV. Moreover,  to succeed in 
the keypoints matching process, it is preferable to use images 
that have been grabbed from the closest possible pose. These 
demands are evidently in contrast and, therefore, a tradeoff 
should be implemented. On the basis of the performed experi-
mental tests, by selecting images grabbed at distances in a range 
from 15–20 cm, a well-conditioned triangulation process can 
be achieved with a good matching rate and with an odometry 
drift that does not affect the accuracy of the overall process. 

The criterion adopted for the image-pair selection from the 
buffer is as follows: the last image stored in the buffer is consid-
ered as the first key-frame of the pair; the second one is chosen 
in the key-frames buffer by considering the latest one grabbed 
at a distance greater than a suitable threshold from the first one. 
If no matches are found, a finite number of next images are 
considered until a right pair is found. If this process fails, the 
map is not updated during this step. Finally, the 3-D coordi-
nates of points corresponding to the matched keypoints are 
computed. These points are considered as obstacles candidates, 
because they are not yet statistically robust. In the following 

section, “3-D Occupancy Map,” the use of these candidates for 
the construction/update of the occupancy map is presented. 

3-D Occupancy Map
A 3-D discrete occupancy map that is obtained by discretiz-
ing the vehicle’s workspace with elementary cubes of equal 
size is considered. From a general point of view, the size of the 
cubes should be less than half the size of the vehicle along any 
direction to ensure the safety of the system. Obviously, 
smaller cubes increase the capability of the system to describe  
the environment, but  the required memory increases as well, 
often without a real benefit for the navigation safety. Hence, a 
suitable tradeoff must be considered. For example, with 
respect to the environment of Figure 5 and a vehicle of 
( ) cm50 50 20# #  size, cubes with 10-cm edge length have 

Figure 3. Examples of keypoints matching between images taken 
from different positions and stored into the buffer. 

Figure 4. The triangulation process between keypoint optical rays 
evaluated from images extracted in different positions and stored 
into the buffer. 

Object 1

Object 2

Target

Figure 5. The workspace of the experimental tests. 
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been chosen, which corresponds to the smallest half-dimen-
sion of the vehicle. 

Several information data are associated to each cube: the 
number of inliers (3-D triangulated points) had fallen into the 
cube volume, the last camera position from which an inlier has 
been found, and the state of the cube. In detail, the number of 
inliers represents the number of different points of view from 

which the same obstacle 
has been detected; the last 
camera  posit ion i s 
required in case of hover-
ing to prevent the same 
image features from gen-
erating several wrong inli-
ers, while it is possible that 
the same outlier is 
achieved from different 
points of view; finally, the 
state of the cube is 
employed to generate the 
force field, as will be 
described in the next sec-

tion, and it can be one of the following values: “FREE,” 
“OCCUPIED,” “OBSTACLE,” “IGNORED,” or “TARGET.” 

Initially, each cube is set to “FREE.” When a 3-D triangu-
lated point is detected in the cube, then the value of the cube 
inliers is incremented and the state is set to “OCCUPIED.” 
When the number of inliers reaches the assigned threshold, 
the state is set to “OBSTACLE.” On the other hand, when a 
target is identified, the relative cube state is set to “TARGET.” 
Moreover, since the camera can observe  the target from each 
position that had generated a valid target viewpoint, all the 
cubes laying along these optical rays are set to “IGNORED.” 
In this way, the map also implicitly provides a free way to 
reach the target. Figure 6 shows the reconstructed occupancy 
map corresponding to the environment of Figure 5. 

For wide environments, a sparse representation of the 
occupancy grid map is considered together with a spatial/tem-
poral vanishing criterion. This determines whether an 

occupancy cube is reliable or if it has to be discarded, based on 
the distance traveled by the vehicle or on the time interval 
spent after its last update. In fact, due to the drift of the vehicle 
pose estimation, obstacles that have been observed far from 
the current position or a long time cannot be considered reli-
able in the current map representation, and they must be 
refreshed. In this way, the reliability and scalability of the map 
representation can be tuned with respect to any environment. 

In Figure 7, the environment map of an outdoor unknown 
space has been reconstructed by using only the onboard visual 
odometry estimation system and a sparse representation of the 
grid. In a particular point, three texturized objects have been 
positioned in the environment: the UAV has started from a 
position close to  object number three and then it has been 
moved away by traveling from object number one to two. 3-D 
points matched at a distance more than 5 m from the current 
UAV position have been discarded during map construction to 
avoid noise due to the low resolution of the vision system at 
greater distance. Analogously, all the points that are close to the 
floor have been discarded to avoid unnecessary information. 

When a 3-D triangulated 

point is detected in the 

cube, then the value of the 

cube inliers is incremented 

and the state is set to 

“OCCUPIED.”
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Figure 6. An example of a reconstructed map of the environment 
shown in Figure 5.
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Figure 7. An example of an occupancy grid map of an outdoor 
environment that has been achieved by using only the onboard 
vision-based odometry. 
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The same data used for the occupancy map construction 
can also be employed for the building of an object-based map 
useful for high-level task-planner algorithms [24]. 

Image-Target Localization
The proposed teleoperated control framework is also endowed 
with the capability to autonomously identify a target in the 
environment for a given desired target image. A collection of 
images of the desired target is stored in the memory (e.g., the 
AIRobots [25] project logo of Figure 5 has been chosen for an 
experimental test). Through an off-line operation, the key-
points are found on the assigned target images, as well as the 
corresponding image descriptors, e.g., SURF citesurf or BRIEF 
[27]. During the operative phase, the keypoints extracted from 
the current image (i.e., the same keypoints already extracted for 
the obstacle detection algorithm) are employed to extract the 
corresponding image descriptors. Hence, the matching of the 
target keypoints with the current image is performed with a 
RANSAC-based algorithm. Note that the main difference with 
respect to the approach used for the obstacle detection is the 
use of a SURF/BRIEF descriptor instead of the Pyramidal 
Lukas-Kanade algorithm. Moreover, to improve the robustness 
of the detection algorithm, the target is considered to be statisti-
cally identified whether the number of the target inliers, 
extracted from the current image, is greater than a suitable 
threshold. This threshold value depends on the dimension and 
on the texture appearance of the target (i.e., on the number of 
features extracted off-line from the target image), as well as on 
the degree of robustness required for the identification. 
For example, for the experimental test with the image target of 
Figure 5, the threshold value has been chosen to be 20, while 
the total number of extracted features is about 30. 

The localization of the target into the current environment 
map is required to set up an effective support navigation sys-
tem. Hence, when a target is identified, the center of mass of 
the matching keypoints is evaluated in the image plane and the 
corresponding observation ray is stored in a dedicated buffer. 
This process is executed for each new grabbed image in which 
the target has been identified. When a number of observation 
rays with a suitable spatial distribution is reached, a least-
squares triangulation process is employed to estimate the 3-D 
point that minimizes the distance from the observation rays, 
i.e., a sort of intersection point (in the ideal case this point lays 
on each observation ray, but in a real case there is no intersec-
tion point). To increase the statistical robustness of this pro-
cess, some observation rays may be discarded if they are far 
from the current estimation with respect to the measurements’ 
standard deviation. The estimation process is repeated until a 
discard occurs. After the target identification, i.e., the target is 
allocated in the map, a refinement process continuously 
updates its position estimation by adding newly available 
observation rays during the UAV motion. 

Virtual Force Field
The information stored in the map is used to build a 3-D vir-
tual force field that is displayed on the haptic device. Let pr  

and po  be the positions of the vehicle and of the considered 
obstacle (i.e., the corresponding cube), respectively. Hence, 
for each cube with a state equal to “OBSTACLE,” a virtual 
repulsive force ,( )f p po r o  is generated as a sigmoid 
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to scale the force into a desired range, dt  is the threshold dis-
tance under which the repulsive force starts to act on the 
UAV, and the parameters a define the shape of the sigmoid. 

On the other hand, for the cube with a state set to 
“TARGET,” an attractive force ( , ),f p pT r T  where pT  repre-
sents the position of the target, is generated as a sigmoid
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where ,r p prT r T= -  ( ) / ,r rrrT rT rT< <=t  ts  represents the 
safety distance that has to be kept from the target, tz  delimits 
the area in which the vehicle is attracted to the target, and the 
parameters b and c  describe the shape of the sigmoid. 

To compute the total virtual force FV  exerted by the envi-
ronment on the vehicle, the mean of all the forces  fo,i  pro-
duced by each detected obstacle , ,i n1 g=  is taken together 
with the attractive force ,fT  i.e., 

 ( , ) ,F f p p fn
1

, ,V o i r o i T
i

n

1
= +

=

/  (1)

which is obtained with 
respect to the base refer-
ence frame. In Figure 8, 
an example of the force 
field, generated from the 
map of Figure 6 during a 
trajectory motion, is 
shown. 

Control Design
Figure 8 shows the pro-
posed control architec-
ture, composed of a high- 
and low-level controller 
[28]. Through this control 
structure, the aerial vehi-
cle is endowed with the capability to autonomously avoid 
obstacles, to reach a desired target, and to support the human 
operator in the navigation maneuvers. 

Obstacle avoidance is 

a core issue since any 

autonomous navigation 

system must preserve 

the safety of both the 

UAV and the surrounding 

environment.
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High-Level Control
The high-level teleoperation controller consists of two parts: 
the master system and the virtual slave system, which are cou-
pled by means of the communication channel. The high-level 
controller is responsible for the high-level commands coming 
from the human operator, for the generation of the reference 
control inputs for the low-level controller and for the genera-
tion of the force-feedback. 

The Master System
The human operator uses a master haptic device, characterized  
by a finite stroke ,Wpm H!  where WH  is the finite haptic- 
device workspace, and a limited force ,f f  with [ , ] .f f ff f f< < !

In steady state, a constant value of the position of the tip 
of the master is mapped 
to a constant reference 
speed for the aerial vehi-
cle. This choice is due to 
the fact that the master 
has a finite configuration 
space, i.e., a finite range of 
motion, while the aircraft 
has an infinite configura-
tion space [28]. 

The master controller 
is responsible of two main 
tasks: to generate a 
desired velocity set-point, 
v*

v , for the virtual slave 
and a feedback signal, f f , for the haptic device. The desired 
velocity, vv

* , is obtained as follows: 

,:f
vv p p*

v
f

v
m ma= =

where v v  is the maximum velocity imposed by the user. 

The feedback force applied to the haptic device is propor-
tional to the error between the position of the master pm  and 
the velocity of the virtual slave vv  as it is mapped to the mas-
ter position, i.e., .1/p v*

m va=^ h  This implies that 

,kf p p*
f f m m= -^ h

where k f  is a proportional gain in units of a spring. 

The Virtual Slave
The virtual slave is made of two main blocks: the virtual slave 
controller and the virtual slave [28], [29]. 

The virtual slave is the real-time simulation of a fully actu-
ated aerial vehicle, for which it is possible to measure all the 
information about its state, i.e., its velocity vv . The virtual slave 
is moving in a gravityless and frictionless space and its dynam-
ics are influenced by a viscoelastic coupling Fc  to the real vehi-
cle, the virtual vision force FV  in (1), and the force  fv

m  
impressed by the master’s movement and computed in the vir-
tual slave controller as 

 ( ),f v vb *
v
m

v v v= -  (2)

where bv  is a proportional gain in units of a viscous damper. 
For simplicity, the vehicle is modeled as point mass dynamics 

 : ,F F f Fvmv v c V v
m

v= + + =o  

where mv  is the mass of the virtual slave, v Rv
3!o  is the vir-

tual slave acceleration. Note that, according to the scheme in 
Figure 9, the position of the virtual slave is assumed as the 
desired position for the real vehicle. 

Low-Level Control
The low-level control is the controller of the real vehicle. Its 
main goal is to effectively track the desired state of the virtual 
slave by generating the proper actuation input for the real vehi-
cle to solve the underactuation of the real slave. The real slave 
controller takes into account the possible intervention of the 
vision-based controller that modifies the desired reference to 
avoid a detected obstacle. Moreover, this controller yields the 
coupling force Fc  to the high-level controller to provide infor-
mation on the state of the real vehicle and the environment. 

Vision-Based Control
The vision-based controller is responsible for the generation 
of the vision-based force, built as explained before. This force 
counteracts the force provided by the master through the vir-
tual slave. Hence, the resultant force is applied to the real vehi-
cle. When the distance between the vehicle and the obstacle is 
less than a certain threshold, the vision-based controller is 
applying a force, as defined in (1). 

Passivity
To guarantee the stability of the overall system, a passivity-
based approach is adopted [30]. More precisely, by assuring 
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Figure 8. A force field generated from the map of Figure 6 during a 
trajectory motion.
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that every block of the teleoperation control scheme is pas-
sive (i.e., its energy is kept bounded), the complete system is 
guaranteed to be passive and, as a consequence, stable. With 
this respect, the human operator is assumed to be passive 
and the passivity of the master system is guaranteed by its 
local controller. The virtual slave is passive thanks to the pas-
sivity-enforcing supervisor, as proposed in [28]. Finally, the 
passivity of the low-level controller can be ensured separately 
by including an additional protection layer in it. 

Experiments
The Omega.6 (Force Dimension, Switzerland), a pan-shaped 
force-feedback device, has been used as a haptic interface. It 
is intuitive and accurate due to the full gravity compensation 
and the driftless calibration. The device has six degrees of 
freedom, three of which are translational actuated axes, while 
the other three are rotational nonactuated axes. The local 
controller runs on Linux at a frequency of about 2.5 KHz. 

To stabilize the pose of the vehicle through a position 
controller, the external tracker VisualEyez VZ 4,000 
(Phoenix Technologies Inc., Canada) has been used. This 
tracker provides a motion capture of the vehicle, on which a 
set of Wi-Fi marker sensors are attached. The system has an 
accuracy of 0.5 mm, a 90° operation angle, and a capture area 
of m .7 9 2#  

The vehicle used for the experiments is the AscTec Pelican 
(Ascending Technologies GmbH, Germany), a quadrotor 
helicopter with dimensions cm,50 50 20# #  weight 750 g, 
and a maximum payload of 500 g. The operational flying time 
may vary in a range between 12 min with full payload and 25 
min without payload with a standard battery. The UAV is 
equipped with an IMU that provides information about the 
pitch, roll, and yaw angles of the vehicle. Furthermore, there is 
an already built-in low-level controller, i.e., the autopilot, that 
allows for regulating the attitude, the angular speed of the yaw 
angle and the overall thrust. This controller runs on an 
ATOM processor of 1.6 GHz and 1 GB of random-access 
memory (RAM) mounted on board the vehicle. 

The UAV is equipped with an Imaging Development 
Systems (IDS) nEye monochrome camera, mounted forward, 
with a resolution of 752 # 480 pixels and a maximal possible 
frame rate of 87 frames/s. The lens allows a 71° # 49° (hori-
zontal   # vertical) field of view. 

The goal of the performed experiment is to show that, 
during the inspection of the environment, the system is able 
to identify the obstacles and a target and, hence, to support 
the teleoperated navigation by providing a force feedback to 
the human operator  to achieve a safer navigation and to 
reach the target more easily. The working scene is shown in 
Figure 5, where two different obstacles are present. As said 
before, the AIRobots project logo attached to a wall is 
employed as a target image. 

In Figures 10–12, the position and velocity of the virtual 
slave and of the real vehicle are shown. The red lines in the top 
(middle) plots represent the position (velocity) of the virtual 
slave adopted as reference position (velocity) for the real vehi-
cle, while the blue lines represent the position (velocity) of the 
real vehicle. In the bottom plots, the attractive (in green) and 
repulsive (in purple) forces applied to the virtual slave are rep-
resented. The blue lines represent the force feedback displayed 
on the haptic device as  feedback for the human operator. 

Note that the time scale is sliced into four periods. In the 
first period, between 4 and 29.5 s, the vehicle is maneuvered 
in a shared way, inspecting the environment to detect obsta-
cles and target. In particular, when the haptic control is on, 
the operator gradually feels the force generated by the pres-
ence of the obstacles, which are identified in real time. In the 
second period, between 29.5 and 33 s, the vehicle is hovering 
(the haptic control is off) but the environment force is contin-
uously generated to ensure that the vehicle keeps a safe dis-
tance from the obstacles. In the third period, between 33 and 
40.5 s, the vehicle is piloted in such a way that the cylindrical 
obstacle is close to the vehicle (i.e., at a distance less than the 
safe threshold) and placed inside the attractive area of the 
localized target. In the last period, between 40.5 and 50 s, the 
vehicle is steered to the target under the only action of the 
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attractive and repulsive force provided by the vision algo-
rithms, without any human intervention. It is easy to note 
that, in correspondence of about 43 s, the growth of the x–
position component stops and the y–component increases. 
This means that the repulsive force generated by the obstacles 

changes the trajectory of the vehicle to avoid the impact. 
Simultaneously, the attractive force toward the target is almost 
constant and it becomes zero when the vehicle reaches a com-
manded distance from the target, fixed to 50 cm. 

Conclusions
In this article, a vision-based obstacle-avoidance/target identifi-
cation technique has been combined with a haptic feedback 
device, developing a new teleoperated navigation system for 
underactuated UAVs in unknown indoor environments. A 3-D 
map of the surrounding environment has been estimated by 
matching keypoints between several images provided by an 
onboard camera and stored in a buffer with the corresponding 
estimated odometry provided by a PTAM-based module. 
Moreover, it has been shown by employing a visual identifica-
tion algorithm that a desired target in the environment can be 
localized and reached by generating a virtual force field that the 
operator feels through a haptic force-feedback device. Finally, 
the overall method has been successfully tested on a UAV plat-
form in a small indoor environment with obstacles and a target. 
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