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Forcflosition Regulation of 
Compliant Robot Manipulators 

Stefan0 Chiaverini, Bruno Siciliano, and Luigi Villani 

Abstract-Stable fondposition regulation of robot manipulators in 
contact with an elastically compliant surface is discussed in this work. 
The controller c&ts of a PD action on the position loop, a PI action on 
the force loop, together with gravity compensation and desired contact 
force feedforward. Asymptotic Stability of the system in the neighborhood 
of the equilibrium state is proven via the classical Lyapunov method with 
LaSalle invariant set theorem. A modiecation of the Lyapunov function 
leads to deriving an exponential stability result. Numerical case studies 
are developed for an industrial manipulator. 

I. IINTRODUCTION 
For typical robotic tasks that require interaction with the environ- 

ment, contact forces must properly be handled by the robot controller 
[l]. In such cases, a pure motion controller usually gives poor 
performance and can even cause instability. 

If force sensor information is not available for control purposes, 
one can assign a suitable dynamic behavior between position and 
force variables at the contact (e.g., impedance control) [2], [3]. On 
the other hand, several schemes can be devised which attempt to 
control both end-effector position and contact force by embedding 
force measurements in the controller. Hybrid control is perhaps 
the most widely adopted strategy to forcdposition control of robot 
manipulators [4]-[7]. The basic idea is the possibility to choose 
whether to control position or force along each task space direction 
through the use of proper selection matrices. Stability of hybrid 
control was addressed in [8] .  The problem of forcdposition control 
with force sensory feedback was also treated in [91, [ lo] for the 
general case of constrained motion tasks. 

A conceptually different approach to forcdposition control of robot 
manipulators is the parallel control strategy [ 113. As opposed to the 
hybrid control strategy, both force and position variables are used 
along the same task space direction without any selection mechanism. 
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The effectiveness of the scheme is ensured by the dominance of 
the force control loop over the position control loop along the 
constrained task directions where interaction occurs. This makes the 
scheme suitable to manage contacts with unstructured environment 
and unplanned collisions, which are known to represent a drawback 
for hybrid controllers. Extensive description of the parallel approach 
and performance analysis of a control scheme with full dynamic 
compensation in the case of contact with an elastically compliant 
frictionless surface can be found in [12], [13]. 

In view of real-time implementation, a new parallel control scheme 
was recently proposed which is based on simple position PD control+ 
gravity compensation + desired force feedforward + force PI control 
[14]. A preliminary analysis, inspired by the work in [15], showed 
asymptotic stability of the system around an equilibrium state. In 
detail, for given force and position set points, the force error is driven 
to zero at the expense of a position error at steady state. The proof in 
[ 141, however, leads to restrictive conditions on the feedback gains. 

This work presents an improved proof of local asymptotic stability 
based on the Lyapunov direct method with use of LaSalle invariant set 
theorem [16]. A different Lyapunov function is chosen which results 
in relaxed conditions on the feedback gains; in particular, the position 
proportional gain does not directly affect stability of the contact. 

The Lyapunov function is further modified to prove local expo- 
nential stability of the scheme yielding a new set of conditions to be 
satisfied for the feedback gains. 

The proposed control scheme is tested in simulation on the 
industrial robot COMAU SMART 6.10R only the first three joints are 
considered. The numerical case study confirms the results anticipated 
in theory. 

II. MODFLING 

The class of robot manipulators considered in this work is that of 
open kinematic chains of rigid links connected by actuated joints. If 
the manipulator interacts with the environment, it is convenient to 
describe its dynamics in an m-dimensional operational space [5] that 
is the space where manipulation tasks are naturally specified. The 
equations of motion can be written in the form 

B(z)Z + C(z, 2)i + g(z) = U - f (1) 

where z is the (m x 1) vector of operational variables (usually end- 
effector location), B is the (m x m) symmetric and positive definite 
inertia matrix, Ci is the (m x 1) vector of Coriolis and centrifugal 
generalized forces, g is the (m x 1) vector of gravitational generalized 
forces, U is the (m x 1) vector of driving generalized forces, and f 
is the (m x 1) vector of contact generalizes forces exerted by the 
manipulator on the environment; all operational space quantities are 
expressed in a common reference frame. 

Notice that the model (1) describes an ideal robot system where 
the effects of joint friction, backlash and elasticity, actuator dynamics, 
etc. are neglected. This is a common assumption which is reasonable 
in a suitable operational range. 

The (n  x 1) vector T of joint actuating generalized forces is 
computed as 

r = JTu, (2) 

where J is the (m x n)  manipulator Jacobian matrix. 
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When m is equal to the number of joints n and the manipulator 
moves in a singularity-free region of the workspace, the vector 
of operational variables constitutes a set of Lagrangian generalized 
coordinates and B assumes the meaning of a true inertia matrix. 
Instead, in the case of kinematically redundant manipulators (m < n), 
B is only a pseudo inertia matrix [SI. 

For the purpose of the present work, the attention is restricted to 
the case of nonredundant, nonsingular manipulators with m = n = 3, 
i.e., only translational motion and force components are considered. 
Then, z denotes the end-effector position. 

Accurate modeling of the contact between the manipulator and 
the environment is usually difficult to obtain in analytic form, 
due to complexity of the physical phenomena involved during the 
interaction. It is then reasonable to resort to a simple but significant 
model, relying on the robustness of the control system to absorb the 
effects of inaccurate modeling. Following these guidelines, the case 
of an environment constituted by a rigid, frictionless and elastically 
compliant plane is analyzed. The choice of a planar surface is 
motivated by noticing that it is locally a good approximation to 
surfaces of regular curvature. The rigidity of the contact plane allows 
the neglect of the effects of local deformation at the contact. The 
total elasticity, due to end-effector force sensor and environment, is 
accounted through the compliance of the plane. Friction effects are 
neglected within the operational range of interest. 

With the above assumptions, the model of the contact force 
considered takes on the simple form 

f = K ( z  - zo) ,  (3) 

where z is the position of the contact point, 20 is a point of the 
plane at rest, and K is the (3 x 3) constant symmetric stiffness 
matrix [17] that establishes a linear mapping between (z - 20) and 
f; notice that (3) holds only when the manipulator is in contact 
with the environment and all quantities are expressed in the common 
reference frame. According to [ 141, the matrix K can be expressed as 

K = k nnT (4) 

where k > 0 is the stiffness coefficient acting along the unit vector 
n orthogonal to the contact plane. 

III. FORCEPOSITION RF~GULATION 
A typical task for a robot manipulator in contact with the envi- 

ronment can be prescribed in terms of a position set point Z d  and a 
force set point f d .  It can be recognized that, in general, simultaneous 
achievement of both set points is not guaranteed. 

A viable strategy is to adopt the parallel control approach [ l l ] ;  
this is especially effective in the case of inaccurate contact modeling. 
The key feature is to have a force control loop working in parallel to 
a position control loop along each task space direction. The logical 
conflict between the two loops is managed by imposing dominance of 
the force control action over the position one. The potential offered by 
this technique compared to conventional controllers also using force 
feedback sensory information is extensively discussed in [12], [13]. 

A force/position parallel controller for the system (1) was proposed 
in [14], based on position PD control + gravity compensation + 
desired force feedforward + force PI control, i.e., 

Fig. 1. Construction of the equilibrium point in a two-dimensional case. 

where A z  = z d  - z is the position error, Af = f d - f is the force 
error, and k p ,  Lo, k ~ ,  kr > 0 are suitable feedback gains. 

It is important to remark that no exact knowledge of the stiffness 
matrix K is required by the control (5). Notice also that, differently 
from most forcdposition control schemes, including the original 
parallel controller [ l l] ,  no full dynamic model compensation is 
required. 

The elastic contact model (3) reveals that a null force error can be 
obtained only if fd E R(K). If no information about the geometry 
of the environment is available, i.e., n is unknown, the null vector 
can be assigned to f d  that is anyhow in the range space of any 
matrix K .  Thus, in the remainder, it is assumed that f d  E R(K). 
Analogously, it can be recognized that null position errors can be 
obtained only on the contact plane, while the component of z along 
n has to accommodate the force requirement specified by fd; thus, 
Z d  can be freely reached only in N ( K ) ,  i.e., dong the unconstrained 
directions of the operational space. 

As a further assumption, it is supposed that the contact between 
the manipulator and the environment is not lost after the impact. 

As demonstrated in [14], an equilibrium (2,) fw} for the system 
(1) under the control (5) is 

1 
2- = p n T  ( f d  + k z o )  + ( I  - nnT)zd 

f, = k nnT(zoc - 20) = f d .  (7) 

This is consistent with the above considerations about specification 
of position and force set points. An example of construction of the 
equilibrium point in a two-dimensional case is illustrated in Fig. 1. 

If the desired force set point fd is not aligned with n, an equi- 
librium trajectory rather than an equilibrium point is obtained. The 
expected effect is a drift of the end-effector along the unconstrained 
directions of the operational space. 

IV. STASILITY 
To study stability of the system ( l ) ,  (3), (5) around {zW, f,}, 

define 

e = z w - z  (8) 

which, by virtue of (3), (6), can be also written as 

e = ( I  - nnT) Az + -nnT 1 Af = Az + -d 1 (9) k k p  
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where 

is a constant vector taking into account the effects of the environment 
contact force and the desired force set point. 

It should be remarked that the adoption of the model (3) with a 
constant n is appropriate for the following stability analysis of the 
system in the neighborhood of the contact equilibrium point for a 
compliant surface of regular curvature. 

For later use, notice that 

1 
nTe = -nT Af. k 

From (8) it is 

Further, define 

1 

Differentiating (13) with respect to time and taking into account (1 1 )  
yields 

i = n T e .  (14) 

At this point, consider the (7 x 1) augmented state vector 

z =  (iT eT s ) T .  

The augmented system described by ( l ) ,  (12), (14) under the control 
(5) can be written in the standard compact homogeneous form: 

t = F z  (16) 

where 

-B-'(C+ k o l )  B - ' ( k p l +  k k k  nnT) k r k B - ' n  

0 
F = (  -I 0 

OT nT 
(17) 

with k k  = 1 + kF; 0 denotes the (3 x 3) null matrix and 0 the 
(3 x 1) null vector. Notice that some handy reductions, using the 
structural properties of K in (4) and the definition of s in (13), have 
been performed to derive (17). 

The following result can be stated: 
Theorem 1: There exists a choice of feedback gains k p ,  kD,  kF, 

k I  that makes the origin of the state space for the system (16), (17) 

Proof: Consider the Lyapunov function candidate 
locally asymptotically stable. 0 

1 
2 

v = -zTPz 

where 
-PB 0 

krk nT pkrk 
p + p k D ) I +  k k k  nnT k , k n )  (19) 

with p > 0. Computing the time derivative of V along the trajectories 
of the system (16), (17) gives 

V = -zT(k~I-pB)z-peTCTi-eT(pkpI+(pkk-kr)k nnT)e 
(20) 

in which the skew-symmetry of the matrix b - 2C [18]-[20] has 
been conveniently exploited. 

Consider the region of the state space 

Z = { z :  llell < a}. (21) 

The term -peTCTi: in(20) can be upper bounded in the region (21) 
as 

- p e T C T z  5 p@kclli l) '  (22) 

where k c  is a positive constant such that llCll 5 kcllkll [21]. 
In view of (14), (22), the function (20) can be upper bounded as 

V 5 - ( k ~ - p X ~ - p @ k C ) ~ ~ i ~ ~ ' - p k p ~ ~ e ~ ~ ' - k ( p k ~ - k r ) ~ '  (23) 

where AM is the maximum eigenvalue of B which is bounded in the 
case of all revolute joints [22]. 

On the other hand, the function candidate (18), (19), in view of 
(14), can be written as 

V = -iT Bk - p z T  B e  + - ( k p  + p k o ) e T e  
1 1 
2 2 

1 
+-kkki '  2 + k l k s i  + fkrks '  2 (24) 

which can be lower bounded as 

Equations (23), (25) reveal that there exists achoice of k p ,  k o ,  kF, 
kr ,  and p that makes V positive definite and V negative semidefinite 
in 2. In fact, (25) gives 

k p  + p k o  >  AM (26) 

while (23) gives 

plus (27) again. Observing that condition (28) implies (26), it can be 
concluded that only conditions (27), (28) must be satisfied. 

Since V is negative semidefinite, the inequality V 5 0 must be 
fyther analyzed to prove asymptotic stability. In particular, it is 
V < 0, V z  # 0,  e # 0, s # 0, while V = 0 implies z = 0, 
e = 0,  i = 0. Note that e = 0 implies Af = 0 through (6)-(8). 
Hence, the state z is uniformly bounded in Z and local asymptotic 
stability around z = (OTOTO)T follows from LaSalle invariant set 
theorem [ 161. Q.E.D. 

Remarkably p is a free parameter that is not used in the control 
law (5) and then allows an opportune choice of the feedback gains 
k o ,  kF, kI .  About the feedback gains, notice that k p  is not involved 
in the conditions (27), (28) and then is available to meet further 
design requirements. Also, by increasing kD, a larger value of @ can 
be tolerated. These are considerable improvements over the previous 
result in [14]. 

Theorem 1 provides design guidelines to ensure local asymptotic 
stability of the system (16), (17). A further result can be established 
to prove local exponential stability. 

Theorem 2: There exists a choice of feedback gains 
kp, k o ,  kF, kr that makes the ongin of the state space for 

0 the system (16), (17) locally exponentially stable. 
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Proof: Consider the Lyapunov function candidate 

1 
W = -zTQz 2 (30) 

-PB 

where 

( k p + p k ~ ) I + k k k  nnT ( k r k + y k ~ ) n  
- w T B  (krk + ykD)nT Pkrk+y(kp+kkk)  

with p, y > 0. Computing the time derivative of W along the 
trajectories of the system (16), (17) gives 

W = - i T ( k ~ l - ~ B ) i - e T ( ~ k p I + ( ~ k ~ R - k ~ k - ~ k ~ ) n n T ) e  

(32) -ykrks2 - yzTBnnTe - (/?e' + ysnr)CTi  
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In view of (14) and the inequality 

in which the skew-symmetry of the matrix b - 2 C  has been exploited 
again. 

In view of (14), the function candidate (30), (31) can be lower- 
bounded as 

Equation (33) reveals that there exists a choice of kp, k o ,  kF, kI, 
p, and y that makes W positive definite, provided that: 

the function (32) can be upper bounded as 

1 AM W 5 -Hz = - ko - P A M  - y- - (a + y)$kc 11k112 ( 2174 

- (Pkp - y F ) l l e / 1 2  - ykrks2 

- (Pkkk - krk - y k D ) i 2 .  (44) 

By comparison of (44) with (40), it can be recognized that if the 
following inequalities are satisfied for some a > 0, 

the chain of inequalities holds 

kP + (1 + kF)k > 2yAh.i (35) 

P(1  + k F ) k I k 2  > (kIk + TkD)' .  (36) 

On the other hand, the function candidate (30), (31), in view of 
(14) and the inequalities 

(39) 

can be upper bounded as 

and then 

W ( t )  5 W(0)  exp (-at). (50) 

For a given 0, it is possible to choose the gains kp, k ~ ,  kF, kr 
and the parameters P, y, 171, 9 2 ,  173, 174 so that the relations (34)-(36) 
and (45)-(48) are satisfied for some a > 0. By virtue of (50), local 
exponential stability of the system (16), (17) at the origin of the state 
space is obtained. Further, LY allows the computation of a lower bound 
on the convergence rate toward the equilibrium state. Q.E.D. 

About the feedback gains, notice that now kp is involved in the 
conditions (34), (33, (46), (47). By means of the free parameters 
0, y, 171, 172, 173, 74, which are not used in the control law (S) ,  
however, it is possible to find a set of feedback gains kp, ] E D ,  kF, 
kr that guarantee local exponential stability. 

V. CASE STUDY 
The proposed force/position controller was tested in a case study 

on the six-joint industrial robot COMAU SMART 6.10R. This is an 
elbow manipulator geometry with zero shoulder offsets and spherical 
wrist; only the first three joints were considered. The complete 
numerical data for the robot parameters can be found in [23]. 
Simulations were run in MATLAB on a PC-486/33. 

A step motion from z = (1.100 0 O)T [m] to the set point 
Z d  = (1.120 0 O ) T  [m] was commanded to the manipulator's tip. 
The set point fd = 0 was assigned for the tip force. The geometry 
of the contact plane is characterized by n = (1 0 O)T and 20 = 
(1.115 0 O)T [m]; different values for the stiffness coefficient k 
were considered. It can be recognized that an unexpected impact 
occurs along the normal direction to the plane at a distance of 
0.005 [m] from the target point Z d .  For simplicity, the time scale in 
the simulations is reset (t = 0) at the instant of the impact; further, 
the sole z-component of position and force vectors are reported, in 
view of the particular task geometry. 
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E 1.11 z 
0 0.5 1 

1.1 

time [SI 
Fig. 2. Time history of the tip position (solid: force/position controller, 
dashed: position controller). 

, . .~............... ...................... E 3m;r-] 200 

time [SI 
Fig. 3. Time. history of the contact force (solid: forcdposition controller, 
dashed: position controller). 

time [SI 
Fig. 4. Time history of the Lyapunov function (30). (31) (solid) and its 
bounding exponential function (dashed). 

The gains in ( 5 )  were set to kp = lo5 [Nm- l ] ,  kD = 
lo4 [Nsm-’1, kF = 4, k~ = 55 [s-l]. On one hand, kp and 
kD were chosen so as to guarantee a well-damped behavior for the 
unconstrained motion of the manipulator in a large region of the 
workspace. On the other hand, kp and kI were chosen so as to 
achieve a satisfactory behavior during the constrained motion with 
an estimate of the stiffness coefficient of k = lo5 [Nm-’1. With 
the above values, the design conditions (27). (28) were satisfied with 
some p > 0 for available estimates of AM and kc. 

In the following, the numerical results of two simulation runs with 
a sampling time of 2 [ms] are presented. 

In the first run, it is k = lo5 [Nm-’1. For the purpose of 
comparison, both the full forcdposition controller and the pure 
position controller (kF = 0, kI = 0 )  were used. It can be seen 
that the equilibrium position zm (= zo in this case) is reached (Fig. 
2) and the contact force is null at steady state (Fig. 3), so as desired. 
Notice also that, without force feedback, finite steady-state errors 
occur both for position and force. Fig. 4 reports the time history of 
the Lyapunov function W ( t )  in (30), (31), together with the function 
W(0) exp (-at); the value of (Y was computed via the MATLAB 
optimization function CONSTR applied to the set of conditions 
(34)-(36), (45)-(48) with free parameters p ,  y, 91, 72, 73, 74. It is 
easy to recognize the exponential stability result established by (50). 

In the second run, the robustness of the proposed controller was 
tested by changing the stiffness coefficient into k = lo6 [Nm-’]  

0 0.5 1 1.1 

time [SI 

Fig. 5. l ime history of the tip position with imprecise stiffness estimate. 

time [SI 
Fig. 6. Time history of the contact force with imprecise stiffness estimate. 

but leaving the same feedback gains as above. The results of Fig. 5 
and Fig. 6 demonstrate that satisfactory performance is obtained even 
when tuning of the force feedback gains was done by underestimating 
the actual stiffness of the environment. 

VI. CONCLUSION 
Forcdposition regulation of robot manipulators in contact with 

an elastically compliant surface was analyzed in this work. The 
controller consists of a PD action on the position loop, a PI action 
on the force loop, together with gravity compensation and desired 
contact force feedforward. 

Both local asymptotic stability and exponential stability were 
proven via the Lyapunov method, thanks to the introduction of off- 
diagonal terms in the Lyapunov functions. In particular, those terms 
feature positive constants that serve as additional degrees of freedom 
to satisfy conditions on the feedback gains but remarkably are not 
used by the control law. 

A case study was developed for an industrial elbow manipulator, 
whose tip experiences an unexpected impact with the environment 
on the way toward the target position. The numerical results of two 
sets of simulations confirmed the theoretical derivation. Exponential 
stability was verified and robustness of the scheme to imprecise 
estimate of contact stiffness was successfully tested. 

Current work is devoted to investigate the stability of the scheme in 
the case of imperfect compensation of the gravity term and possibly 
resort to an adaptation mechanism on the system state. 
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Robust Stabilization: Some Extensions 
of the Gain Margin Maximization Problem 

Andrzej W. Olbrot and Marek Nikodem 

Abstrud- We consider robust stabilization for SISO systems with 
linear dependence on a real uncertain parameter which may occur 
either in the numerator or denominator of the plant transfer function. 
We show necessary and suf6cient conditions for the existence of robust 
controllers. Their structure and parameterization can be obtained from 
the corresponding Nevanlinna-Pick interpolation problems. This work 
extends the previously known case of M uncertain gain parameter. 

I. INTRODUCTION 

The problem of reducing consequences of uncertainty has been a 
central issue in the field of control systems. One of the most important 
problems in robust control theory is robust stabilization. The general 
problem of robust stabilization can be formulated as follows: given a 
model of the plant with uncertain parameters, find a compensator 
which stabilizes the plant regardless of the values of uncertain 
parameters. In the most recent works on robust stabilization, emphasis 
has been placed on the analysis part [ 11. On the other hand, very little 
has been done concerning the synthesis of robust controllers. Few 
results are known for structured (parametric) uncertainties which give 
not only necessary and sufficient conditions for the controller to exist, 
but also particular solutions parameterized in terms of arbitrary holo- 
morphic functions [2]. Some of such problems have been solved using 
techniques from complex analysis, particularly the Nevanlinna-Pick 
interpolation procedure [2]-[4] which is also known to be useful in 
network theory (circuit modeling and passive circuits synthesis [7]. 
The so-called Nevanlinna recursion provides an easy constructive 
algorithm yielding the unique solution in the “degenerate case” and a 
parameterization of all solutions in the “nondegenerate case” [4], [7]. 
Knowing the plant right-half plane (RHP) poles and zeros, the com- 
putations can even be done with pencil and paper. In [2], Tannenbaum 
considers the problem of stabilizing a parameterized family of plants 
Pk (s) where k takes the values in some compact set K .  This problem, 
in general, has no solutions (he indicated some counter examples). For 
certain cases, however, it is possible to give an algorithmic solution. 
In particular, he solved the case of uncertainty in the gain factor (the 
gain margin problem) pk(s) = k&(s) ,  where k E [a, b].  

Later, Khargonekar and Tannenbaum [4] described a general 
methodology for using the Nevanlinna-Pick interpolation in several 
control pfoblems, and as an _example, they considered the case of 
P ( s )  = P ( s ) / ( s - - y ) ,  whereP(s) isafixedrealrationalfunctionand 
y is an uncertain parameter, y E [a0 -a, a0 + P I .  In the recent paper 
[SI this problem has been extended to several uncertain poles which 
cannot move freely and must lie on a specified curve determined by 
exactly one uncertain coefficient in the plant’s denominator. 

In our work we consider the case of one uncertain parameter 
in the plant transfe: function which has the following stru_cture 
P(s>  = ( N ( s )  + k N ( s ) ) / D ( s )  or P ( s )  = N ( s > / ( D ( s )  + kD(s ) )  
where k E [a ,  b],  k E R. This extends the results in [4], [8]. Using 
the techniques from the interpolation theory, we transform the robust 
stabilization problems to interpolation problems. Then we give nec- 
essary and sufficient conditions for the existence of robust stabilizers. 
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