Robotica (1990) volume 8, pp 231-243

A closed-loop inverse kinematic scheme for on-line joint-based

robot control*
Bruno Siciliano

Dipartimento di Informatica e Sistemistica, Universita degli Study “Federico I1” di Napoli, Via Claudio 21, 80125

Napoli (Italy)

(Received in final form: November 14, 1989)

SUMMARY

A computationally fast inverse kinematic scheme is
derived which solves robot’s end-effector (EE) trajec-
tories in terms of joint trajectories. The inverse
kinematic problem (IKP) is cast as a control problem for
a simple dynamic system. The resulting closed-loop
algorithms are shown to guarantee satisfactory tracking
performance. Differently from previous first-order
schemes which only solve for joint positions and
velocities, we propose here new second order tracking
schemes which allow the on-line generation of joint
position + velocity + acceleration (PVA) reference tra-
jectories for any computed torque-like controller in
sensor-based robot applications. The algorithms do
explicitly solve the IKP for both EE position and
orientation. Simulation results for a six-degree-of-
freedom PUMA-like geometry demonstrate the
effectiveness of the scheme, even near singularities.

KEYWORDS: Kinematic scheme; Closed-loop algo-
rithms; On-line control; Robots.

I. INTRODUCTION

Robot control actions are naturally executed in the joint
space, whilst robot motion trajectories are better
specified in the task space. Usually, the location of the
robot’s end-effector (EE) is commanded to vary as a
function of time along a given path. Three Cartesian
coordinates describe the EE position and three angular
coordinates (e.g. Euler angles) characterise the EE
orientation in a six-dimensional task-space.' Let then the
direct kinematic equation of a manipulator with arbitrary
structure be known; the problem we want to solve in this
paper can be formulated as follows:

Assigned an EE trajectory (position + orientation),

find a (PVA) joint position + velocity + acceleration

joint trajectory which is a solution to the direct
kinematic equation, i.e. it reproduces the desired
motion at the EE.

Most approaches proposed in the literature are aimed
at solving the inverse kinematic problem (IKP) for a
given constant EE location. It has been well-known for a
long time that analytical inverse kinematic solutions exist
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only for special manipulator geometries,>* such as the

so-called wrist-partitioned type of manipulator.

For all those structures which are not solvable in
closed-form, a number of numerical techniques have
been proposed most of which are based on the
computation of the manipulator’s Jacobian. An iterative
method based on a nonlinear optimisation algorithm
which uses a modified Newton—Raphson method has
been proposed by Goldenberg et al.* Angeles® derived a
numerical method from the formulation of invariants in
the rotational part of the so-called closure equations.
Another technique by Lenar&it® solves the IKP by using
the conjugate gradient method. A conceptually different
approach by Tsai and Morgan’ is based on the use of
continuation methods. The resulting computationally
lengthy technique has recently been simplified by
Manseur and Doty® when applied to the so-defined
orthogonal manipulators.

On the other hand, solving the IKP along a trajectory
is of crucial importance in order to provide the robot
controlled in the joint space with the reference joint
trajectories to be tracked. Here, computation time
becomes a primary concern for those on-line sensor-
driven tasks when computing the inverse kinematics at
the same rate as the joint servo rate becomes a must.’?
Since the pioneering resolved motion rate technique,’
computationally efficient velocity and acceleration
inverse kinematic solutions have been derived for
wrist-partitioned geometries by Featherstone'® and
Hollerbach and Sahar,"' respectively. All these tech-
niques are inherently open-loop computational methods
which suffer from problems with long-term drift and
initial EE location errors.

A rather different approach to the solution of the IKP
is obtained by constructing a simple closed-loop dynamic
system, whose input is the desired EE trajectory and
whose outputs are the joint trajectories which give the
desired motion at the EE. The original idea was
independently proposed by Balestrino et al.'> and
Wolovich and Elliott"> for solving only the position
component of the EE trajectory. A closed-loop scheme
based on the computation of the Jacobian transpose was
devised which generates the joint displacements and
velocities while guaranteeing a null positional error and a
norm-bounded tracking error.

The non-trivial extension to account for the orienta-
tion component of the EE trajectory has been described
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in Siciliano'* and Balestrino et al.,' and the investigation
of a special non-solvable structure has been presented by
Sciavicco and Siciliano.'® The application to the case of
robots with redundancy has been discussed by Sciavicco
and Siciliano'”"'*? and Sciavicco et al.'® The issue of
kinematic singularity robustness of the scheme has
recently been addressed by Chiacchio and Siciliano.*' If
the EE location is assumed to be constant, closed-loop
schemes based on the same concept of Jacobian
transpose have been designed in Asada and Slotine®* for
general positional tasks, and in Das et al.? for redundant
manipulators.

The convergence of the above schemes is ensured by
Lyapunov stability theory which leads to establishing
estimates of the region of attractiveness of the solutions.
Also, the algorithms are remarkably based on the sole
computation of direct kinematic functions, and therefore
they avoid the typical numerical instabilities associated
with any matrix inversion-based technique. Alterna-
tively, closed-loop convergent schemes solving for EE
position + orientation based on the computation of the
Jacobian inverse has been suggested by Balestrino et al."®
and Tsai and Orin;* they can be considered as the
natural closed-loop extension of the resolved motion rate
technique.® Similar is also the scheme proposed by
Wolovich and Flueckiger® which ensures an exponen-
tially decaying error only, and not perfect tracking as in
the above two schemes.'>*

All the above schemes can be termed first-order
schemes, since they solve for joint displacements and
velocities. For joint space control purposes, however, it
would be nice to generate joint accelerations as well,
designing then a second-order inverse kinematic scheme.
If the EE location is constant, a second-order positional
scheme based on the Jacobian transpose has been
proposed by Slotine and Yoerger® for the general case
of redundant manipulators. Conversely, a so-called joint
space command generator has been derived by Vaccaro
and Hill?’ which is based on the Jacobian inverse, but it
only solves for EE position; the same idea has also been
developed for robot Cartesian control.?

For the most general case of an EE trajectory, a
second-order scheme logically derived from resolved-
acceleration control®® has lately been obtained by
Sciavicco and Siciliano® which requires the computation
of the Jacobian inverse. More recently, Siciliano®® and
Novakovi¢*> have independently established a new
second-order scheme based on the use of the Jacobian
transpose which makes use of the sliding mode theory.®
Their scheme can be utilised, however, only for solving
EE position.

In this paper we propose a new second-order tracking
scheme which solves EE trajectories (position +
orientation) in terms of joint PVA trajectories by means
of a fast convergent algorithm which only requires the
computation of the direct kinematic function and of the
Jacobian of the manipulator. The definition of an
orientation error which is consistent with the adoption of
EE angular velocities as task space variables directly
follows from the first-order scheme recently proposed by

Closed-loop control

Chiacchio and Siciliano.*

A PUMA-like manipulator is chosen to develop a
numerical example. Being this geometry wrist-
partitioned, the EE position IKP is solved separately
from the EE orientation IKP. The limited number of
computations required allows for a 1kHz solution rate
on condition that a high-speed floating-point arithmetic
processor is adopted. The solutions obtained with the
Jacobian transpose technique are then compared with
those obtained with the more computationally demand-
ing Jacobian inverse technique in order to illustrate the
power of the proposed algorithm. The tracking errors
will be shown to be less than 0.45 mm for position with
an average EE velocity of 1 m/s, and less than 0.35° for
orientation with an average EE velocity of 180°/s. Also,
the convergence of the Jacobian transpose algorithm is
tested in the neighbourhood of a double singular
configuration.

I1. THE INVERSE KINEMATIC PROBLEM (IKP)
It is well-known® that the manipulator’s EE location can
be described as a function of time ¢ by a position vector
p(¢) and an orientation matrix R(¢) = (n(¢) s(¢t) a(¢)); p is
the vector pointing from a reference base frame to an EE
frame, and n, s, and a are the normal, slide, and
approach unit vectors of the EE frame expressed in the
base frame coordinates. The direct kinematic equation of
the manipulator defines the transformation from the
n-dimensional vector of joint displacements q to the
vectors of EE location (p, R) as

p() =p(q(r)) R(r)=R(q(?)). (1)

Given a desired EE location (p,, R;), the IKP can be
stated as that to find a solution q, to (1).

In manipulator kinematics it is of interest also the
mapping from the vector of joint velocities § to the
vector of EE velocities v, i.e.

p(t

0= () = 1@ @
through the (6 X n) Jacobian matrix. In (2), p is the
vector of EE linear velocities obtained as the time
derivative of p in (1), and w is the vector of EE angular
velocities. As a consequence, the matrix J(q) can be
thought as partitioned into two (3 X n) matrices, i.e.

1w =(r ). ®)

Notice that an appropriate orientation counterpart for p
which represents [ dt cannot be defined.’

Assigned a desired EE velocity vector v,, equation (2)
can be solved for the joint velocity vector q, according to
the so-called resolved rate technique’ as

9(2) =77 (qu)va(t) 4)

which, once q4(0) is known, can be integrated over time
to provide q,(¢). In (4) it is assumed that an inverse to J
does exist for all q,’s; a pseudo-inverse must be used if
the Jacobian degenerates or if the manipulator is
redundant.*
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Differentiating both sides of (2) with respect to time
yields the mapping from the vector of joint accelerations
4 to the vector of EE accelerations v, i.e.

V(1) =J(@)d() +J()i(0) ©)

where J = 8J/3t. Solving (5) for the joint accelerations
§y4, similarly to (4), according to the so-called resolved
acceleration technique® gives

4u(t) =77(q2)(Va(t) — J(q)qu(1)) (6)

which, once ¢q4(0) and q,(0) are known, can be
integrated over time to provide q,(¢) and q(¢).

Having obtained the desired PVA joint trajectories,
one can design a computed torque-like controller.?? If
the robot operates in a sensor-based fashion, however, it
is crucial to generate the joint trajectories on-line at a
minimum of several hundred Hertz, ten to twenty times
the robot structural resonant frequency,’ such that
satisfactory trajectory tracking is obtained.

IIl. CLOSED-LOOP FORMULATION OF THE
IKP

A conceptually different approach to the solution of the
IKP which is independent of the particular robot
geometry is illustrated in the following. The idea is to
reformulate the IKP as a tracking problem for a simple
closed-loop dynamic system, whose input is the desired
EE trajectory and whose outputs are the joint
trajectories. This approach opposes the computational
method based on (6) which is an open-loop style method,
thus overcoming drawbacks like long-term drift and
initial EE location errors.

Several first-order schemes based on this idea which
solve for joint displacements and velocities have been
proposed in the literature. They can be distinguished into
those based on the computation of the Jacobian
transpose'>>3* and those based on the computation of
the Jacobian inverse.?***2® QOnly some of the above
schemes, however, do explicitly account for the EE
orientation'*'%-242534 which is not a trivial problem, as
discussed in the previous section. The schemes based on
the inverse give better results than those based on the
transpose, but they are more computationally demanding
and may fail in the neighbourhood of kinematic
singularities. It is to be mentioned, also, that the
schemes based on the Jacobian transpose can be suitably
extended to redundant manipulators without noticeable
computational efforts,'” "% whereas a pseudoinverse is
usually required for the others.****»® The reader is
referred to the wide list of references provided at the end
of the paper for more details concerning first-order
schemes.

The goal of this section is to derive a new closed-loop
second-order tracking scheme which solves the IKP for
EE position + orientation trajectories. Partial solutions
based either on the Jacobian transpose®*>'2 or on the
Jacobian inverse*’*** have been proposed, but none of
them accounts for the EE orientation.

Let then e(t) denote a six-dimensional error vector
between the desired EE location (py, R;) and the actual
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EE location (r, R) which can be computed from the
current joint configuration vector q via (1). Notice that q
is not to be interpreted as sensed at the robot joint
actuators, but it is just algorithmically computed. The
error e is though of as partitioned into

=) 0

where e, denotes an EE position error and e, an EE

orientation error.
The definition of e, is straightforward, i.e.

e, (1) = pa(t) — p(t) 8

whereas the definition of e, is the same as originally
proposed by Luh et al.,”, i.e.

e,(8) = 3(n(6) X my(2) + 5(2) X s4(2) + a() X a4(2)) (9)

where (n, s, a) and (ng, s;, a,;) denote the actual and the
desired unit vector triples of the EE frame, respectively.

It should be remarked that the desired EE orientation
is usually described by a minimal number of coordinates,
typically three Euler angles (v, 8, ¢). The desired unit
vector triple of the EE frame (m,, s,, a,) can then be
computed through the rotation matrix associated with
the Euler angles representation.’

Additionally, let é(¢) denote the error vector between
the desired EE velocity vector v, and the actual EE
velocity vector v which can be computed from the
current joint velocity vector q via (2). The partition of é
follows accordingly to (7), i.e.

(P = ép(t)>
&(r) <éo o) (10)

It is easy to see that

&,(t) = pa(t) — p(2). (11)
As regards the orientation error, it can be shown thatt

€,(1) = w4(t) - w(0). (12)

The second-order closed-loop scheme of Figure 1 can be
devised. If the control law §(r) is chosen so that the
system is guaranteed to be stable, i.e. e(t) asymptotically
tends to zero, it can be concluded that the system
performs a second-order kinematic inversion; namely,
given (pa(t), R4(t)), v4(t), and v,(¢) if needed, the
scheme generates q(t), G(t), §(t) which are “infinitely
close” to qu(t), q4(2), Gu(¢), respectively.

II1.A The Jacobian inverse scheme

A first result can now be established which follows from
Sciavicco and Siciliano,* but it is extended to include EE
orientation; the explicit time dependence will often be
suppressed for notation compactness.

Proposition 1. If the matrix J(gq) has full rank for all
Joint configurations q’s, the control law

Q=70 -J(@i+Ke+Ke)  (13)

1 In fact, even if [ wdt is not defined, Luh er al.** argued that,
for small errors, &, is the true time derivative of e,. Later, this
has been demonstrated by Yuan®* through the use of
quaternions.
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Fig. 1. The closed-loop IKP tracking solution scheme.
with K, and K, positive définite diagonal matrices such

( )
K KU

P

(14)

is a Hurwitz matrix, ensures that e(t)—0 as t— o, if
€(0) #0, and e(f) = 0 along the EE trajectory if e(0) =0.

Proof: Differentiating (10) with respect to time and
accounting for (5) yields

é=v,—J(@a-J(@)d. (15)
Direct substitution of (13) in (15) gives
é+Ke+Ke=0. (16)

In force of (14), the convergence of the error e to zero
can be suitably “shaped”. Convergence of the position
error €, needs not to be further explained. Convergence
of the orientation error e, is ensured except for the
singular case when the actual EE orientation differs from
the desired EE orientation by an Euler rotation of 180°.
This corresponds to having (m,s,a) = (—n,, —s,, —a,),
with e, =0. Therefore, as long as this case does not
occur at t=0, equation (16) guarantees that the
orientation error will asymptotically tend to zero. End of
Proof.

III.B The Jacobian transpose scheme

The scheme that we derive in the following actually
originates from the work independently developed by
Siciliano®® and Novakovié.”> The convergence of the
scheme is proved by means of Lyapunov stability theory.

Proposition 2. The control law

) 'Kz r
q = (1 + STKT](q)JT(q)KS) J (q)KS (17)
where K is a positive definite diagonal matrix,
s=¢é&+ Ae (18)

with A being a positive definite diagonal matrix, and
z=v,—J(q)q + Aé, (19)

ensures that s(1)—0 as t—», if s(0)#0, and s(t)=0
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along the EE trajectory if s(0)=0. Also, the
convergence of s to zero ultimately implies the
convergence of e to zero, by virtue of (18).

Proof: Define the positive Lyapunov function candid-
ate of the error sliding vector s in (18) as

v=14s"Ks. (20)

Its time derivative along the trajectories of the system
(15) results in

v=s"K"z-s"K"I(q)§ (21)
with z defined in (19). Direct substitution of (17) in (21)
gives o= —s"K"J(qT(q)Ks =0 (22)

which in turn implies that e(r)— 0. In detail, since v is
lower bounded by zero, in force of the positive
definiteness of K in (20), s is bounded. This implies that
e and ¢ in (18) are bounded, being A positive definite
too. If J(q)J"(q) is guaranteed to be uniformly positive
definite, equation (22) ensures that s(f)—0, and
therefore e(¢)— 0.

A crucial point then remains the positive definiteness
of J(q)J7(q), which is not guaranteed when the
manipulator is in a singular configuration and J is not a
full-rank matrix. From (22) it can be seen that the
condition ¢ =0 implies e =0, except when the vector Ks
belongs to the null space of the matrix J7(q), where the
algorithm may in principle get “stuck”. One can easily
show, however, that such equilibrium point is unstable,
and the time evolution of the desired EE trajectory will
contribute to decrease ¥ again.?®

Similar remarks for the convergence of the orientation
error as for the Jacobian inverse scheme of Proposition 1
are in order also in this case. End of Proof.

Notice that the control law (17) slightly differs from
the analogous solution established by Novakovié.*
There, the resulting equation for the stability is of the
kind v = —av with &> 0 which allows for prescribing a
desired solution settling time. This might be advan-
tageous if s(0) #0.

It is worth remarking here that, from the conceptual
viewpoint, the schemes just presented can be respec-
tively regarded as closed-loop versions of the well-known
Newton type method and steepest descent method, but
here the convergence is established beforehand though.

A nice feature of the Jacobian transpose scheme over
the Jacobian inverse scheme is that its computational
burden is reduced. Also, it avoids the numerical
instabilities associated with matrix inversion near
kinematic singularities. One drawback of the scheme in
Proposition 2, however, is that it introduces, in the
neighbourhood of s =0, an equivalent gain which tends
to «. The analysis of the second term generated on the
right hand side of (17), indeed, reveals that this is given
by the ratio of two quantities that go to zero, as s—0,
with the same order two. This generates a “chattering”
behaviour in the time evolution of the joint accelera-
tions, which will be visible in the numerical results
reported in Section IV.
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Several remedies are possible against chattering, as
suggested by Novakovi€®® for instance. The most
attractive from the computational viewpoint is to simplify
the control law (17) into®

4=J"(@)Ks (23)

which implies
v=s"KTz2—s"K"J(q)J " (q)Ks. (24)

If z is assumed to be norm-bounded, one should choose
K large enough to ensure that ¥ =<0. In practice,
however, when ||J"Ks|| becomes less than a significantly
small positive number, it is ©>0. Thus, it can be
concluded that the control law (23) no longer guarantees
asymptotic stability, but only ultimate boundedness of
the tracking error.

Nonetheless, it might be argued that the assumption
on the norm-boundedness of z cannot be automatically
guaranteed a priori. More precisely, one should assume
that the three terms on the right-hand side of (19) be all
norm-bounded. For the first term, it is natural to assume
that v, is norm-bounded. The second term J(q)q can be
put in the form® H,(q)[qq] + Hxy(@)[¢*], with [¢q]=
(4142 qlq:& e qn—lqn)T» [q2] = (CI% (1% e q.i)T: and H,,
H, matrices of appropriate dimensions. The third term
Aé, finally, can be written as A(v,—J(q)q). At this
point, it can be recognised that H,(q), H,(q), A, J(q),
and v, can be all assumed to be norm-bounded.
Therefore, the problem can be reduced to the
norm-boundedness of q. In practical implementation of
the algorithm, however, when the scheme is working
well, i.e. s is small, e and é are also small and then q is
expected to be bounded. A more rigorous proof cannot
be given, but numerical results of Section IV will bear
out this issue.

Incidentally, it should be remarked that at steady-
state, i.e. when v, = v, =0, the control law (23) ensures
asymptotic stability. To see this, define the positive
definite Lyapunov function*!

v=14(e"KAe+q7q). (25)

Its time derivative along the trajectories of the system
(11) and (12) with p, = @, =0, under the control (23),
results in

v=—&"Ks+ e"KAe (26)
which, by virtue of (18), becomes
v=-¢"Ke=0 (27

implying that é— 0, and then §— 0 and e— 0.

Furthermore, an appealing feature of the solution (23)
lies in the following intuitive physical interpretation.?® It
is well known that the relationship between the vector t
of generalized joint forces and the corresponding vector
y of generalized EE forces is given by’

t=J"(q)y (28)

which can be obtained by applying the principle of
virtual work and accounting for the ‘‘dual” mapping (2).

As a consequence, the control law (23), with s as in
(18), is analogous to applying an elastic force KAe and a
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damping force Ké at the EE of an ideal manipulator with
the same kinematic structure as the manipulator of
interest, but having a unitary inertia matrix and
operating in the absence of gravity. This in turn
corresponds to apply an impedance control scheme® to
the above ideal manipulator with simple dynamics.

In force of this analogy, it can be recognised, for
instance, that in the case when the vector Ks is in the
null space of the matrix JT discussed above, this is
equivalent to applying EE forces in the direction along
which the manipulator cannot move.

We would emphasise again, however, that the purpose
of the above presented schemes is only to numerically
solve for the IKP and not to design a robot task space
control. In other words, the joint variables q and q to
feed back in the scheme of Figure 1 are not those sensed
by the robot but just those computed by the algorithm.

Another remark is in order concerning the practical
implementation of the algorithm. The solution (23)
suggests that the tracking error can be made arbitrarily
small by choosing K large enough. It should be pointed
out, however, that the implementation of the discrete-
time solution algorithm, through the sampling rate, limits
the maximum values allowable for K. In order to
establish an optimum for that value, a discrete-time
stability proof should be undertaken, as done for
instance in Das et al., but this goes beyond the scopes
of the present work.

IV. CASE STUDY

The schemes presented in the previous section have been
applied to solve the IKP along given EE position +
orientation trajectories for a six-degree-of-freedom
PUMA-like manipulator with zero offsets. Being this
geometry wrist-partitioned, it is possible to solve the IKP
into two stages; first for EE position through the first
three joint variables, then for EE orientation through the
last three joint variables.

A numerical example has been worked out. The
desired EE task is assigned in terms of a position
trajectory p,(t) and an orientation trajectory that is
assumed to represent three Roll-Pitch-Yaw angles from
which R,(t) is generated.

The initial configuration of the manipulator is chosen
as locating the EE in the desired position and
orientation, i.e. e(0)=0. The trajectories are straight
lines of 0.5m for EE position and 90° in the space of
RPY angles, to be executed in a very fast time of 0.5s;
standard trapezoidal velocity profiles are imposed.

The proposed inverse kinematic schemes have then
been applied at the same solution rate in order that
comparisons be significant. The solution rate is then set
up accordingly to the simplified Jacobian transpose
scheme which requires the least number of computa-
tions. As a matter of fact, the higher the solution rate the
better the tracking performance expected for that
scheme. It is estimated that, if a high-speed floating-
point arithmetic processor is available, a solution rate of
1kHz is sufficient to perform all the computations
required by the solution (23).
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The numerical integration method used for computing
joint displacements q and joint velocities q from joint
accelerations § is based on the Simpson rule of
integration. More sophisticated integration methods have
been tested, but they have been seen not to provide any
consistent improvement in tracking performance.

Initially, the Jacobian inverse scheme based on the
solution (13) is applied with K, = K, =0 in an open-loop
fashion. The results are illustrated in Figure 2. It is
interesting to note that the position and orientation
errors after ¢ =0.5s linearly increase, since no feedback
correction is active.

The feedback matrices K, = diag(250000 250000
250000 62500 62500 62500) and K, = diag(1000 1000
1000 500 500 500) are then introduced such that a double
pole at —500 for the position error dynamics and a
double pole at —250 for the orientation error dynamics
in (16) are obtained. The tracking errors are reported in
Figure 3 and the resulting joint accelerations in Figure 4.
It is clear that the action of the feedback terms
considerably improves the tracking performance and
guarantees null steady-state errors. The peaks in the time
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evolution of the errors are not surprising, since
trapezoidal velocity profiles having discontinuous ac-
celerations have been imposed.

The Jacobian transpose scheme based on the solution
(17) is implemented next. In order to make a *‘fair”
comparison, K = diag(1000 1000 1000 500 500 500) and
A = diag(250 250 250 125 125 125) have been chosen so
that equivalent proportional + derivative feedback ac-
tions are obtained as for the above scheme. The tracking
errors are depicted in Figure 5 and the resulting joint
accelerations in Figure 6. It can be seen that the tracking
performance is degraded by an order of magnitude, but
it is still excellent. As anticipated in theory, however, the
joint accelerations chatter about some ‘“mean-value”
trajectories which actually resemble the trajectories
obtained in Figure 4. However, the joint velocity and
position trajectories, not displayed here, are smooth in
force of the filtering nature of the integrators in cascade
to the joint accelerations.

Finally, the computationally advantageous Jacobian
transpose scheme based on the solution (23) is adopted
with the same feedback matrices as above. As expected
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Fig. 4. Joint acceleration trajectories with the closed-loop Jacobian inverse scheme.
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in theory, the tracking performance in Figure 7 is not as
good as that in Figure 3, but it is still satisfactory; less
than 0.45 mm with an average velocity of 1 m/s and less
than 0.35°/s with an average velocity of 180°/s certainly
are below the typical accuracy requirements for most
current industrial robots. The joint acceleration trajec-
tories in Figure § are seen to be ‘“very close” to the
trajectories in Figure 4 which can be considered as the
“true” ones.

In order to test the convergence of the scheme in the
neighbourhood of singular configurations, another
example has been developed for the Jacobian transpose
scheme (23) with unchanged feedback matrices and zero
initial conditions, i.e. e(0) =0.

The initial joint configuration possesses a double
singularity, namely a shoulder singularity—the wrist is
located along the shoulder axis—and a wrist singularity—
gs=0, aligning the other two wrist axes.* It is worth
recalling here that such singularities are the most
troublesome ones since they may be encountered
anywhere through the manipulator workspace.

The trajectories have the same path length and
duration as above; the EE position trajectory is chosen
as having a non-zero component orthogonal to the plane
of the structure, and similarly the EE orientation
trajectory is chosen as having non-zero roll and yaw
components. It follows that the tracking error will have a
non-zero component along the null space of the Jacobian
transpose at the initial joint configuration. As anticipated
in theory, this is undoubtedly a critical test for the
algorithm.

From the results illustrated in Figure 9 it can be
noticed that both tracking errors initially increase,
showing the effort to leave the singularity, but afterwards
they decrease. This behaviour is reflected by the initial
higher values of joint accelerations in Fig. 10.

V. CONCLUSIONS

Closed-loop second-order tracking schemes for trans-
forming given EE position + orientation trajectories into
joint PVA trajectories have been presented in this paper.
A first scheme based on the computation of the
manipulator’s Jacobian inverse has been derived from
the concept of resolved acceleration control.

To the purpose of avoiding matrix inversion which is
usually critical point in any numerical method, a new
scheme has been proposed which is based on the
computation of the Jacobian transpose. Asymptotic
stability of the tracking error is guaranteed, so as in the
Jacobian inverse scheme, but at the expenses of
chattering accelerations. A computationally advan-
tageous simplification of the scheme has been proposed
which guarantees ultimate boundedness of the tracking
error and asymptotic stability of the steady-state error.

A case study has been worked out for the a
PUMA-like manipulator, and numerical results have
clearly demonstrated that the performance achieved with
the computationally fast Jacobian transpose algorithm
favours the use thereof in solving the IKP for any
industrial robot of arbitrary kinematic structure.

Closed-loop control
Convergence around been
successfully tested.

An open research issue remains the application of the
proposed scheme to kinematically redundant structures,
when the number of joint variables exceeds the number
of task space variables. In fact, although the extension of
the scheme appears to be quite straightforward, the null
space of the Jacobian matrix in a redundant manipulator
allows for joint velocities unobservable at the output,
which may generate internal motions of the structure
uncontrollable though. This point, along with other
related topics such as inclusion of constraints and
task-priority strategies*® for these second-order schemes,
will constitute the subject of further investigation.

singular positions has
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