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a b s t r a c t

A newmethod to catch a thrown ball with a robot endowedwith an eye-in-handmonocular visual system
integrated into a gripper is proposed. As soon as the thrown ball is recognized by the visual system, the
camera carried by the robot end-effector is forced to followabaseline in the space so as to acquire an initial
dataset of visualmeasurements fromseveral points of view, providing a first estimate of the catching point
through a linear estimation algorithm. Hereafter, additional measurements are acquired to constantly
refine the previous estimate by exploiting a nonlinear estimation algorithm. During the robot trajectory,
the translational components of the camera are controlled in such a way as to follow the planned path
to intercept the ball, while the rotational components are forced to keep the ball into the field of view.
Experimental results performed on a common industrial robotic system prove the effectiveness of the
presented solution.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Advanced robotic systems, which are required to perform quick
reactions in response to visually perceived movements in a par-
tially structured environment, are no doubt a good benchmark for
testing of new control algorithms and new estimating/predicting
processes. The challenging scenario of the robotic ball catching
problem has been extensively considered in the literature for ex-
perimental testing of the above capabilities.

The state of the art presented in Section 2 shows that most
of the existing systems use either a stereo visual configuration
to solve the 3D ball catching problem or a single camera for
the 2D sub-problem. In the former case, the 3D tracking of the
ball takes advantage from having the possibility to exploit the
epipolar constraint in the two available images; in the latter case,
only 2D information can be directly retrieved from the single
available image. Nevertheless, in both situations, in order to obtain
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a successful catch, high frame rate and accurate cameras are
required to have a fast and precise estimate of the ball trajectory.
By employing just one camera it is possible to reduce the total
cost of the set-up. Moreover, the computational cost to elaborate
at high frame rate one image is lower than elaborating at the
same frequency two images. Hence, when high frame rate is a
strict constraint, using only one camera also saves computational
resources. However, some improvements in the controller and
in the prediction algorithm should be introduced to solve the
problem in 3D.

In this paper, the robotic 3D ball catching problem is solved
by using a monocular visual system. A standard industrial robot
manipulator is equipped with a CCD camera mounted directly
on the manipulator end-effector. The proposed control law is
composed of a continuous refinement of the ball interception point
through a nonlinear estimation algorithm, whose initial starting
condition is provided by a fast linear estimating process. An initial
camera motion is thus commanded along a suitable baseline so as
to collect a sufficient initial number of visual data from different
points of view and provide such initial estimate. Experimental
results demonstrate the effectiveness of the presented solution.
The present work extends what already presented by the authors
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in [1]. With respect to the past work, in this paper the analysis of
the employed controller is more detailed and the stability proof is
provided. Moreover, the estimating process has been improved by
introducing a recursive outliers rejection algorithm that improves
the measurement dataset employed for the estimation process.
Finally, the policy employed for the interception point selection
has been detailed considering the physical limits of the robot,
while the performance of the proposed trajectory estimator is
shown through a comparison with the ground-truth provided by
an OptiTrack motion-capture system.

The outline of the paper is as follows: after the presentation
of related work, an overview of the proposed algorithm is
provided and the image processing is briefly revised. Then, the
partitioned visual-servoing controller adopted during the catching
motion is presented along with the stability proof. Further,
the linear and nonlinear estimation algorithms are formalized.
Finally, the adopted set-up, the achieved experimental results and
the comparison with the available ground-truth are shown and
critically discussed.

2. Related work

Several research works address problems related to the catch
of thrown objects and to the estimate of their trajectories.
The approaches described in this section can be categorized
as follows: stereo visual systems that deal with ball-catching
tasks; monocular visual systems performing catching operations
in a plane; monocular visual systems that estimate the object
trajectory and perform catching operations in the 3D space;
estimators dealing with Chapman hypothesis; systems that take
into account the forces exchanged between the gripper and the
thrown object; dynamic non-prehensile catching tasks; neural
networks; virtual reality applications.

2.1. Stereo visual systems

Vision systems employing two (or more) cameras benefit by
using the triangulation method to reconstruct the 3-D position
of the ball [2–4]. However this requires an accurate calibration
procedure and a sophisticated elaboration hardware.

A stereo vision system combined with an observer with a
variable strength filter and an error estimator are employed in [5]
to track and catch a thrown ball. An initial motion algorithm is
chosen to maximize the response time so as to begin the motion
of the arm as soon as the first visual data is taken.

A stereo visual system, an extended Kalman filter and a
prediction algorithm are employed in [6] to build a robotic ball
catcher. Without using specialized hardware, only using off-the-
shelf components, the authors employ a stereo visual system to
track a fast flying object and to catch it with a net mounted upon
a robotic arm. In order to detect the ball, the difference between
the actual image and some reference images is computed using
a threshold method. Lately, a mobile humanoid and a gradient
method to detect circles in the images are employed in [7].

An inexpensive and uncalibrated camera is exploited in [8]
to track a rolling ball before it falls from a table. A robotic arm
is programmed to catch it through an attractor-based dynamics
that autonomously generates temporally discrete movements and
sequences for the robot end-effector.

Only 2D visual information given by a stereo vision system
is employed in [9] to achieve position control of a 3D robotic
arm and catch a thrown object. The control is applied to achieve
simultaneously 2D tasks defined directly on the image planes of
the cameras: the 3D task is considered as accomplished if all
the 2D tasks are simultaneously fulfilled. However, such working
condition cannot guarantee the catch, since there is no estimate
of the 3D ball motion. Moreover, no prior knowledge about the
configuration and dimension of the robotic arm is needed as well
as no information about camera parameters is requested (i.e., the
robot Jacobian and camera calibration are estimated on-line).

A planar robotic arm, a stereo visual system and a DSP
equipment are utilized in [10] to predict the right falling place of
moving balls through a Lagrangian interpolation formula.

2.2. Monocular visual systems: catching in a plane

Monocular visual systems have easier calibration procedures,
but more effort has to be put in the 3D reconstruction of the scene.

A camera and a prediction-based control system are employed
in [11] to catch a mouse moving on a plane. A single camera is
employed to localize the moving part, but since that is free to
change the velocity and the acceleration of its motion in the whole
plane, then a continuous re-planning of the path of themanipulator
is required. The catch is always performed along a predetermined
catching line, and for this reason the target object should cross such
a line in a finite amount of time.

An experiment consisting in the catch of a ball moving on a
table with a robot manipulator is carried out in [12]. Two distinct
visual servoing architectures are implemented: position-based and
image-based visual servoing. The catch is always performed along
a straight line on the table and thus the precise catching point
is determined with the intersection between such a line and the
predicted trajectory of the ball, which is observed by a camera
mounted on the robot end-effector.

2.3. Monocular visual systems: catching in 3D

The 3D position and velocity of a thrown projectile are
estimated in [13] through the analysis of a sequence of images
taken by a single camera. A least-squares algorithm is employed
to determine the state of such projectiles from their apparent
trajectories and considering a model of the motion without air
drag.

A recursive least-squares algorithm is even used in [14] to
estimate the trajectory of a ball with an eye-to-hand visual system.
Catching is performed through a combination of image-based and
position-based visual servoing.

This case best fits the work here presented. With respect to the
cited works, a monocular eye-in-hand configuration is considered
in this paper, hence the camera is mounted directly on the end-
effector of the robot. In this way, the control is in charge of
maintaining the ball inside the camera field of view, which instead
is not possible in a eye-to-hand configuration. However, the visual
system has to cope with the change of resolution of the ball in the
image during the throw andwith possible blurmotions. Moreover,
with respect to the previous works, a more realistic model of the
ball motion is here employed, including also the air drag factor,
along with a more sophisticated nonlinear estimation process.

2.4. Estimators dealing with Chapman hypothesis

The Chapman strategy to catch a ball is introduced in [15],
where it is stated that a fielder should run at a proper speed
to maintain a constant increasing rate of the tangent of the ball
elevation angle.

Reinforcement learning models are exploited in [16] to better
understand the perceptual features that guide a fielder to learn
how to catch a flying ball. For this reason, the authors implemented
a system which learns both how to keep constant the increasing
rate of the tangent of the elevation angle and how to use the
velocity of the ball perpendicular to the fielder to decide whether
to run forward or backward.
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Linear Optimal Trajectory (LOT) is introduced in [17] to catch a
ball with an autonomous mobile robot. By using LOT, the fielder
problem, already presented in Chapman paper, is converted into
the spatial problem of keeping the relation features in the 2D
image plane. However, this approach requests information about
the ball initial optical location relative to the robot and it is not
applicable when the robot is located in the same vertical plane
of the ball trajectory. Hence, the same authors proposed in [18]
the GAG (Gaining Angle of Gaze) strategy, still based on Chapman
hypothesis. GAG strategy requires only the information about the
elevation angle of gaze captured as a 2D information, and it has also
been extended to be used upon a robotmanipulator equippedwith
a camera, mounted in eye-in-hand configuration, which moves in
a plane [19].

In [20], the authors state that in order to track the ball in the
manner indicated by Chapman, the correct catching position and
time should be known before starting the tracking task so as to
determine the tracking speed. Therefore, they presented a class of
analytic solutions that track properly the ball, and in which class
Chapman results represent one solution among the others.

2.5. Systems taking into account the force exchange

A falling ball and a falling cylinder are caught through a high-
speed multi-fingered hand in [21,22] by using a stereo visual
system. The proposed strategy gives to the fingers an impact force
changing the movement of the object in the desired direction, in
order to catch it in an optimal and stable way.

The impedance of the hand is regulated for virtual ball catching
tasks in [23]. The authors underline the importance in regulating
such impedance since, for instance, a human might miss the ball
when (s)he makes her/his arm stiffen beyond necessity, because
of the large contact force exerted on the hand from the ball or, in
the same way, (s)he might miss the ball making her/his arm too
compliant, thuswithout generating enough force to absorb the ball
motion.

2.6. Dynamic non-prehensile catching

Lately, non-prehensile ball catching [24] is considered as a par-
ticular case of dynamic manipulation. The ball tracking is per-
formed using a stereo vision configuration, while the prediction
of the ball trajectory is carried out through a least-squares algo-
rithm. The robot is guided to dynamically catch the ball and, after
the catch, a balancing controller is activated to keep the ball on a
plate mounted on the robot end-effector. The position of the ball
on the plate is estimated by measuring the forces and the torques
at the end-effector.

2.7. Neural networks and virtual reality applications

A suitable neural network is exploited in [25] to predict the path
of the ball and catch it through the humanoid SAIKA, equippedwith
a stereo visual system.

Virtual reality applications are seen as additional test-bed
applications for ball catching tasks [26–28]. In particular, in the
last two cited papers, minimum jerkmodels for human kinematics
are presented as a tool to predict user inputs in teleoperation with
significant dynamics. A virtual reality simulation of a teleoperated
ball-catching scenario is used in order to test the predictive power
of the model.
Fig. 1. Block diagram of the proposed monocular robotic ball catching system.
The dashed lines mean that the related block about linear trajectory estimation is
executed only once during the robot starting motion.

Fig. 2. Picture illustrating how the employed tracker can detect the ball thanks to
the desired selected color, defined by the HSL color space. In this case the selected
ball is the red one. On the left the original image, on the right the elaborated one
after clustering and blob analysis. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

3. Algorithm overview

The overview of the proposed 3D monocular ball catching
algorithm is shown with the block diagram of Fig. 1.

As soon as the thrown ball is detected by the visual system,
the camera mounted in an eye-in-hand configuration is forced
to follow a suitable baseline in the 3D space. The ball is always
kept in the field of view of the camera through a partitioned
visual-servoing control. This starting motion is performed to both
ensure a well-conditioned estimating problem and collect/process
visual information to get a first prediction of the ball trajectory
through a rough linear estimate. Such prediction is employed as
a starting point for a more precise nonlinear refinement process of
the trajectory.

When a new interception pose estimate is available, the on-
line motion planner smoothly switches its target to the new one,
always keeping the ball in the camera field of view. Hence, the new
visual measurements are continuously processed by the nonlinear
optimization to on-line update the estimate of the ball trajectory,
and thus the prediction of the interception pose.

Finally, when the continuous refinement does no longer
improve the prediction of the trajectory significantly, the final
catching pose can be computed taking into account the ball and
the robot dynamics, so as to accommodate the ball into the robotic
gripper.

4. Image processing

The image processing stage has already been introduced in [1].
Hence, only the key aspects are revised here. Other thrown objects
detection methods can be found in [29].

A calibrated [30] CCD camera is mounted on the robot end-
effector and the acquired images are continuously processed to
obtain the ball centroid in the image and then compute the position
of the ball in the normalized image plane. The HSL (Hue, Lightness,
Saturation) color space is used to cluster the image during its
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process. The adopted clustering consists in a binarization step and
some post-elaboration processes employed to reduce the effects of
the image noise. All the blobs in the binarized image are collected
and filtered to eliminate, for example, the blobs with a very small
area and the background. Finally, the centroid of the selected
blob can be considered as an approximation of the ball center. In
Fig. 2 an example of how the employed tracker works is depicted.

In order to seek the ball for the first time, the whole image is
processed with the above described modality until the ball is de-
tected. Afterwards, a dynamic windowing technique is employed
to reduce the computational effort of the image processing. The
frame rate is speeded-up to more than 100 Hz thanks to the Re-
gion of Interest (RoI) acquisition modality available on the current
USB cameras.

5. Partitioned visual servoing

The proposed visual control law belongs to the category named
Resolved-Velocity Image-Based Visual Servoing [31], for which it
is assumed that the manipulator dynamics is taken into account
directly by the low-level robot controller. The considered robotic
arm structure is an open kinematic chain robot manipulator. The
reference frames considered in the ball catching scenario are the
robot base frame Σb, fixed with respect to the ground, the end-
effector frame Σe, and the camera frame Σc = Oc–xcyczc (see
Fig. 3). Being the last two reference systems fixed with each other,
without loss of generality, only the camera frame Σc is considered
in the remainder of the paper, since it could be assumed that it is
coincident with Σe. The camera optical axis is then aligned with
the approaching axis of Σe.

In order to successfully accomplish the ball catching task, the
ball should never leave the field of view of the camera. Large
parts of the scene can be observed with small movements of the
camera orientation, and thus with small movements of the robot
joints. For this reason, the rotational components of the robot end-
effector – the fastest ones – are devoted to track the ball, while
the translational components of the robot end-effector should be
planned to intercept the ball. Hence, the partitioned approach
presented in [32] has been employed in this work.

The position of the ball centerwith respect toΣc can be denoted
as

pc
o =

xc

yc

zc


= zc

X
Y
1


= zc s̃,

in which s =

X Y

Tis the (2× 1) normalized image coordinates
vector of the centroid of the ball, provided by image processing as
described in Section 4, while s̃ =


sT 1

T is the related (3 × 1)
homogeneous vector of s.

The expression relating the (6 × 1) absolute velocity vector of
the camera υc

c =

ṗcT
c ωcT

c

T, the (6 × 1) absolute velocity vector

of the thrown ball υc
o =


ṗcT
o ωcT

o

T, both expressed with respect
to Σc , and the (2 × 1) velocity vector of the image feature ṡ in the
image plane, is the following linear equation [31]

ṡ = Lsυc
c + Ls0(−pc

o)υ
c
o, (1)

in which Ls is (2 × 6) is the interaction matrix of a point image
feature defined as follows [31]

Ls =

−
1
zc

0
X
zc

XY −1 − X2 Y

0 −
1
zc

Y
zc

1 + Y 2
−XY −X

 (2)

and 0(·) is the (6 × 6) matrix

0(·) =


−I3 S(·)
0 −I3


,

Fig. 3. The camera reference frame Σc is shown in two different sample times,
tj and ti . The ball trajectory is shown with a red dotted line, while in blue
is represented the corresponding camera trajectory. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

where In denotes the (n × n) identity matrix and S(·) the skew-
symmetric matrix. Let Lsp and Lso be the (2 × 3) sub-matrices
corresponding to the first and last three columns of (2). Eq. (1) can
be then rewritten as

ṡ = Lsp

ṗc
c − ṗc

o + S(−pc
o)ω

c
o


+ Lso


ωc

c − ωc
o


.

The translational components ṗc
c of the robot motion are

devoted to move the robot to intercept the ball with the gripper
mounted on the robot end-effector. In order to ensure a smooth
re-planned trajectory when a new interception target point is
available, the continuity between the current motion state, in
terms of position, velocity and acceleration, and the new initial
one has to be imposed. In order to on-line compute the desired
trajectory for the camera frame, a fifth-order polynomial vector in
the 3D Cartesian space is taken into account

pc,d(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0, (3)

with pc,d the (3 × 1) desired absolute position of the camera with
respect to Σb, and ah with h = 0, . . . , 5 are (3 × 1) coefficient
vectors. The desired velocity of the camera frame is then equal to

ṗc,d = 5a5t4 + 4a4t3 + 3a3t2 + 2a2t + a1, (4)

and the translational acceleration of the camera is equal to

p̈c,d = 20a5t3 + 12a4t2 + 6a3t + 2a2. (5)

The parameters ah in (3)–(5) are updated on-line as follows.
Let ti, tf , pc,d,i, pc,d,f , ṗc,d,i, ṗc,d,f , p̈c,d,i and p̈c,d,f be the initial
and final planned time, the initial and final position, and the
translational velocity and acceleration, respectively. By denoting
with āh =


aT
5 aT

4 aT
3 aT

2 aT
1 aT

0

T and taking into account
(3)–(5), the following linear quadratic system of 18 equations into
18 unknowns is retrieved

t5i t4i t3i t2i ti i3
t5f t4f t3f t2f tf i3
5t4i 4t3i 3t2i 2ti i3 03

5t4f 4t3f 3t2f 2tf i3 03

20t3i 12t2i 6ti 2i3 03 03

20t3f 12t2f 6tf 2i3 03 03

 āh =


pc,d,i
pc,d,f
ṗc,d,i
ṗc,d,f
p̈c,d,i
p̈c,d,f

 , (6)

where i3 =

1 1 1


, ti = tii3, tf = tf i3, and 03 = 0i3. It is

worth noticing that the initial conditions are given by the current
state of the motion of the robot, while the final conditions depend
on the current available estimate (more details will be provided in
the next sections).
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Hence, on one hand, the translational components of the veloc-
ity input for the camera frame Σc can be generated as follows

ṗc
c = RT

c


ṗc,d + Kpep


, (7)

with Rc the rotational matrix of the camera frame Σc with respect
to the base frame Σb,Kp > 0 a diagonal constant (3 × 3) gain ma-
trix, and ep the (3× 1) error vector between the desired trajectory
(3) and the one provided by the robot direct kinematics at time t .

On the other hand, the rotational components of the velocity
input for the camera frameΣc can be generated in the image space
as follows:

ωc
c = LĎso[Kso,eb2(es)τeb1(es) − L̂sp

× (ṗc
c − ˙̂p

c
o + S(−p̂c

o)ω̂
c
o)] + ω̂

c
o, (8)

with Ď denoting the pseudo-inverse of a matrix, p̂c
o the estimate of

the unknown position of the ball in Σc , and ṗc
c evaluated in (7).

The terms ˙̂p
c
o and ω̂

c
o are the estimates of the unknown absolute

translational and angular velocities of the ball with respect to Σc .
Besides, the error term es = −s is the image error vector becoming
null when the camera is pointed towards the centroid of the ball,
while the term τeb(es) is a threshold function defined as

τeb1(es) =


0 if ∥es∥ ≤ eb1
1 −

eb1
∥es∥


es if ∥es∥ > eb1,

(9)

with Kso,eb2(es) a (2 × 2) gain matrix defined as

Kso,eb2(es) =


koI2 if ∥es∥ ≤ eb2

koe
βo


∥es∥
eb2

−1

I2 if ∥es∥ > eb2,

(10)

where ko > 0 is a gain factor, eb2 > eb1 > 0 are proper thresholds,
and βo > 0 is a restraint factor tuning the increasing rate of Kso. In
order to avoid the loss of the ball view, this last gain term suddenly
increaseswhen the centroid of the ball approaches the limits of the
image plane.

Notice that L̂sp in (8) is an estimated term since it depends on
p̂c
o. The details about how to estimate p̂c

o,
˙̂p
c
o and ω̂

c
o are given in the

Appendix.
For what concerns the stability proof of the system, the follow-

ing theorems hold.

Theorem 1. Provided that Kp is a positive definite matrix, the control
law (7) ensures an asymptotic convergence to zero of the position
error ep.

Proof. The time derivative of the position error can be computed
as

ėp =
d
dt

(pc,d − pc(t)) = ṗc,d − ṗc,

where pc(t) is the (3 × 1) vector denoting the current position of
the camera with respect to Σb at time t , computed by solving the
direct kinematics of the robot, while ṗc is the related translational
velocity of the camera with respect to Σb. Pre-multiplying by Rc
both sides of (7), folding the result into the previous equation
yields

ėp + Kpep = 0.

SinceKP is a positive definitematrix, usually a diagonal matrix, the
previous system is asymptotically stable and the error ep tends to
zero along the trajectorywith a convergence rate depending on the
eigenvalues of Kp. �
Theorem 2. The system (1) is asymptotically stable under the control
laws (7)–(8), in the presence of a perfect estimate of the unknown
terms. Otherwise, only stability can be ensured.

Proof. The following analysis is performed using the direct
Lyapunov theorem. Consider the following candidate Lyapunov
function

V (es) = eTsKses, (11)

where Ks is a (2 × 2) positive definite diagonal matrix. By noticing
that ės = −ṡ, computing the time derivative of (11) and taking into
account (1) yields

V̇ = −α1 − α2 − α3,

where

α1 = eTsKs


Lsp − L̂sp


ṗc
c (12a)

α2 = eTsKsKso,eb2(es)τeb1(es) (12b)

α3 = eTsKs


Ls0(−pc

o)υ
c
o − L̂s0(−p̂c

o)υ̂
c
o


. (12c)

If each term in (12) is strictly positive, then V̇ < 0. However,
no term in (12) is a quadratic form, hence only qualitative
considerations can be achieved.

If L̂sp = Lsp, the term α1 in (12a) vanishes, but there is no guar-
antee that such condition can happen. Nevertheless, the α1 term is
bounded since the condition for updating L̂sp through the estimate
of p̂c

o seems to be the optimal one during the experiments [33].
By considering (9)–(10), the term α2 in (12b) can be bounded as

follows

0 ≤ α2 ≤ eTsKs


koe

βo


∥es∥
eb2

−1

I2


es. (13)

By choosing Ks = koe
βo


∥es∥
eb2

−1

I2, the last term in (13) is positive

definite. Hence, α2 is always positive and limited.
The α3 term in (12c) vanishes in the case of perfect estimate.

Otherwise, nothing can be said about the sign ofα3. However, (12b)
is a quadratic form in es, while (12c), and also (12a), are linear func-
tions of the error in the image plane. Hence, on one hand, for an er-
ror of small norm, the linear termsprevail over the quadratic terms,
but the norm of Ks can be increased, i.e., an higher value of ko, to
reduce the error as much as possible. On the other hand, for larger
errors, the quadratic terms prevail over the linear ones. In conclu-
sion, the error es in (12c) is bounded.

Finally, in the case of a perfect estimate, the terms α1 and α3
vanish, while α2 is positive and limited. Then, the chosen control
laws lead to an asymptotically stable system. In the case of an im-
perfect compensation, instead, the error in the image plane is any-
way bounded. For a ball catching task, this stability condition can
be considered sufficient, because the visual control goal is mainly
in keeping the ball in the field of view of the camera. �

Finally, the input to the robot controller, i.e., the joint velocity
vector, can be computed as [31]

q̇ = JĎ(q)Tcvc
c + NJKr q̇r , (14)

with q the vector of joint positions, J(q) the Jacobian matrix of
the robot, Tc the (6 × 6) matrix relating υc

c to the velocity of the
robot end-effector with respect to the base frame, NJ the projector
matrix into the null space of the robot Jacobian, Kr a gain diagonal
matrix, and q̇r a set of joint velocities employed in a possible
redundancy management to optimize some other sub-tasks. For
instance, q̇r might be employed to avoid joint limits and kinematic
singularities.
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6. Trajectory estimation

6.1. Initial baseline

Since just one camera is employed, a classic static triangulation
method cannot be adopted in the proposed scenario. The proposed
process to estimate the trajectory of the thrown ball consists in the
interpolation of 2D visual measurements along the time.

In order to yield a well-conditioned problem, the visual data
collection has to be acquiredmoving the camera along a significant
path. Therefore, as soon as the ball is recognized for the first time
after the throw by the pitcher, the camera is forced to move along
a straight line in the 3D Cartesian space with high velocity, i.e., the
initial baseline. The orientation of the camera is controlled with
the above introduced control law (8) to keep the ball in the field of
view.

6.2. Linear initialization

The procedure for the linear initialization is explained in [34],
hence only a brief description is here addressed.

During the initial baseline, a sequence of image measurements
are collected. Let tk be the k-th visual sample time, s̃k the
corresponding acquired image feature vector, p =


x y z

T
the points belonging to the camera optical ray and passing through
the current origin of the camera ck =


cx,k cy,k cz,k

T. The k-th

feature vector rk =

rx,k ry,k rz,k

T
= ck + Rc,ks̃ can be defined

by the following equations representing a straight line in the 3D
space (see Fig. 3)

(ry,k − cy,k)x + (cx,k − rx,k)y + rx,kcy,k − ry,kcx,k = 0
(rz,k − cz,k)x + (cx,k − rx,k)z + rx,kcz,k − rz,kcx,k = 0, (15)

where Rc,k is the rotation matrix of Σc with respect to Σb at time
tk. Both ck and Rc,k are provided by the robot direct kinematics.

During this initialization, the effect of the air drag to themotion
of the ball is neglected. Hence, the ballistic motion can be modeled
as a parabolic function of time t as follows

p = p0 + v0t +
1
2
gt2, (16)

with g the gravity acceleration, p0 and v0 the initial position and
velocity of the ball (t = 0), respectively, corresponding to the time
of the first ball detection. Notice that, without loss of generality,
the gravity acceleration is aligned to the axis y of the chosen Σb,
i.e., g =


0 g 0

T and g = 9.81 m/s2.
At each tk, the optical rays intersect the ball trajectory. Folding

(16) into (15) yields a system of 2 equations into 6 unknowns p0
and v0, that fully describes the trajectory of the ball. Stacking into
rows the nl measurements yields a system of nl equations into
6 unknowns that can be solved through a least-squares solution.
Additional considerations about this stage are given in [1,34].

When the process produces the estimate, the first estimated
interception point is then computed. In details, by starting from the
actual state of the robot (time, position, velocity and acceleration
of the camera frame), the system in (6) can be solved to obtain
the new set of ah parameters. These allow the robot to reach
the predicted interception position, whose computational details
are provided in Section 6.4, at the estimated catching time. The
rotational part of the camera, instead, is kept free to track the ball in
order to acquiremore visual measurements during themovement.

The estimate provided by this linear algorithm is employed as
a starting point for the next stage, that is a nonlinear algorithm
for the estimate of the ballistic motion. Such an estimate is
continuously refined by using new available observations of the
ball and a more accurate trajectory model.
6.3. Nonlinear estimation refinement

New visual measurements are collected during the time
required by the previous linear estimating process to give the
result. Afterwards, both the new visual measurements and the old
ones are employed in a nonlinear estimating process that starts
from the result obtained by the previous linear method.

In details, let sk be the centroid of the ball acquired at a time tk,
the cost function to be minimized is

min
p0,v0

n
k=1

 1
z̃ck


x̃ck
ỹck


− sk

 , (17)

with n the current number of available visual measurements and
p̃c
k the estimated position of the ball with respect to Σc

p̃c
k =

x̃ck
ỹck
z̃ck


= RT

c,k


p̃k − ck


. (18)

The estimated position of the ball p̃k(p0, v0, tk) is obtained
numerically by integrating the following ballistic model [6]

v̇(t) = g −
cwπd2bρa

2mb
∥v(t)∥v(t), (19)

with cw a coefficient depending on the thrown object, db the
diameter of the ball, ρa the density of the air and mb the mass of
the ball. Hence, the previous model includes the air drag, and its
numeric integration is performed in the time interval [0, tk], with
the initial conditions p0 and v0.

Minimizing (17)means that the initial conditions of the ballistic
model are tuned to generate an estimated trajectory of the ball
that minimizes the distance between the predicted projection of
the ball onto the image plane and the corresponding measured
observations of the ball along the time.

In practice, the minimization of the cost function (17) is
performed using the Levenberg–Marquardt algorithm. The result is
the updated values of p0 and v0.

With respect to [1], a statistical procedure to deal with the
presence of image noise is proposed. During the trip, the ball
can be subject to different illumination/shadow conditions that
could generate different levels of noise for the samples into the
measurement dataset. In details, once the minimization process
ends, the mean error, the standard deviation and the contribution
of each visual measurement sk to the error residual are evaluated.
The visual measurements that contribute to the error residual
outperforming with a certain factor the standard deviation are
temporarily excluded for the next estimation process.

New measures are acquired during the time in which such
nonlinear estimating process computes the updated values of p0
and v0, and then the updated interception point. This new dataset
(without the previously considered outliers) is employed during
the next nonlinear refinement that will adopt the previous optimal
solution as initial condition. Again, once the minimization process
ends, all the visual measurements (even the ones previously
considered as outliers) that contribute to the error residual in a
way that is not statistically coherent are excluded for the next
optimization. This arrangement is able to improve significantly
the accuracy of the estimation process when noisily visual
measurements are available.

The ah trajectory parameters are updated by solving (6) as soon
as the new interception point is available. The new trajectories (3)
and (4) start from the current motion state of the camera and end
with the estimated position at the update final timeof interception.

Such refinement process stops when the current estimate
catching time is approaching with respect to the grasping time
required by the available gripper. Afterwards, the final catching
trajectory is planned to accommodate the motion of the ball
into the available robotic hand, as explained in the following
subsection.
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Fig. 4. Architecture of the ball catching system.
6.4. Catching point selection

The current catching point p× is evaluated along the current
estimated trajectory as the point that is reachablewith aminimum
effort of the actual joint torques. The time of the catch t× and
the velocity of the ball υ× at the position p× can be as well
evaluated from both the current predicted trajectory and the
kinematic/dynamic robot models.

In detail, the current estimated path T falling into the work-
ing space of the robot manipulator is sampled with a fixed step in
several candidate catching points Pi ∈ T . For each of these points,
the robot inverse kinematics is computed so as to retrieve the joint
position of the manipulator. The inverse kinematics is computed
with a closed-loop inverse kinematics (CLIK) algorithm [31].1 A set
of quality indices can be considered for the selection of the best
catching point. In this paper, a joint limits andmanipulabilitymea-
surements are suitably combined with a convex linear combina-
tion (see [31] for more details about the adopted quality indices).
The candidate catching point maximizing the above defined con-
vex linear combination of quality indices is chosen as the current
catching point p×.

Therefore, the parameters ah are tuned to lead the gripper from
the current state of the robot to the point p× at the time t× with
the same velocity of the ball υ×. Notice that the planned trajectory
could be not feasible with respect to the robot capabilities. If
the maximum required acceleration for the end-effector, i.e. the
camera, is greater than a fixed limit chosen in a conservative
way accordingly with robot capabilities, then the catching time is
properly scaled. Denoting with αmax the norm of the maximum
acceleration that the end-effector can reach and with p̈c,d the
maximum planned acceleration that can be retrieved from (5),

1 Notice that the inverse kinematics can be evaluated iteratively between
two consecutive candidate catching points, by using the joint configuration of
the previous catching point to initialize the algorithm for the new Cartesian
configuration. In this way, being consecutive candidates close to each other, few
iterations are required to converge to the solution of the joint configuration
corresponding to the current candidate.
Fig. 5. Overlay of the ball trajectory and robot motion.

if ∥p̈c,d∥ > αmax, then the catching time is scaled as t̄× =

t×


∥p̈c,d∥/αmax.
The catching path is then generated when the estimation

process stops. In details, the orientation of the camera is controlled
to have a direction of the optical axis, i.e., of the gripper, equal
to the tangent to the estimated trajectory of the ball at p×. Once
that the catching point is reached at t× with the same (or reduced)
velocity of the ball, the gripper is closed and is moved along the
predicted path of the ball, while its velocity is decreased to zero
in a fixed time/space. In such a way it is possible to dissipate the
impact energy in a proper time interval.
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(a) Throw n.1. (b) Throw n.2.

(c) Throw n.3. (d) Throw n.4.

Fig. 6. 3D plots of four different throws. The blue line is the final estimated trajectory of the ball centroid. The green cylinder is the space occupied by the ball during the
flight that has been measured by the OptiTrack system. The red path is the motion of the camera/gripper. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
7. Experiments

7.1. Experimental set-up

The employed experimental set-up is depicted in Fig. 4. A
USB iDS UEYE UI-1220SE-C camera is mounted in an eye-in-hand
configuration directly in the center of the palm of the gripper.
Such a gripper is made up of two 12 V brushed DC motors, with
a metal gearbox and an integrated quadrature encoder. Through a
rack-and-pinion mechanism the motion of these motors allows
the closure of the gripper fingers. The hand is mounted on a
COMAU Smart-Six robot manipulator standing on a sliding track.
The compensation of the dynamic model of the robot is in charge
of the COMAU C4G control unit.

An external PC with a RTAI real-time kernel UBUNTU OS gener-
ates the references for the robot each 2 ms. This PC communicates
with a second PC with Windows OS that is in charge of the visual
elaboration process. In order to improve the stability of the elab-
oration time and synchronize the visual measurements with the
motion of the robot, a high-prioritymulti-thread programming has
been employed.

A ground-truth for the estimation algorithm is achieved froman
OptiTrack motion-capture system composed of ten S250e cameras
that are employed to track the ball during its motion.

7.2. Technical details

An image size of (375 × 500) pixels together with a dynamic
RoI window of (150 × 150) pixels are employed to increase the
acquisition frame rate up to 140 fps.

The thrown ball has a diameter of 8.5 cm and a weight of about
32 g. Six reflecting markers are attached on the ball in order to
make the OptiTrack able to observe it. These markers do not affect
the detection of the ball in the scene since they are very small. In
fact, the corresponding image blobs are small with respect to the
ball area and are easily eliminated during image processing. The
coefficients of the air drag factor have been tuned to cw = 0.45
and ρa = 1.293 kg/m3.

The gain matrix in (7) has been set to Kp = 500I3, while the
gains in (8) have been tuned to ko = 200, eb1 = 10 and eb2 = 100.

The coefficients of the air drag factor have been firstly retrieved
from classic fluid dynamics theory and then have been refined
during the experiments. The control gains have been tuned in an
experimental way as well.

The maximum joint velocities of the employed robot from axis
1 to 6 are namely: 140, 160, 170, 450, 375 and 550°/s. The sliding
track maximum velocity is 1.5 m/s. Through the experimental
validation it has been verified that, in a conservative way, the
feasible maximum Cartesian acceleration norm for the end-
effector is about αmax = 40 m/s2, for trajectories lying inside the
catching volume. The intrinsic redundancy of the chosen robotic
platform has been exploited in (14) to avoid joint limits, kinematic
singularities and to reduce the movements of the sliding track
since its dynamics is considerably slower than those of the other
joints.

Considering some environmental constraintswhich are present
in the lab and the dexterous working space of the robot, the
catching volume is 1.5×1.2×0.5m. (w×h×d), seenwith respect
to the pitcher. The initial baseline has a planned length of 50 cm
that should be performed by the camera in 500 ms. However, the
first estimate of the trajectory starts when about nl = 45 samples
have been collected, i.e., after about 320 ms, hence typically the
first catching trajectory starts before the end of the baseline path.
Latency periods and delays between the robot control PC, the C4G
control unit and the visual elaboration PC are present and they
are estimated so as to synchronize at the best the direct kinematic
measurements with the visual data.
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a

b

c

Fig. 7. Time histories of the ground-truth (in green) and the final predicted
trajectory (in blue) of the throw depicted in Fig. 6(a). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

7.3. Results

Several experiments have been performedwith several pitchers
and varying light conditions. Over a set of about 300 throws, the
catching rate is about 87.5%, with an interception rate of 98%.2 In
Fig. 5 it is possible to observe the complete ball trajectory for a
given throw, with the overlay of the robot motion.

TheOptiTrack systemhas been employed to give a ground-truth
about the estimate of the ballistic trajectory. Some examples are
depicted in Fig. 6, where the green tube is the space occupied by
the ball during its flight towards the robot and it is measured by
the OptiTrack system. In details, the motion capture system pro-
vides the 3D position of the six markers at a frequency of 250 Hz.
By knowing both the geometrical features of the ball and the posi-
tion of these markers it is possible to reconstruct the real ballistic

2 Notice that some thrown ball are suitably intercepted but not firmly caught.
trajectory of the ball. The blue line is the final estimated trajectory
of the centroid of the ball. It is possible to observe that the blue
line is always inside the green tube: this gives a geometric quality
measure about the performance of the proposed estimating pro-
cess. The red line shows the path followed by the camera/gripper
mounted on the robot. It is then possible to recognize both the
initial baseline and the catching path, in which the gripper ex-
actly follows the predicted trajectory to decrease the velocity of the
ball.

Moreover, further to the geometrical path, another quality
index to measure the performance of the estimating process is
a comparison along the time between the ground-truth and the
final predicted trajectory. With reference to the throw depicted
in Fig. 6(a), the time histories of both the ground-truth and the
predicted trajectories are shown in Fig. 7. Again, the time histories
of the predicted trajectory fits inside the ground-truth provided by
the OptiTrack system.

Again with reference to the throw depicted in Fig. 6(a), all the
predicted interception points p×, projected in both the (x–y) and
(z–y) planes of Σb, are represented with a cross point in Fig. 8.
The color bar identifies the ordered sequence of such predicted
interception points, while biggest brow cross represent the final
position p× in which the estimate has been considered as stable.
The dashed lines represent the planned path for the hand, which
is achieved using (3) starting from the current motion state and
leading to the current estimated interception position, while the
continuous line is the real path followed by the gripper, which
starts with the baseline (green piece of the path). It is worth
noticing that the first estimated point, the green one, is given
by the linear estimating process. The big orange circle is the full
representation of the ball in the final position measured by the
OptiTrack system and projected in the above mentioned planes
of Σb. The big blue circle in the background is instead the space
occupied by the gripper base in the final estimated position and
projected in the above mentioned planes of Σb. The information
provided by Fig. 8 is twofold. First, it is possible to recognize
the tolerance between the real position of the ball and the space
occupied by the gripper at the interception point; then, another
way to measure the quality of the estimate is the evaluation of
how far the final estimated p× is from the center of the measured
position of the ball.

8. Conclusion and future work

A new solution to cope with the problem of catching a thrown
ball with only a single camera mounted on the robot end-effector
has been described. To the best of the authors’ knowledge, with
respect to the current state of the art, this is the first successful
attempt to catch a flying object with a singular moving camera.
The estimate of the ball trajectory uses an iterative nonlinear opti-
mization algorithm, which employs only 2D visual measurements
together with a complete ballistic ball motion model. Moreover,
a linear estimation algorithm based on a first initial collection of
ball observations and on a simplified ball motion equation is em-
ployed to initialize the nonlinear optimization algorithm, resulting
in a significant speed-up of the proposedmethod. In order to prove
the results given by the proposed estimator, a comparison with
the measurements given by an OptiTrack motion-capture system
has been provided. The effectiveness of the proposed approach has
been demonstrated both in theory and with experimental results
on a common industrial robotic set-up.

Future work will be focused on the realization of other object
recognition methods, for instance based on the shape. Other
methods relying, for instance, on particle filters and similar can
be investigated in such a framework. The stability proof can be
enhanced by considering the camera calibration errors as well.
Moreover, a deep comparison between catching a thrown ball by
using either amoving or a static single camera could be developed.
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(a) x–y plane. (b) z–y plane.

Fig. 8. Sequence of the interception points (cross points) projected into the (x–y)-plane and (z–y)-plane. The dashed lines represent the planned path, starting from the
current hand position (circle points) and ending into the current estimated interception points. The continuous lines represent the real path followed by the gripper, starting
with the initial baseline (green) and leading to the final catching point (biggest cross). The big orange circle represents the final position of the ball measured by the OptiTrack
system. The big blue circle in the background is the estimated final position of the gripper catching base. The color bar on the right identifies the refinements of the interception
points, while the related labels represent the number of visual measurements employed by the estimating process of each refinement. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Appendix A

The necessary quantities to be estimated in (8) are the linear
position p̂c

o, linear velocity ˙̂p
c
o, and angular velocity ω̂

c
o of the

center of the ball with respect to Σc . Starting from the current
estimate of the position p0 and velocity ṗ0 of the ball, the ballistic
model (19) is numerically integrated in the time interval [0, ti]. In
this way, p̂c

o can be obtained at a certain time t . With the same
numerical integration, it is also possible to obtain the estimate of
the linear velocity ˙̂p

c
o. Finally, the angular velocity can be retrieved

as

ω̂
c
o = (1/∥p̂c

o∥
2)(p̂c

o × ˙̂p
c
o).

It is worth noting that the first estimates of p0 and ṗ0 are
obtained after nl measurements. Before that nl measurements are
collected, the initial values of p0 and ṗ0 should be anyhowprovided
to compute the above mentioned qualities. Hence, a statistical
calibration has been preliminary realized to retrieve a rough initial
estimation of p0 and ṗ0.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2013.06.008.
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