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Vision-based grasp learning of an anthropomorphic
hand-arm system in a synergy-based control framework
F. Ficuciello1*, A. Migliozzi1, G. Laudante2, P. Falco3, B. Siciliano1

In this work, the problem of grasping novel objects with an anthropomorphic hand-arm robotic system is considered.
Inparticular, an algorithm for learning stablegraspsof unknownobjects hasbeendevelopedbasedonanobject shape
classification andon the extraction of some associated geometric features. Different concepts, coming from fields such
as machine learning, computer vision, and robot control, have been integrated together in a modular framework to
achieve a flexible solution suitable for different applications. The results presented in this work confirm that the com-
bination of learning from demonstration and reinforcement learning can be an interesting solution for complex tasks,
such as graspingwith anthropomorphic hands. The imitation learning provides the robotwith a goodbase to start the
learning process that improves its abilities through trial and error. The learning process occurs in a reduced dimension
subspace learned upstream from human observation during typical grasping tasks. Furthermore, the integration of a
synergy-based control module allows reducing the number of trials owing to the synergistic approach.
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INTRODUCTION
The ability to effectivelymanipulate different objects and to successful-
ly use a variety of tools are two of the key skills that humans developed
during their evolutionary history. For robots to approach the capabil-
ities of humans to interact with their environment, the design, imple-
mentation, and control of dexterous, anthropomorphic hands appear
to be pivotal points and have raised a lot of interest in the scientific
community over the course of the years.

The human hand is a very complex, articulated biomechanical sys-
tem, and the problem of replicating its structure and capability is very
challenging in terms of not only mechanical design but also motion
planning and control. Inspired by studies in neuroscience (1), the idea
of considering coordinated joint motion patterns for robotic hands, real-
ized both by means of mechanical transmissions and by developing
control strategies in a subspace of reduced dimensionality, has been
successfully applied in several works (2–4).

Many different approaches to grasp synthesis problem have been
proposed, but most of them can be classified as either analytic or em-
pirical (data driven) (5). Analytic grasp synthesis usually consists of for-
mulating a constrained optimization problem to obtain grasps that
satisfy one or more desired properties, such as stability and dexterity
(6). Empirical approaches, instead, try to combineperceptual information
acquired through sensors and previous knowledge coming from either
experience or human demonstrations to compute grasps that optimize
some quality metrics (7). Different classifications have been proposed
for data-driven algorithms: For example, in (5), the authors distinguished
between techniques based on human observation and those based on ob-
ject features, whereas in (7), they were categorized on the basis of the
amount of previous knowledge of the object (known, familiar, or un-
known object). A key step in data-driven algorithms is grasp selection:
Based on the available data, an appropriate grasp can be selected either
by choosing one of the candidates in a database or by synthesizing it
from scratch. In general, the features of the object are fundamental in
selecting a good grasp; different solutions have been proposed to asso-
ciate grasps to different objects. In some works, the object was modeled
with basic shape primitives, which were used to reduce the number of
candidate grasps (8, 9); in (10), SVM (support vector machines) regres-
sion was used to match object shape, grasp parameters, and grasp qual-
ity; and in (11, 12), grasping regions of the object were identified.

After a grasp has been selected, it is usually evaluated either in
simulation or on the real robot, according to somemetrics that can dis-
criminate between good and bad grasps. Over the years, a variety of
metrics for evaluating grasp performances have been discussed. An ex-
tensive overview of the different quality indices proposed in literature is
provided in (13). Grasp quality measures can be divided in two broad
categories: those associated with the positions of contact points on the
object and those that depend on the hand configuration. The former
can be further divided in three subgroups: measures based on the alge-
braic properties of the grasp matrix G, measures based on geometric
considerations, and measures that keep into account limitations on
the magnitude of the forces that can be exerted by the fingers.

Among reinforcement learning (RL) algorithms available in litera-
ture, there are two model-based RL algorithms that can be suitable for
robotic manipulation: PILCO (probabilistic inference for learning con-
trol) and PI-REM (policy improvement with residual model). PILCO is
a state-of-the-art model-based policy search algorithm introduced by
Deisenroth and Rasmussen in 2011 (14). PI-REM is a recent model-
based algorithm proposed by Saveriano et al. in 2017 (15). The key idea
of PILCO is to learn a probabilistic forwardmodel of the systemdynam-
ics to explicitly take uncertainties into account. Themodel is implemen-
ted as a nonparametric Gaussian process with previous mean function
and squared exponential kernel. The policy improvement is gradient
based, and the gradient is computed analytically. The basic idea of
PI-REM is to develop initially an approximate model of the system,
controlled with an approximate policy (learned with PILCO); in a sec-
ond stage, a residual model (difference between the approximate and
real model) is learned and used to improve the real policy that is applied
directly on the robot. In this work, we considered a robotic system con-
sisting of a five-fingered hand and a redundant anthropomorphic ma-
nipulator provided with many degrees of freedom (DoFs) (20 for the
hand and 7 for the arm); therefore, we used dimensionality reduction
techniques to define the learning algorithm in a subspace of reduced
dimensionality (16). In particular, the concept of postural synergies,
originally introduced in (1), was transferred to the robotic hand, as pro-
posed in (2, 17), by means of principal components analysis (PCA). A
data-driven approach to grasp synthesis, combining learning from
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demonstration based on neural networks (NN) and RL based on policy
improvementwith path integrals, was adopted to provide the robotwith
the ability to learn and improve grasps for previously unknown objects.
To automatize the grasping process, we used a vision system to detect
the object in the scene and to estimate its pose and geometric features.
With respect to (18), this work contributes an upgraded framework that
includes visual perception and its integration in the learning pipeline. In
(18), the geometric parameters of the objects were assumed to be
known, but in this work, they were computed from an RGB-D camera.
Therefore, the level of autonomy of the algorithm has been increased.
On the other hand, the accuracy and the resolution of the camera, as
well as the efficiency of the algorithm adopted for geometry reconstruc-
tion and pose detection, can affect the learning process. The
experiments run in this work demonstrate that the algorithm is stable
and robust in case of uncertainties on perception of the environment.
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RESULTS
Overview of the algorithm
A schematic overview of the proposed algorithm is provided in Fig. 1.
First, information about the region of interest in the scene is acquired in
the form of a point cloud through an RGB-D sensor. The acquired data
are filtered and processed by the object recognition module, which is
responsible for detecting the objects in the scene and estimating their
shape, dimensions, and pose.

The extracted features are sent as an input to the NNmodule, where
two sets of multiple NN, one for the hand and one for the arm, have
been trained ondata acquired fromhumandemonstration throughmo-
tion capture tools; the provided output is a vector of three synergy param-
eters for the hand and two coefficients for the arm. At this point, the
parameters provided by the NN are used to initialize an RL loop, based
on the policy search paradigm, to endow the robotic system with the
ability to improve its performances over time, with reference to some
appropriate qualitymetrics. On the basis of the initial policy parameters,
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
some samples are extracted from Gaussian multivariate distributions
for the coefficients of both the hand and the arm; each of these samples
generates a trajectory for the robot, in Cartesian coordinates, during the
planning phase. The planned trajectories are executed on the real sys-
tem using a kinematic control strategy (19), where a closed-loop inverse
kinematic algorithm is used to convert references from the operative
space to the configuration space of the robot, serving as inputs to the
lower-level controllers embedded in the system.

Each of the executed trajectories is assigned a cost that consists of
two terms: a binary score that heavily penalizes trajectories leading to
failed grasps and a cost function related to a quality index of the force-
closure properties of the grasp (20). Last, based on the obtained costs,
the policy is updated and a new set of parameters is extracted. This loop
can be either repeated for a fixed number of times or run until the cost
function becomes lower than a desired threshold.

Dimensionality reduction
Robots are complex nonlinear systems, with many DoFs, that have
to execute complex actions while potentially interacting with un-
structured environments. Therefore, most of the machine learning
techniques that have been successfully applied in other fields are
difficult to apply to the huge amount of parameters involved in
the context of robotics (21, 22).

A potential solution to this problem is to adopt different techniques
that are targeted at reducing the dimensionality of the system. Postural
synergies, sometimes also called eigengrasps, were initially studied in
the field of neuroscience: It had been observed that the movement of
the human hand during grasping and manipulation is dominated by
movements in a space of reduced dimensionality compared with the
number of DoFs of the human hand (1).

This concept can be transferred to robots by means of data analysis
techniques, such as PCA (23). By taking advantage of this idea, the an-
thropomorphic hand can be controlled directly in the postural synergies
subspace, greatly reducing the complexity of planning, control, and
uest on July 1, 2019
Fig. 1. Schematic overview of the proposed algorithm.
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learning. The postural synergies of the SCHUNKS5FH(SVH) computed
in (17) have been implemented in this work. The number of motors is
notably lower than the number of joints; thus, jointmotion couplings are
regulatedbymeansofmechanical synergies definedviamechanical trans-
missions. The differential kinematics between the mechanical synergies
subspace and the Cartesian space is represented by

:
x ¼ Jhm

:
m , where

Jhm∈ℝ
nx�nm is the mechanical synergies Jacobian and is computed as

Jhm ¼ JhSm, such that

:
x ¼ JhSm

:
m¼Jh

:
q ð1Þ

x∈ℝnx , with nx = 15, is the position vector of the five fingertips and
Jh∈ℝnx�nq is the S5FH hand Jacobian. Sm∈ℝnq�nm is the matrix of the
mechanical synergies and maps motor velocities into joint velocities,
Sm

:
m ¼ :

q. In addition to the mechanical synergies of the hand, motion
coordination patterns or motor synergies can be computed to further re-
duce the number of parameters needed to plan and control the grasping
activities. Synergies subspace for hand control has been computed using
human grasp data and a mapping algorithm developed in (24). Human
grasp data are based on fingertip measurements that are used as desired
references in a closed-loop inverse kinematic scheme that is in charge of
reconstructing the hand configuration. The maps between the synergies
subspace and themotor space, andbetween the synergies subspace and the
joint space, are given bym ¼ Sssþ �m and q ¼ SmðSssþ �mÞ þ q0,
respectively.

The matrix Ss∈ℝnm�ns represents the base of the synergies sub-
space, whose dimensions depend on the number of eigengrasps
considered to approximate the grasp. Thus, the number ns can vary
from 1 to 9. In this work, the synergies subspace is three-dimensional,
and thus, it is obtained by choosing ns = 3. Thus, the columns are the
first three eigenvectors (or eigengrasps) with higher variance com-
puted using PCA on the grasp dataset mapped from the human hand
to the robotic hand. Last, �m∈M⊆ℝnm is the zero offset of the motor
synergies subspace.

Object recognition and pose estimation
In this work, a simple object-recognition and pose-estimation pipeline
has been implemented.We used a semistructured environment involv-
ing a table on which different objects are placed. To simplify, we as-
sumed that such objects could be recognized as sphere or cylinder. We
used an Asus Xtion PRO LIVE camera for point cloud data acquisition.

We divide the analysis in two phases: syntactic phase, in which dif-
ferent clusters have been extracted from the scene, and semantic phase,
in which all the clusters found are tested with two RANSAC models
(sphere and cylinder) and the object is labeled as the best-fitting model.
Syntactic phase
After taking a point cloud of the scene, we follow a simplified process-
ing pipeline. Because we have both a static scene and static position
between the scene and the camera, we can assume that all the data out
of certain limits can be cut out and filtered. As a second step, we find
the largest planar component of the scene, representing the table, and
extract it; we also need to divide all the other points in different clusters
so that we obtain all the clusters that represent all the candidate objects
that will be classified (see Fig. 2). For this purpose, we implement the
Euclidean cluster segmentation criteria described as follows:

The point cloud P is represented in a k-d tree structure;
For each point pi in P:
Add pi to the current queue Q;
For each point pi in Q do:
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
add every neighbor of pi in a radius r to Q unless it has
already been processed.
When the list of all points in Q has been processed, add
Q to the list of clusters C, and reset Q to an empty list;

The algorithm terminates when all points pi ∈ P have been pro-
cessed and are now part of the list of point clusters C.

In Algorithm 1, we describe in short how the syntactic phase work.
The input to the syntactic phase algorithm is a point cloud S of the
scene, and the output is the vector of point cloud clusters[pointCloud].

Algorithm 1 Syntactic phase
1: function (clusters[pointCloud]) = syntacticPhase(PointCLoudS)
2: (Sf) = regionFilter(S, regionLimits)
3: (Sf) = removeLargestPlanarComponent(Sf)
4: (clusters[pointCloud]) = EuclideanClusterExtraction(Sf)

Semantic phase
Now, we have to label the different objects found. Each object is pro-
cessed both as a cylinder and as a sphere using RANSAC models. The
criteria adopted are related to the number of inliers and outliers from
which the RANSAC algorithm comes out. In this way, we can classify
each object and establish how much of it is sphere or cylinder. Both
spheres and cylinders are associated with a vector of parameters, ϑ.
For spheres, it is ϑ = (r, c), where r and c are the radius and the
three-dimensional (3D) center of themathematical model, respectively.
For cylinders, the parameters are ϑ= (r, c, d, h), where r is the radius, c is
the 3D centroid of the cluster, d is the vector representing the axis of the
cylinder, and h is the height computed as the distance between two
points that have the maximum and minimum coordinate values on
the maximum variance axis. Such criteria allow us to also use different
objects that are quasi-sphere or quasi-cylinder (such as a cup of tea or a
bottle). This approach emphasizes the robustness of the system to grasp
ormanipulate objects that have a similar shape to those already known.
In the recognition phase, we assume that all of the objects can be suffi-
ciently approximated with spheres or cylinders. Although this approx-
imation can introduce errors in recognition and pose estimation, the
learning process makes the system robust to perception errors. The
Fig. 2. Example of point cloud processing. (A) Original point cloud. (B) Pro-
cessed point cloud. The main plane in the scene has been removed, and the seg-
mentation of the remainder of the cloud has been executed.
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pseudocode of the semantic phase is described in Algorithm 2. The
input to the semantic phase algorithm is a point cloud O of a clustered
object, and the outputs are the label l and the parameter vector ϑ of the
sphere or cylinder that best fits the object.
Pose estimation
RANSAC model has different parameters for each shape: center and
radius for the sphere and center, radius, axis of the cylinder, and height
for the cylinder. All coordinates are expressed in the camera frame;
thus, a transformation in the robot frame is necessary to allow for ma-
nipulation. For this purpose, a marker has been placed at a fixed loca-
tion on the base of the robot, and transformation matrices have been
used to move from one coordinate frame to another.

Algorithm 2 Semantic phase
function (l, ϑ) = semanticPhase(PointCLoudO)

2: (is, ϑs) = RANSAC(O, Sphere)
(ic, ϑc) = RANSAC(O, Cylinder)

4: if ic > is then
l = Cylinder

6: return (l, ϑc)
else

8: l = Sphere
return (l, ϑs)

10: end if

The followingnotations for thenecessary transformationmatrices can
nowbedefined:Tc

o, pose of the object in camera frame;Tm
c , transformation

between the camera and the marker; Tb
m , constant transformation be-

tween the marker and the base frame; Tb
o , transformation between

the object and the base frame;Tc
o is provided by the object recognition

script; Tb
c is acquired using a ROS wrapper for Alvar (25), an open

source AR tag tracking library, whereas Tb
m is fixed and known.

For the composition property of transformation matrices (19),
the desired matrix can be found as

Tb
o ¼ Tb

mT
m
c T

c
o ð2Þ

Learning from demonstration
In a previous work (26), a dataset of grasps demonstrated by a human
teacher was acquired through a motion capture suit. For each of the
demonstrated grasp, the features of the object were defined as the input,
whereas the values of both the synergy coefficients of the hand and the
parameters of the armwere defined as the output. This dataset has been
used to train two sets (one for the hand and one for the arm) ofNN (27).
Their architecture was experimentally chosen by trying different com-
binations of hidden layers andneurons and analyzing the corresponding
performance in terms of mean squared error. We found that a feedfor-
ward structure with two hidden layers and 10 neurons for each is the
most suitable choice for our particular application.

Reinforcement learning
The output of the NN module is then used to initialize the policy
parameters of an RL loop. The idea is to explore the synergy subspace
of the system locally to the initial values provided by imitation learning
to improve the performances of the robot in a trial-and-error paradigm.
The RL loop can be fundamentally divided in four main phases:

1) Sampling.N samples are extracted from twomultivariateGaussian
distributions with means mhand and marm given by the outputs of the NN
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
and covariance matrices Shand and Sarm chosen before the start of the
loop. The choice of Shand and Sarm determines the width of the explora-
tion in the space of policy parameters. In this work, a simple exploration
decay has been implemented to favor the exploitation of the acquired
information over exploration in later stages of the learning process.

2) Planning. For each of the samples extracted in the previous phase,
a trajectory in the Cartesian space is planned for both the hand and the
arm.The equationmapping the synergy subspace to theCartesian space
for the hand is given by

:
x ¼ Jhm

:
m¼JhSs

:
s ð3Þ

where Jhm is themechanical synergies Jacobian;
:
m and

:
s are the vectors

of motor and synergies velocities, respectively; Jh is the hand Jacobian;
and Ss is the synergy matrix. The mapping between the reduced sub-
space for the arm and the Cartesian pose of the end effector is given by

p ¼ �pþ epap ð4Þ

e ¼ �eþ eeae ð5Þ

where p is the position of the center of the wrist, D is the vector part of
the quaternion, �p and �e are the mean values of p and D obtained from
PCA, and ep and eD are the first principal component for the position
and the orientation, respectively. On the basis of these relationships, a
rectilinear path from the home configuration of the wrist to the desired
pose is planned. Once the desired pose has been reached, the fingers are
closed according to the values of the synergy coefficients.

3) Execution. To execute the planned trajectories, the references have
to be mapped in the configuration space of the system; in particular, we
need to compute the target velocities of the joints that allow the robot to
reproduce the desired motions. This has been done by applying a closed-
loop inverse kinematic algorithm (19). In addition to the execution of
the planned motions for the hand-arm system, an additional low-level
reactive control has been implemented for the hand: The fingers close
toward the centroid of the polygon with vertices at the center of the
fingertips until the measured current reach a certain threshold.

4) Evaluation and reward. For each trial performed, the agent re-
ceives a reward function. As in (28), the scalar cost function V(s) is
based on a force-closure quality index introduced in (20). Without
going into details, an algorithm for optimal force distribution toward
the improvement of force-closure property can be based on the mini-
mization of a cost function V(ds) with respect to ds.

LetWk
i;j⊂ℝh indicate the set of grasp variables y that satisfy the fric-

tion cone constraint with a (small, positive) margin k, where h is the
dimension of the internal force subspace E; let w indicate the object
weight. Thematrix Emaps the controlled joint displacement into inter-
nal forces activated on the object. Underactuation reduce the subspace’s
dimension of controllable internal forces according to the mechanical
andmotor synergies; thus, according to thematrices,Em equalsESm and
Es equals ESmSs.

For the ith contact and the jth constraint, V is obtained as the
summation of the terms V(w, y) = ∑i ∑jVi,j(w, y) defined as

Vi;j ¼ ð2s2i;jðw; yÞÞ�1

as2i;jðw; yÞ þ bsi;jðw; yÞ þ c

y ∈ Wk
i;j

y ∉ Wk
i;j

(
ð6Þ
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where a, b, and c are constant positive parameters conditioned by
properties imposed to V.

This cost function, detailed in (20), has a formulation suitable for
practical implementation inmanipulation planning. To bemore specif-
ic, the function V has been adopted as a cost function indicating the
quality of grasp, because the reciprocal of V reflects the distance of
the grasp from violating the friction cone constraints and is obtained
by formulating and solving the problem as a second-order cone
programming.

In this work, the reward function r(s) has the following expression

rðsÞ ¼ bVðsÞ þ f ð7Þ

where b = 10–6 is a scaling factor and f is

f ¼ 0
104

ifgrasp succeeds
ifgrasp fails

�
ð8Þ

The value f = 104 has been chosen higher than in the previous work
to penalize more decisively the failed grasps and to avoid them in the
following explorations. b and f have been tuned experimentally with
the aim that the cost function V(s) become meaningful when the
grasp is successful.

Experimental results
We tested our algorithm on an experimental setup consisting of an
SVH, a KUKA Lightweight Robot 4+, an Asus Xtion PRO LIVE sensor
for point cloud acquisition, and a PC equipped with the ROS meta-
operating system.

For each experiment, a different object is chosen and placed at a
random position on a table in front of the robot. The sensor acquires
a point cloud of the scene, and the features and pose of the object are
estimated by the object recognition module, which publishes the
information on a ROS topic that theNNnode subscribes to. The initial
values of the policy parameters are obtained by the NN and used to
generate five samples for the RL loop; each of the corresponding tra-
jectories is executed and a reward is computed on the basis of the force-
closure cost function and on the result of a simple lifting test: Once the
fingers are closed, the robot tries to lift the object and carry it at the
home configuration. If the test fails, a high penalty is assigned to
the trial, whereas no penalty is assigned for a successful test. The re-
wards associated to each trajectory are used to update the policy of
the algorithm, assigning low probabilities to trajectories that per-
formed poorly.

Three different objects were considered for these experiments: a
tennis ball, a plastic strawberry, and a plastic bottle; the results of
the experiments are shown in Figs. 3, 4, and 5. For each experiment,
we report

1) A color-coded table, where the ith row is the ith update of the
RL loop, and the jth column is the jth trial. Each entry is red if the
corresponding grasp failed, and green if it was successful. Thus, five
trials for each update led to a total number of 25 trials. For each tried
grasp, the matching with the corresponding values on the graphs
[images (B), (C), and (D)] can be found by reading the table from left
to right and from the top to the bottom.

2) A plot of the evolution of the force-closure cost function.
3) A plot of the evolution of the hand synergies and arm

scores.
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
We can see how the number of successful grasps significantly in-
creases during the final updates in all the experiments, while the cost
associated with the force-closure index converges to lower values. In
particular, in the experiment with the tennis ball, we can see how the
number of successful attempts is higher in the beginning of the exper-
iment compared with the other objects. Because the ball can be accu-
rately represented with a simple spherical shape, the values of the
parameters obtained by imitation learning already provide a good ap-
proximation for synthesizing a stable grasp. When trying to execute
harder grasps, the information acquired from human demonstration
is not good enough to obtain stable grasps, and the RL loop is necessary
to explore the parameter space and improve the initial grasps by
learning from the interaction of the robot with the environment (Fig. 6).

The role of force-closure cost function
To appreciate the influence of the two terms of the reward function in
the convergence of the algorithm, we ran experiments (using the value
f = 103) for (i) the whole hand-arm system and (ii) only the hand. The
conclusion is that, for the hand-arm system, we have to increase f, as
done in this work (f = 104), to have a faster convergence (almost halv-
ing the trials). By increasing f, the pose of the arm leading to a correct
grasp is learned faster. The experiments confirm that the learning
capabilities and the convergence of the algorithm are significantly
affected by the parameter f, whereas the force-closure cost function
affects mainly the hand configuration. To appreciate the influence
of the force-closure cost function, we ran the algorithmwith and with-
out the adoption of this cost only for the hand. The conclusion is that
the force-closure cost function does not influence the success of the
grasp but the stability of the grasp. The number of trials to get the con-
vergence of the algorithm does not change, but the force-closure cost
changes significantly. In Table 1, a quantitative comparison of final
grasps, obtained for different objects with and without the adoption
of the quality index to generate the action, is reported.

Evaluation of the algorithm in different initial conditions
To validate the algorithm in different initial conditions, we com-
pared the results using force-closure cost function after 25 trials.
We tested the algorithm in three different conditions with reference
to the parameter initialization: (i) The initialization of the policy is
provided by comparing the object to be grasped with examples con-
tained in a reference table (including a limited number of object/
grasp pairs) and by choosing parameters related to the closest one;
(ii) the shape and dimension of the object are known and given as
input to the NN, and the initialization of the policy is the output of
the NN; and (iii) the object is unknown, and the vision system is in
charge of extracting the information to be given as input to the NN.
In case (i), the algorithm fails and does not converge. In (ii) and (iii),
the convergence is ensured but the quality of the grasp is influenced
by the uncertainty introduced by the perception. The results are bet-
ter for (ii) in terms of quality of the grasp. For (iii), the cost function
is greater of an order of magnitude, regardless of object and grasp
type. Therefore, we can state that the algorithm is robust to uncer-
tainties on perception to a certain extent [see cases (ii) and (iii)], but
if the initialization is too far from the correct value, the algorithm
does not converge [see case (i)]. Another consideration is that, if
the system is constituted only by the hand, in case (i) the algorithm
converges. This means that the robustness of the algorithm with re-
spect to the initial conditions decreases as the complexity of the sys-
tem increases.
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Fig. 3. Experiment on a tennis ball. (A) Grasp success table. (B) Force-closure cost function. (C) Synergy coefficients. (D) Arm scores.
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Fig. 4. Experiment on a plastic strawberry. (A) Grasp success table. (B) Force-closure cost function. (C) Synergy coefficients. (D) Arm scores.
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019 7 of 11
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Fig. 5. Experiment on a plastic bottle. (A) Grasp success table. (B) Force-closure cost function. (C) Synergy coefficients. (D) Arm scores.
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DISCUSSION
In this work, the problem of grasping novel objects with a robotic
hand-arm system has been considered; in particular, an algorithm
for learning stable grasps of unknownobjects has been developedbased
on a simple shape classification and on the extraction of some of the
associated features.

Building uponprevious researches on the topic, the results presented
in this work confirmed that the combination of learning from demon-
stration andRL can be an interesting solution for complex tasks, such as
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
graspingwith anthropomorphic hands, providing the robotwith a good
base to start the learning process, and allowing it to improve its abilities
through trial and error. The experiments carried out on our setup
provided encouraging results, showing that this framework is suitable
for synthesizing stable grasps of different objects and how it can poten-
tially be improved over time, with reference to some quality metrics.

The algorithm has been tested in three different conditions with
reference to parameter initialization. The experimental results demon-
strate that the system is robust to uncertainties on perception of the
environment to a certain extent. If the initialization is “wrong”—
namely, too far from a good value—the algorithm does not converge.
The initialization is obtained using an NN trained by human grasping
samples.Wehave verified that, ifNNare not used to initialize the policy,
the algorithmdoes not converge. In otherwords, a complex systemwith
high DoFs would never converge without proper initialization of the
policy parameters. In this context, synergies will help a smart choice
of the policy, whereas a synergy-based supervised learning algorithm
allows a suitable initialization of the policy parameters. One of themain
limitations of the proposed algorithm is in the very simple object recog-
nition algorithm, which could be improved by considering additional
shape templates, as well as decomposing complex objects into simpler
parts that can be associated with basic shapes in a satisfying way. Fur-
thermore, an automatic way for testing the success of a grasp, without
relying on a supervisor, could be implemented: For example, this could
be done by tracking the object position with the camera. The use of dif-
ferent cost functions in the RL loop could also be investigated, for ex-
ample, developing some metric for the quality of a grasp derived from
visual information or considering costs that depend on the particular
task that we want to accomplish.

The proposed algorithm could also be integrated in a wider
framework, where different actions are selected on an higher hierarchi-
cal level in a task-oriented fashion, guiding the learning process toward
grasps that better suit a particular application. Future comparisons with
different learning algorithms are referred in particular to RL policy
search methods like PILCO (14) and PI-REM (15). It is not easy to in-
tegrate these algorithms in such a complex framework, so the compar-
ison with other methods is not trivial. In effect, different aspects need to
be considered and carefully evaluated.
MATERIALS AND METHODS
Hardware
Schunk five-finger hand
The SVH is a very compact, compliant under-actuated hand, which
closely resembles the structure and the appearance of the human
hand. One of the key features of this hand is that all controllers, reg-
ulators, and power electronics are fully integrated in the wrist. The
hand has a total of nine drives that move the 20 DoFs of the hand,
owing to the mechanical coupling between joints inspired by the way
human fingers usually move together. Technical details and specifics
for this device can be found in (29). To communicate with the hand,
a ROS wrapper for the SVH driver, available at (30), was used.
KUKA Lightweight Robot 4+
The KUKA Lightweight Robot 4+ is a very efficient and portable robot
weighing only 16 kg,with a payload of 7kg;motors, gears, and sensors are
accommodated inside an aluminum housing, as well as the necessary
control andpower electronics. The redundantDoFprovides the armwith
additional flexibility and can be used in differentways based on the task at
hand: It can be exploited to avoid obstacle, to increase themanipulability,
Fig. 6. Successful grasps of the tennis ball, strawberry, and plastic bottle at the
end of the learning process.
Table 1. Comparison of grasps obtained with and without force-
closure cost function.
Force-closure cost value
Grasp
 Cost not used
 Cost used
Bipodal
 1.9 × 107
 8.5 × 105
Tripodal
 2.5 × 107
 3.1 × 106
Sphere five finger
 2.7 × 108
 4.6 × 107
Cylinder five finger
 1.9 × 108
 1.4 × 107
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or in general to obtainmore favorablemotions for the desired task. Tech-
nical details and specifics for this device can be found in (31).

The control of the KUKA arm was implemented by taking advan-
tage of the FRI library, available at (32), which provides a simple user
interface for communicating with the robot. The library runs on a
remote PC that is connected with the KRC (KUKA Robot Controller)
via Ethernet.
Asus Xtion PRO LIVE
Asus Xtion PRO LIVE (33) is an RGB-D sensor consisting of an RGB
camera, an infrared emitter, and a CMOS (complementarymetal-oxide
semiconductor) sensor. The Asus Xtion PRO LIVE is a compact, plug-
and-play device, with a resolution of 640 pixels by 480 pixels for the
depth stream and 1280 pixels by 1024 pixels for the color stream, with
a depth range of approximately 0.6 to 3.5 m and a field of view of
58° H, 45° V, 70° D (horizontal, vertical, diagonal).

Software
ROS
ROS is ameta-operating systemprovidingmany functionalities, such as
low-level device control, hardware abstraction, and package manage-
ment. ROS is based on a peer-to-peer network of processes, called
nodes, which communicates using the ROS communication infra-
structure. The ROS framework is based on an asynchronous publish/
subscribe system, and it provides many different functionalities and is
easily accessible either by GUI or by command line (34).
PCL library
The PCL library provides implementations of many state-of-the-art al-
gorithms for point cloud processing, such as filtering, segmentation, and
model fitting (35).

Methods
Neural networks
The NN used in this work were built and trained using the Neural
Networks Toolbox available in MATLAB. All of the networks have
the same architecture, chosen experimentally and consisting of two
hidden layers with five neurons each. The available dataset was ran-
domly divided into training, validation, and test subsets comprising
70, 15, and 15%, respectively. The weights were randomly initialized
using the Nguyen-Widrow rule, and the Levenberg-Marquadt algo-
rithm was used for training.
Policy improvement with path integrals (PI2)
The implemented solution for the RL algorithm loop is based on
the episodic PI2 formulation originally proposed in (36). Each tra-
jectory was assigned a probability in the following way

PðtiÞ ¼ e�
1
lsi

∑n

i¼1e
�1

lsi
ð9Þ

where Si = S(ti) is the cost of trajectory ti.
These probabilities are used to update the mean value of the pa-

rameters for the next iteration

mqk ¼ mqk�1 þ ∑
n

i¼1
PðtiÞðmqi�1 � qiÞ ð10Þ

where mq0 is the initial mean value of the policy parameters, Sq0 is
the initial covariance matrix, and qi ~ N (mq0, Sq0) is the ith policy
parameter sample.
Ficuciello et al., Sci. Robot. 4, eaao4900 (2019) 30 January 2019
Because we are implementing an exploration decay, Sq is also
updated

Sqk ¼ gSqk�1 ð11Þ

The values of the parameters used for the experiments are k = 5,
number of updates; n = 5, number of trials per update; lhand = 1000,
hand synergies variance; larm = 0.0002, arm coefficients variance; and
g = 0.7, exploration decay.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaao4900/DC1
MATLAB code (.zip)
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