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Theorem 2: Assume that the classical feedback structure control prob-
lem has been put into the standard problem format of Fig. 2. Assume
further that conditions for the existence of a stabilizing controller satisfy-
ing bound (6) are met and A is Hurwitz. If, additionally, Dy, =1I,1_m2,
then the following is true.

i) The first Hamiltonian matrix Hx _ is upper block triangular, and

ii) the solution of the associated Riccati equation is a null matrix

Xoo =0,. (25

Proof: Completely analogous to that of Theorem 1.

We might note that similar conclusions can be deduced from the re-
sult of Theorem 1’ in [4] provided the augmented plant structure (5) is
employed, ¥y = 1,D; =1, and Dy, = 0 initially. Since the descriptor
form approach taken in [4] requires that both x; and x, be available for
controller computation, a natural choice would be 3 =1,,% =0,.

It is shown in [1] that a necessary and sufficient condition for the
existence of a stabilizing controller satisfying the bound (6) is passing
the following test on the spectral radius of the product Xoc Y oo

p(X oY o0) <77 (26)

Hence, meeting the conditions of Theorem 1 trivially satisfies this im-
portant prerequisite.

Observe that if conditions of both Theorem 1 and Theorem 2 are
met simultaneously, the Riccati equation solution step of the controller
synthesis becomes redundant and can be skipped entirely.

There are controlier synthesis problems of practical significance in
which D,; =1 does not hold. An example of this is the two degree of
freedom controller structure where dim(y) > dim(w). This difficulty,
however, can be readily removed by adding fictitious exogenous input
signals of appropriate dimensions at the controller input so that Dy, =1.

IV. ConcLusioNs

Substantial simplification of Hx controller synthesis procedure in the
case of open-loop stable plant and weight selection is shown to result
through the use of the classical cascade controller feedback structure of
Fig. 1. In this case the solution to the second associated ARE reduces
identically to a null matrix O, and this part of the controller computation
can be dispensed with.

In addition to reducing the computational intensity of the controller
synthesis, this result ensures that the spectral test (28), one of the nec-
essary and sufficient conditions for the existence of a stabilizing con-
troller satisfying the bound (6), is automatically satisfied. Furthermore,
if D)) =0and X oo > 0 exists, then both conditions of Theorem 1 in [1]
are met. Note that the requirement that D, = 0 is not at all restrictive
and can be easily met in practice by selecting W, strictly proper.

Moreover, if conditions of both Theorem 1 and Theorem 2 are met,
it is shown that the ARE solution step of the Hy, controller synthesis
becomes redundant and can be skipped altogether. However, the practical
implications of Dy, = I are not as straightforward although the obvious
difficulty of having a strictly proper plant may be removed by a proper
approximation to sufficiently high frequency {3].

Finally, the results of this note establish a direct link between the
classical feedback system structure and the simplified one-Riccati solu-
tion of the Ao, -optimal controller synthesis problem, a fact particularly
appealing to the practicing control engineer.
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Design of Optimal Output Feedback Compensators in
Two-Time Scale Systems

A.J. CALISE, J. V. R. PRASAD, a~p B. SICILIANO

Abstract— A formulation is presented for designing optimal output
feedback compensators of fixed order for two-time scale systems. The
formulation exploits an observer canonical form to represent the com-
pensator dynamics. The formulation precludes the use of direct feedback
of the plant output and achieves spillover suppression. A case study is
developed involving the rapid pointing of a flexible robot arm.

1. INTRODUCTION

To date, there exist very limited results that provide a direct design
method for two-time-scale output feedback systems. It has been shown
[1] that, in the case of full-state feedback, application of singular pertur-
bation theory (SPT) to the LQ regulator problem separates the control
design into slow and fast subproblems. In constant gain output feedback
problems, this separation occurs naturally only for a very restrictive class
of output structures [2], [3]. In general, constraints have to be introduced
to suppress control and measurement spillover to achieve a decoupled de-
sign [4], otherwise, a single set of feedback gains must be designed to
stabilize both the slow and fast subsystems [5]. More recently, an SPT
approximation of the LQ optimal constant gain output feedback regulator
problem has been obtained [6], which provides an 0(é*) approximation
to optimal closed-loop performance.

It is well known that constant gain feedback presents a severe design
limitation. It is generally good practice to avoid direct feedthrough of
sensor outputs to improve robustness and to reduce the effect of sensor
noise at high frequency. Observer-based control design methods for two-
time-scale systems have appeared in [7]-[9], where the separation prin-
ciple was exploited to achieve a decoupled design. However, the order
of the compensator when designed for large scale systems may prove
unwarranted. Recently [10], [11], frequency domain results have been
obtained for the case of employing strictly proper slow and fast compen-
sators of fixed order, to stabilize strictly proper slow and fast subsystem
models. It has been shown that to design a compensator such that the
two-frequency-scale structure of the open-loop system is preserved, the
compensator itself will have to be two-frequency scale. Moreover, unlike
the full order observer case, the design is coupled. A parallel compen-
sator structure is proposed made up of a slow compensator C; (s) and
a fast compensatory C;(p), where p = s/e. The compensators must
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be designed subject to the constraint Cs (oc) = C (0). Thus, a two-step
design is proposed, in which the fast compensator is designed first, fol-
lowed by a slow compensator design in which C;(0) acts as an inner
feedback loop around the slow plant dynamics. However, no specific
methods are given for designing the compensators.

The main contribution in this technical note is to present a direct time
domain formulation for designing fixed order dynamic compensators for
two-time-scale systems, and to illustrate it by a case study. The formu-
lation is done in an optimal output feedback setting that exploits an ob-
server canonical form to represent the compensator dynamics. It employs
a method for penalizing the plant and compensator states to improve the
robustness of the design. The canonical structure also permits the con-
straint C,(0) = 0 to be enforced in a simple form, thus decoupling the
fast and slow compensator designs. This can be viewed as a generaliza-
tion of the constant gain spillover suppression approach [4]. If separate
actuators and sensors are provided to control the slow and fast modes,
this permits a decentralized controller structure.

The case study involves the rapid pointing of a flexible arm. Results
are included which demonstrate the performance and robustness of the
controller design.

II. CompENsaTOR DESIGN
A. Two-Time Scale Formulations
We consider linear time-invariant two-time scale systems of the form

x| =Aux) +Apx, +Bu € R™ u €R™ (1a)
€X; =Ayx; +Axnx; + Byu X2 € R™ (1b)
y=Cix; +Cyx; Yy ERP (1c)

where 0 < e < 1, and det {42} # 0. To control systems of this form,
it is desirable to separately design two compensators—one for the slow
subsystem that results from formally setting e = 0, and one for the fast
subsystem obtained from the time stretching transformation 7 =t /e. In
[3] it is shown that a two-frequency scale transfer function matrix can be
decomposed in the form
C(s, €)=

C\(s, €) + Ca(es, €) + D(e). 2)

Thus, a strictly proper two-time scale fixed-order compensator in the
observer canonical form of [14] would have the following structure:

=-HYt —HSh =u +us (3a)
G =P +ua  hER™ (3b)
€2 =PiG tua [ ERM (o)
Ui =Piu—N;y uc € R i=1,2 (3d)
where n.; > m, P; and N; are matrices of free parameters, and
H? =block diag {{0---01];x,, j=1,---,m}, i=1,2
(4a)
7 = block diag [P,- - ,P5,] (4b)
00 00
10 00
P = (4¢0)
1 00
00 - 101,
The observability indexes of the compensator are chosen to satisfy
i) Zui, —ng i) v, <w  i=1,2. (5)
j=1

In [11] it is shown that the closed-loop poles of the system (1, 3),
with the exception of “‘hidden” and ‘“‘lost” modes, can be approximated
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for sufficiently small € by the roots associated with the return difference
matrix expressions

det {I + C,(s)Ps(s)} =0 (62)
det {1 +C;(P)Ps(p)} =0, p=es (6b)
where
Py(s) =Co(sly —A,)'B, + D, (7a)
P(p) = Co(ply —An)7'B, (7b)
Cs(s) = Ci(s,0) + C2(0, 0) (7¢)
Cr(p) =Cap,0) (7d)
and A, = Ay — ApAy Ax, By = By — Andy,'By, Cp = C —

C2A;,' Az, Dy = —CzA22 B;. The hidden modes within P and C,
and the lost modes arising from setting ¢ = 0, are stable if the triples
(A,, B,, C,) and (4,,, B,, C;) are stabilizable-detectable.
Note that (7c) and (7d) imply
Cs(00)

=Cy(0). (8)

The compensator transfer function C(s, €) associated with (3) can then
be approximated as

C(s, &) =~ Cy(s) + Cr(p) )

where C,(s) = Cs(s) — C;(o0). Comparison of (9) with (3) reveals that
Cy(s) = HY(sI,, — P +P,HO)N, (10a)
Cy(p) = H3(plny — P§ + PL,HS)N,. (10b)

B. Output Feedback

The difficulty that arises here is that the expression for the slow poles
given in (6a) is in terms of C,(s). This implies that C; (s) should be de-
signed for the reduced plant P; (s) with C(0) as an inner loop feedback,
where from (10b)

Cs(0) =

H3(—P3 + P,HY)N,. (11)

Thus, the fast subsystem design should be performed first using the
augmented system matrices
- 0
B,
Pf Iﬂcz

- AZZ
A2 =
- Cz 0
C; = [ } G, =[N, P,
0 H?
This is followed by a slow subsystem design where the augmented system

matrices, including the inner loop feedback through Cy(0), have the
following structures:

—BzH?

0

(12)

. [Ac —BoH? i 0
Al B [ :| Bl B
0 P? I,,
N C, —-D,H®
Ci = { o pe ] <IN Py (13)

where A = A, — B/ C/(O)C,,, B = B,[In, + C;(0)D,]~
[, —-D! C/‘(O)]Cu, D} =D,[I, +C/0)D]".

At this point, we can define two optimal output feedback problems,
for the subsystems (12) and (13). For each subsystem, define

o0
J; =E;, {/ X7 Qi % +uLR,uc,]dt} i=1,2 (14)
0
where the augmented state vector is
X = i=1,2 15)
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and the control (used to design each compensator) is defined as

U = —G;Ci%; i=1,2. (16)

In what follows, the subscript i is suppressed to simplify the notation.
The necessary conditions for optimality require the solution of the
triple {G, K, L} satisfying

ATK + KA. +Q +C"G"RGC =0 (17a)
AL+LAT +X,=0 (17b)
RGCLC™ —B"KLC™ =0 (17¢)
for a stable closed-loop system matrix
A, =A—BGC. (18)

In (17b), X, = E{x,xT} is the variance matrix associated with the
distribution assumed for the initial conditions.

One advantage to the above formulation is that each compensator is
represented by a minimum number of parameters, and these are com-
pactly placed in the equivalent constant gain matrices G, and G, in (12)
and (13). A convergent numerical method for calculating G is given in
[15]. Also, because we have precluded the use of direct feedback of the
output, the design carries the same advantage of a full order observer in
reducing the effect of sensor noise, and improving robustness to high-
frequency unmodeled dynamics by guaranteeing additional rolloff (over
that of the open loop plant) at high frequencies.

C. Spillover Suppression

The effect of C(0) on the slow subsystem design, as described above,
may be viewed as a combination of measurement and control spillover. In
general, it should be avoided if possible since the fast subsystem control
design could seriously destabilize a previously stable slow subsystem.
Also, it has the same effect as a direct feedthrough of the output to the
input, which is undesirable from a robustness and sensor noise viewpoint.
In any case, since the primary objective of the fast controller is simply
to stabilize the high-frequency dynamics, there should be no need for
significant gain at low frequencies in the fast compensator. Therefore, it
is of interest to examine the constraint Cy (0) = 0, when performing the
fast subsystem control design. In general, such a constraint is related to
the compensator parameters in a complicated fashion. However, in this
case, it can be shown that the observer canonical form in (3) possesses
a unique left matrix fraction description

C(s) = D(s)"'N(s) (19)
where
D(s) = L(s)P + S(s), N(s) = L(s)N (202)
L(s) =block diag {[1 s---s"~'1 j=1,---,m} (20b)
S(s) =diag {s”~' j=1,---,m}. (20c)

Thus, for the fast compensator (P = P;, N = N;, s — p), the con-
straint C(0) = 0 becomes

L(O)N, =0. @

This amounts to zeroing selected rows in N, depending on the observabil-
ity indexes (,;) of the compensator. In order to avoid a trivial solution
(N, = 0), it is necessary that (1;) > 2 for at least one value of j. In
general, the number of constraint equations in (21) can be kept to a min-
imum by balancing the indexes. That is, the indexes should be selected
as large as possible while satisfying the constraints in (5). For a single
input plant, (21) reduces to constraining the first row in N to zero. The
numerical algorithm in [15] permits constraints of a very general class
on the output feedback gain matrix by using a penalty function approach.

D. Loop Recovery Formulation

A major objection to the design of constrained dynamic compensators
is that there are no guarantees on stability margins, and there are few
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guidelines for selecting the distribution of initial conditions, and for pe-
nalizing the plant states and compensator states to improve either per-
formance or robustness. Full-state feedback using Linear Quadratic Reg-
ulator Theory on the other hand is quite easy by comparison to carry
out. In [16], a loop transfer recovery procedure for fixed-order com-
pensators is outlined which uniquely defines the state and compensator
weighting matrix, and the initial state distribution matrix. This is briefly
summarized below.

Let K* be the gain matrix resulting from a full-state feedback design.
The return signal in the case of full-state design is —K*x. Referring to
(3), the return signal in the case of fixed-order compensator design is
—H°¢{. Thus, the objective in designing the compensator should be to
minimize

y=K*x —H°¢ (22)

for a suitably chosen input and for zero initial conditions. This naturally
leads to selecting the following index of performance:

o
H=E,, {/ [ +ufuc]dt}.
0

Substituting for y; from (22) and rewriting (23) in the form of (14) leads
to the following expressions for the weighting matrices:

[ ]R:plnc.

Selecting the input waveforms as impulses with magnitudes uniformly
distributed on the unit sphere results in the following expression for X, :

o o)

Equations (24) and (25) uniquely define the structure of the weight-
ing matrices needed for the fixed-order compensator design. Note that,
unlike the design of a full-order observer, the design of a fixed-order
controller depends on the gain matrix from the full-state design step.
Moreover, this gain matrix is not implemented as a part of the final
controller.

(23)

K*TK* —K*TH°

Q (24)

—HeTK*  FHoT o

BBT 0
X, = (25)

0 0

III. A Case Stupy
A. System Description

A flexible slewing arm with a rigid body rotation and flexible
“clamped-mass”’ modes is considered as depicted in Fig. 1. The actual
flexible arm chosen is a prototype in the Flexible Automation Labora-
tory at the Georgia Institute of Technology [12]. For this arm modeled
as an Euler-Bernoulli beam, the first two flexible modes have measured
modal frequencies of 13 rad/s and 87.5 rad/s. The next higher mode has
a measured frequency of 260 rad/s, which is too large to be actively
controlled by the available actuator. In order to derive a two-time scale
formulation, the quantity € = (1/k>)!/? was selected as the perturbation
parameter, where k, = 200 is the stiffness parameter associated with the
second flexible mode. A similar formulation can be found in [13], which
treats the case of full-state feedback. The motivation behind this choice is
that the modal frequency associated with the first mode is considerably
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Fig. 2.  Comparison of magnitude plots for the fast subsystem design.

lower, and within the range of the bandwidth of the desired closed-loop
rigid-body motion. Thus, the slow subsystem states are the joint angle,
the first flexible modal displacement, and their respective rates. The fast
subsystem states are the second flexible modal displacement and its rate.
The available measurements are the joint angle, the joint angle rate, and
two strain gauge measurements. The first is located close to the base to
ensure a good measurement of the first flexible mode. The second is
placed at the midpoint, close to a peak in the second mode shape. Also,
the third mode shape is nearly zero at this location.

B. Controller Design

Two second-order compensators were separately designed to stabilize
the slow and fast dynamics. First, a full-state feedback design was carried
out using the fast subsystem dynamics to damp the second flexible mode.
This produced a damping ratio of 0.4. This was followed by an output
feedback design using the loop transfer recovery formulation in {16].
Since the control is scalar, the spillover suppression constraint in (21)
was enforced by constraining the first row of N, to zero. This resulted in
approximately the same damping as the full-state design. The robustness
of this design is shown in Fig. 2, which compares the magnitude Bode
plots for the full-state design and the constrained output feedback design
in the fast time scale frequency. Note that the output feedback controller
satisfies the requirement C,(0) = 0, and the loop properties of full-state
feedback are adequately recovered. More important, however, is the fact
that the output feedback controller provides an additional 40 dB/decade
rolloff at high frequency. The phase margins for both controllers are close
to 90°. The full-state design also resulted in zero gain at low frequency,
which substantiates the point made earlier that low-frequency gain is not
needed to damp high-frequency dynamics.

The full-state design for the slow subsystem was performed to achieve
a 3 rad/s bandwidth for the rigid-body response with 0.7 damping of the
first flexible mode. The output feedback design with loop transfer recov-
ery achieved essentially the same bandwidth, with 0.67 damping of the
flexible mode and an additional 40 dB/decade rolloff. Fig. 3 illustrates
the robustness of the composite design by showing the magnitude and
phase plots for the loop broken at the plant input. The composite system
has about 12 dB of gain margin and 85° of phase margin. Comparison
of Fig. 3 with Fig. 2 illustrates the close agreement between the fast
frequency scale transfer function C(p)P (p) and the composite system
high-frequency response. A similar agreement was obtained at low fre-
quency. Figs. 4 and 5 are simulation results for a unit step command in
joint angle. The responses are shown both with and without the fast com-
pensator implemented. In Fig. 4, the joint angle response demonstrates
that the fast controller has essentially no effect on the rigid-body rotation
and first flexible mode. In Fig. 5, the tip responses of the flexible arm are
compared in terms of the resulting total tip deflection. This clearly shows
the effect of the fast compensator, and the fact that the two compensators
operate in a decoupled manner over separate frequency ranges.

IV. SuMMmary

A formulation has been presented for designing output feedback com-
pensators for two-time scale systems. The formulation results in a design
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that avoids direct feedback of outputs to inputs, and minimizes the number
of free parameters needed in the compensator representation. A detailed
example was used to demonstrate the robustness of the design approach.
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A New Approach for Designing a Reduced-Order
Controller of Linear Singular Systems

MOHAMED T. F. SAIDAHMED

Abstract—This note presents a novel approach for designing a mul-
tivariable reduced-order controller of a linear time-invariant singular
system. The approach is based on decomposing the original system into
slow and fast subsystems using the Drazin inverse technique. The result-
ing subsystems are then used to obtain an observer of reduced order.
This, in turn, is used in designing a new reduced-order controller which
is capable of placing the dominant eigenvalues of the system to arbitrary
locations. The present technique is shown to overcome some difficulties
inherent in other treatments of reduced-order controllers of singular sys-
tems and assures that the known corresponding controller of the regular
state space systems is merely a special case of the developed results.

I. INTRODUCTION

It is well known that there are advantages to using linear controllers
for improving systems performance. The traditional approach to realizing
such controllers in practical situations, where all the internal variables
are not available for direct measurements, is to incorporate an observer
into the system design. The observer proved to offer practical solutions
to various regular control problems as well as a fascinating research area.
In the linear time-invariant control systems, a host of papers regarding
the design procedures of the minimal order observers have appeared in
the literature in recent years, since the pioneering paper of Luenburger
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[1]-[3]. A long-standing problem in control system theory is still the
question of designing observers of reduced order for singular systems.
In [4], we have introduced two different approaches in designing both
full- and reduced-order observers of linear singular systems. These ob-
servers have been used in the design of linear controllers to eliminate the
impulsive modes and place the dominant eigenvalues of the original sin-
gular system to arbitrarily chosen locations under a certain condition. In
this note we present a novel approach that gives a direct access to design
a reduced-order controller for a linear multivariable singular system with
no constraints on the system parameters. The system considered here is
characterized by

Ex(t) = Ax(t) + Bu(t) (1a)

y(@) =Cx(1) (1b)

where x € R", UER", y e R™, and E, A, B, and C are real con-
stant matrices with appropriate dimensions, and C is of full row rank,
and E is possibly singular. It is known that systems of the form (1) are
of practical importance since they appear in many areas such as electri-
cal networks, singularly perturbed systems, composite systems, Leontieff
models in multisector economy, Leslie population models in biology, etc.
[5]. These kinds of systems also offer many advantages over the regular
state space systems since they are used in obtaining general descriptions
of many control problems in which the resulting mathematical models
cannot be obtained in the state space forms [5]. System (1) is sometimes
referred to as a generalized state space system or a descriptor system. In
the development to follow, it will be assumed throughout that system (1)
is solvable, i.e., there exists a scalar A € R such that (4 +\E)™" exists
for some scalar N. For more about solvability, see [5]. The approach
proposed here is based on decomposing the original system (1) into slow
and fast subsystems [6]. It is well known that the fast subsystem reduces
to an algebraic equation for all # > 0+. This property motivates us to ex-
tend the design procedure of the well-known controller from state space
systems to the part which contains the dominant eigenvalues of system
(1) with some modifications. Such a controller is shown to give easy
and simple computations with certain desirable properties. Throughout,
it is assumed that the slow subsystem is controllable and observable in
the sense of regular state space systems. The structure of the note is as
follows. In Section II we present the basic observer structure of system
(1). Before presenting the general design procedures of a reduced-order
controller in Section III, we also provide in Section II a heuristic dis-
cussion of the method to be used in deriving a reduced-order observer.
An example to support the usefulness of our approach is presented in
Section IV. Section V presents our conclusion.

II. Basic OBSERVER STRUCTURE

In singular systems, it is convenient to work with a standard form
that makes the analysis and computations much easier. To get this form,
first recall from the theory of singular systems [5] that if system (1) is
solvable, then there always exists a nonsingular matrix (4 + AE)~"' for
some scalar A € R such that (1) can be rewritten in another form as

Ex(t) = Ax(t) + Bu(t) (2a)

y(t) =Cx(1) - (2b)

where

E=(A+NE)Y'E; A=(A+\E)"'A

B=A+\E)"'B; EA=AE.

It is important to note that system (2) preserves all properties of system
(1) and sometimes is referred to as an alternative form of (1). Through-
out, we will be concerned with system (2), unless otherwise stated. Using
the Drazin inverse matrices, one can easily decompose system (2) into
slow and fast subsystems of dimensions n — » and », respectively, and
v denotes the index of E, which is defined as the smallest nonnegative
integer such that the rank (E”) = rank (E**'). The slow part takes the
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